The Pseudo Drazin Inverses in Banach Algebras

Authors

  • Jianlong Chen
  • Zhengqian Zhu
  • Guiqi Shi

DOI:

https://doi.org/10.4208/cmr.2021-0013

Keywords:

Drazin inverse, pseudo Drazin inverse, generalized Drazin inverse.

Abstract

Let $\mathscr{A}$ be a complex Banach algebra and $J$ be the Jacobson radical of $\mathscr{A}$. (1) We firstly show that $a$ is generalized Drazin invertible in $\mathscr{A}$ if and only if $a+J$ is generalized Drazin invertible in $\mathscr{A}$/$J$. Then we prove that $a$ is pseudo Drazin invertible in $\mathscr{A}$ if and only if $a+J$ is Drazin invertible in $\mathscr{A}$/$J$. As its application, the pseudo Drazin invertibility of elements in a Banach algebra is explored. (2) The pseudo Drazin order is introduced in $\mathscr{A}$. We give the necessary and sufficient conditions under which elements in $\mathscr{A}$ have pseudo Drazin order, then we prove that the pseudo Drazin order is a pre-order.

Published

2022-12-02

Abstract View

  • 40732

Pdf View

  • 2735

Issue

Section

Articles

How to Cite

The Pseudo Drazin Inverses in Banach Algebras. (2022). Communications in Mathematical Research, 37(4), 484-495. https://doi.org/10.4208/cmr.2021-0013