Entanglement of Several Classical and Dynamic Estimates with Unified Approach on Time Scales

Faryal Chaudhry¹ and Muhammad Jibril Shahab Sahir^{1,†}

Abstract In this research article, we present several generalizations of Qi's inequality on time scales. We establish dynamic versions of Callebaut's inequality and Cauchy-Schwarz's inequality on time scales. To establish our results, we apply the diamond-alpha integral and the time scale Δ or ∇ -Riemann-Liouville type fractional integrals. Our findings unify and extend discrete, continuous and quantum analogues.

Keywords Time scales, fractional Riemann-Liouville integrals, Qi's, Callebaut's and Cauchy-Schwarz's inequalities

MSC(2010) 26D15, 26E70, 34N05, 26A33.

1. Introduction

The calculus of time scales was initiated by Stefan Hilger [13]. A time scale is an arbitrary nonempty closed subset of the real numbers. This hybrid theory is also widely applied on dynamic inequalities, see [2, 15–20, 23, 24]. The basic ideas concerning the calculus of time scales are given in [7,8].

The following Qi's inequality is proved in [12].

Let $r \geq 1$ and Φ be a nonnegative continuous function on $[\xi, \omega]$ such that $0 < \Phi(\lambda) \leq r(\omega - \xi)^{-1}$. Then we have the following inequality

$$\left(\int_{\xi}^{\omega} \Phi(\lambda) d\lambda\right)^{r} \leq \frac{r^{r}}{e^{r}} \exp\left(\int_{\xi}^{\omega} \Phi(\lambda) d\lambda\right) \leq \frac{r^{2r}}{(\omega - \xi)^{1+r}} \int_{\xi}^{\omega} \Phi^{-r}(\lambda) d\lambda. \tag{1.1}$$

The following Callebaut's inequality is given in [11].

Let $x_k > 0$, $y_k > 0$ and $w_k \ge 0$ for any $k \in \{1, 2, ..., n\}$ with $\sum_{k=1}^n w_k = 1$. If there exist the constants m, M > 0 such that $0 < m \le \frac{x_k}{y_k} \le M < \infty$ for any $k \in \{1, 2, ..., n\}$, then

$$\sum_{k=1}^{n} w_k x_k^{2(1-v)} y_k^{2v} \sum_{k=1}^{n} w_k x_k^{2v} y_k^{2(1-v)}$$

$$\leq \sum_{k=1}^{n} w_k x_k^2 \sum_{k=1}^{n} w_k y_k^2$$

Email address: jibrielshahab@gmail.com(M. J. S. Sahir)

[†]the corresponding author.

¹Department of Mathematics and Statistics, The University of Lahore, Lahore 54590, Pakistan

$$\leq K^{\delta} \left(\left(\frac{M}{m} \right)^{2} \right) \sum_{k=1}^{n} w_{k} x_{k}^{2(1-v)} y_{k}^{2v} \sum_{k=1}^{n} w_{k} x_{k}^{2v} y_{k}^{2(1-v)}, \tag{1.2}$$

for any $v \in [0, 1]$ and $\delta = \max\{1 - v, v\}$.

The following Qi's inequality is proved in [12].

Let 0 , <math>r > 0 and Υ, Φ be measurable nonnegative functions on $[\xi, \omega]$ such that $\int_{\xi}^{\omega} \Upsilon(\gamma) \Phi^{q}(\gamma) d\gamma < \infty$. Then we have the following inequality

$$\left[\left(\int_{\xi}^{\omega} \Upsilon(\gamma) \Phi^{p}(\gamma) d\gamma \right)^{\frac{1}{p}} \right]^{r} \leq \frac{r^{r}}{e^{r}} \left(\int_{\xi}^{\omega} \Upsilon(\gamma) d\gamma \right)^{\frac{r}{p} - \frac{r}{q}} \exp \left(\int_{\xi}^{\omega} \Upsilon(\gamma) \Phi^{q}(\gamma) d\gamma \right)^{\frac{1}{q}}.$$
(1.3)

We shall unify and extend (1.1) and (1.2) in the calculus of time scales by applying the diamond-alpha integral. We shall also unify and extend (1.3) in the fractional calculus of time scales.

2. Preliminaries

Now we present a short introduction to the diamond- α derivative as given in [1,21]. Let \mathbb{T} be a time scale and $\Phi(\lambda)$ be differentiable on \mathbb{T} in the Δ and ∇ senses. For $\lambda \in \mathbb{T}$, the diamond- α dynamic derivative $\Phi^{\diamond_{\alpha}}(\lambda)$ is defined by

$$\Phi^{\diamond_{\alpha}}(\lambda) = \alpha \Phi^{\Delta}(\lambda) + (1 - \alpha) \Phi^{\nabla}(\lambda), \quad 0 \le \alpha \le 1.$$

Thus Φ is diamond- α differentiable if and only if Φ is Δ and ∇ differentiable.

The following definition is given in [21].

Let $\xi, \kappa \in \mathbb{T}$ and $\Phi : \mathbb{T} \to \mathbb{R}$. Then the diamond- α integral from ξ to κ of Φ is defined by

$$\int_{\varepsilon}^{\kappa} \Phi(\lambda) \diamond_{\alpha} \lambda = \alpha \int_{\varepsilon}^{\kappa} \Phi(\lambda) \Delta \lambda + (1 - \alpha) \int_{\varepsilon}^{\kappa} \Phi(\lambda) \nabla \lambda, \quad 0 \le \alpha \le 1, \tag{2.1}$$

provided that there exist delta and nabla integrals of Φ on \mathbb{T} .

The following inequality is given in [6, 22].

Let r > 0 and z > 0. Then the following inequality is valid:

$$z^r \le \frac{r^r}{e^r} e^z. (2.2)$$

The following well-known Young's inequality holds:

For $\Omega, \chi > 0$ and $v \in [0, 1]$, we have

$$\Omega^{1-v}\chi^v \le (1-v)\Omega + v\chi. \tag{2.3}$$

Kantorovich's ratio is defined by

$$K(h) := \frac{(h+1)^2}{4h},$$

where h > 0.

The following inequality is given in [14].