The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface

Authors

  • Meng Wang Department of Mathematics, Zhejiang University, Hangzhou 310027, China
  • Qingyue Liu Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, Wuhan 430071, China

DOI:

https://doi.org/10.4208/jpde.v25.n4.3

Keywords:

Compact Riemann surface;nonlinear elliptic equation;gauss curvature;existence of solution

Abstract

Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional  $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.

Published

2020-05-12

Abstract View

  • 42379

Pdf View

  • 2487

Issue

Section

Articles

How to Cite

The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface. (2020). Journal of Partial Differential Equations, 25(4), 335-355. https://doi.org/10.4208/jpde.v25.n4.3