Existence and Nonlinear Stability of Stationary Solutions to the Viscous Two-Phase Flow Model in a Half Line
DOI:
https://doi.org/10.4208/cmr.2020-0063Keywords:
Two-phase flow, outflow problem, stationary solution, nonlinear stability.Abstract
The outflow problem for the viscous two-phase flow model in a half line is investigated in the present paper. The existence and uniqueness of the stationary solution is shown for both supersonic state and sonic state at spatial far field, and the nonlinear time stability of the stationary solution is also established in the weighted Sobolev space with either the exponential time decay rate for supersonic flow or the algebraic time decay rate for sonic flow.
Downloads
Published
2020-11-02
Abstract View
- 42448
Pdf View
- 3069
Issue
Section
Articles
How to Cite
Existence and Nonlinear Stability of Stationary Solutions to the Viscous Two-Phase Flow Model in a Half Line. (2020). Communications in Mathematical Research, 36(4), 423-459. https://doi.org/10.4208/cmr.2020-0063