A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain

Authors

  • Sheng-Hao Li Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
  • Ivonne Rivas Department of Mathematics, Universidad del Valle, Cali, Colombia
  • Bing-Yu Zhang Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45220, USA & College of Mathematics, Sichuan University, Chengdu, China

DOI:

https://doi.org/10.4208/jms.v49n3.16.03

Keywords:

Boussinesq equation, initial-boundary value problem, local well-posedness.

Abstract

In this paper, we study the well-posedness of an initial-boundary-value problem (IBVP) for the Boussinesq equation on a bounded domain,

\begin{cases}    &u_{tt}-u_{xx}+(u^2)_{xx}+u_{xxxx}=0,\quad x\in (0,1), \;\;t>0,\\    &u(x,0)=\varphi(x),\;\;\; u_t(x,0)=ψ(x),\\    &u(0,t)=h_1(t),\;\;\;u(1,t)=h_2(t),\;\;\;u_{xx}(0,t)=h_3(t),\;\;\;u_{xx}(1,t)=h_4(t).\\   \end{cases} It is shown that the IBVP is locally well-posed in the space $H^s (0,1)$ for any $s\geq 0$ with the initial data $\varphi,$ $\psi$ lie in $H^s(0,1)$ and $ H^{s-2}(0,1)$, respectively, and the naturally compatible boundary data $h_1,$ $h_2$ in the space $H_{loc}^{(s+1)/2}(\mathbb{R}^+)$, and $h_3 $, $h_4$ in the the space of $H_{loc}^{(s-1)/2}(\mathbb{R}^+)$ with optimal regularity.

Published

2022-05-11

Abstract View

  • 34197

Pdf View

  • 3294

Issue

Section

Articles

How to Cite

A Nonhomogeneous Boundary Value Problem for the Boussinesq Equation on a Bounded Domain. (2022). Journal of Mathematical Study, 49(3), 238-258. https://doi.org/10.4208/jms.v49n3.16.03