A Note on the Determinant of a Special Class of Q-Walk Matrices

Guixian Tian^{1,*}, Junxing Wu¹, Shuyu Cui² and Huilu Sun¹

Received December 27, 2023; Accepted April 16, 2024; Published online September 15, 2025.

Abstract. For a graph G of order n, its Q-walk matrix is defined by $W_Q(G) = [e,Qe,\cdots,Q^{n-1}e]$, where Q is the signless Laplacian matrix of G and e denotes the allone column vector. Let $G \circ P_k$ represent the rooted product graph of G and a path P_k . In this note, we establish the relationship between determinants of $W_Q(G)$ and $W_Q(G \circ P_k)$ for k = 2,3.

AMS subject classifications: 05C50, 15A18

Key words: Signless Laplacian matrix, *Q*-walk matrix, rooted product graph, determinant.

1 Introduction

All graphs considered are simple, that is, finite undirected graphs without multiple edges and loops. For a graph G of order n, let A(G) and D(G) denote its adjacency matrix and degree diagonal matrix, respectively. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix of G (Q-matrix for short). All the eigenvalues of Q(G) are called the Q-eigenvalues of G. Without causing confusion, we use A and Q instead of Q(G) and Q(G), respectively. The A-walk matrix (resp. Q-walk matrix) of G is defined by $W_A(G) = [e, Ae, \cdots, A^{n-1}e]$ (resp. $W_Q(G) = [e, Qe, \cdots, Q^{n-1}e]$), where e represents the all-one column vector.

The walk matrices of graphs not only possess some fascinating properties, but also play a crucial role in the problem of characterizing families of graphs determined by generalized spectra. For example, it was proved in [6,7] that the determinant of A-walk matrix of an n-vertex graph G must be a multiple of $2^{\left\lfloor \frac{3n-2}{2} \right\rfloor}$. Similarly, the determinant of its Q-walk matrix must be a multiple of $2^{\left\lfloor \frac{3n-2}{2} \right\rfloor}$ (see [5]). As a result, Wang [6] gave a

¹ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;

² Xingzhi College, Zhejiang Normal University, Jinhua 321004, China.

^{*}Corresponding author. *Email addresses:* gxtian@zjnu.cn (Tian G), 1605162327@qq.com (Wu J), cuishuyu@zjnu.cn (Cui S), 2523037046@qq.com (Sun H)

simple arithmetic criterion for graphs being determined by their generalized spectra in terms of the determinants of *A*-walk matrices. Subsequently, Qiu et al. [5] presented a counterpart for graphs being determined by their generalized *Q*-spectra in terms of the determinants of *Q*-walk matrices. For more results about this topic, also see [8,9].

It is well-known that the graphs being determined by their generalized spectra are very few and have special structural properties. Mao et al. [3] first used the root product operation of graphs to construct the graphs being determined by their generalized spectra. Given a graph G of order n and a graph H with a root vertex u, then the rooted product graph of G and H is obtained by copying one graph G and copying n graphs H, by gluing the i-th vertex of G and the rooted vertex u in the i-th copy of H for $1 \le i \le n$ (see Godsil and McKay [1]). Let P_k be the rooted path of order k and the root vertex be an endpoint, then the rooted product $G \circ P_k$ of graph G and G is described in Figure 1. In 2015, Mao et al. [3] gave a sufficient condition for the rooted product $G \circ P_k$ with k = 2 being determined by their generalized spectra. In 2023, Mao and Wang [4] considered the same problem for the case of $G \circ R$ and $G \circ R$ and

Conjecture 1.1 ([4]). *For the rooted product graph* $G \circ P_k$ *with* $k \ge 2$ *,*

$$\det(W_A(G \circ P_k)) = \pm a_0^{\lfloor \frac{k}{2} \rfloor} (\det(W_A(G)))^k,$$

where a_0 is the constant term with respect to the characteristic polynomial of A(G).

Remark that Conjecture 1.1 is true for k = 2 in [3] and k = 3,4 in [4]. Recently, Wang et al. [10] proved the conjecture above completely. Now if we replace the A-walk matrix $W_A(G)$ with the Q-walk matrix $W_O(G)$ of G, then a natural problem arises as follows:

Problem 1.1. Determine the relationship between $det(W_Q(G))$ and $det(W_Q(G \circ P_k))$.

In this note, we investigate the above problem and the following determinant relationships between $W_Q(G)$ and $W_Q(G \circ P_k)$ are presented for k = 2,3.

Theorem 1.1. For the rooted product graph $G \circ P_k$ with k = 2,3, we have

$$\det(W_Q(G \circ P_2)) = \pm a_0 (\det(W_Q(G)))^2, \det(W_Q(G \circ P_3)) = \pm a_0^2 (\det(W_Q(G)))^3,$$

where a_0 is the constant term with respect to the characteristic polynomial of the matrix Q(G).