On a Class of Quasilinear Elliptic Equations
DOI:
https://doi.org/10.4208/cmr.2022-0038Keywords:
Variational perturbations, $p$-Laplacian regularization, quasilinear elliptic equations, modified nonlinear Schrödinger equations, sign-changing solutions, critical exponents.Abstract
We consider a class of quasilinear elliptic boundary problems, including the following Modified Nonlinear Schrödinger Equation as a special case: $$\begin{cases} ∆u+ \frac{1}{2} u∆(u^2)−V(x)u+|u|^{q−2}u=0 \ \ \ in \ Ω, \\u=0 \ \ \ \ \ \ \ ~ ~ ~ on \ ∂Ω, \end{cases}$$ where $Ω$ is the entire space $\mathbb{R}^N$ or $Ω ⊂ \mathbb{R}^N$ is a bounded domain with smooth boundary, $q∈(2,22^∗]$ with $2^∗=2N/(N−2)$ being the critical Sobolev exponent and $22^∗= 4N/(N−2).$ We review the general methods developed in the last twenty years or so for the studies of existence, multiplicity, nodal property of the solutions within this range of nonlinearity up to the new critical exponent $4N/(N−2),$ which is a unique feature for this class of problems. We also discuss some related and more general problems.
Downloads
Published
Abstract View
- 26466
Pdf View
- 2561