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Abstract

In this note, we extend the algorithms Extra [13] and subgradient-push [10] to a new

algorithm ExtraPush for consensus optimization with convex differentiable objective func-

tions over a directed network. When the stationary distribution of the network can be

computed in advance, we propose a simplified algorithm called Normalized ExtraPush.

Just like Extra, both ExtraPush and Normalized ExtraPush can iterate with a fixed step

size. But unlike Extra, they can take a column-stochastic mixing matrix, which is not

necessarily doubly stochastic. Therefore, they remove the undirected-network restriction

of Extra. Subgradient-push, while also works for directed networks, is slower on the same

type of problem because it must use a sequence of diminishing step sizes.

We present preliminary analysis for ExtraPush under a bounded sequence assump-

tion. For Normalized ExtraPush, we show that it naturally produces a bounded, linearly

convergent sequence provided that the objective function is strongly convex.

In our numerical experiments, ExtraPush and Normalized ExtraPush performed simi-

larly well. They are significantly faster than subgradient-push, even when we hand-optimize

the step sizes for the latter.

Mathematics subject classification: 90C25, 90C30.

Key words: Decentralized optimization, Directed graph, Consensus, Non-doubly stochas-

tic, Extra.

1. Introduction

We consider the following consensus optimization problem defined on a directed, strongly

connected network of n agents:

minimize
x∈Rp

f(x) ,
n∑

i=1

fi(x), (1.1)

where fi is a proper, closed, convex, differentiable function only known to the agent i.

The model (1.1) finds applications in decentralized averaging, learning, estimation, and

control. For a stationary network with bi-directional communication, the existing algorithms

include the (sub)gradient methods [2, 5, 8, 9, 13, 19], and the primal-dual domain methods such

as the decentralized alternating direction method of multipliers (DADMM) [11, 12].
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This note focuses on a directed network (with directional communication), where the re-

search of decentralized optimization is pioneered by the works [15–17]. When communication is

bi-directional, algorithms can use a symmetric and doubly-stochastic mixing matrix to obtain

a consensual solution; however, once the communication is directional, the mixing matrix be-

comes generally asymmetric and only column-stochastic. Also consider the setting where each

agent broadcasts its information to its neighbors, yet an agent may not receive the information

from a neighbor. An agent can weigh its information (both from itself and received from its

neighbors) so that the total weights add up to 1, but an agent cannot ensure that its broadcast-

ed information receives weights that precisely add up to exactly 1. Therefore, only each column

of the mixing matrix sums to 1. In the column-stochastic setting, the push-sum protocol [6]

can be used to obtain a stationary distribution for the mixing matrix.

In the symmetric and doubly-stochastic setting, if the objective is Lipschitz-differentiable,

the gradient-based algorithm Extra [13] converges at the rate of O(1/t), where t is the iteration

number. In the column-stochastic setting, the best rate is O(ln t/
√
t) from the subgradient-

based algorithm [10]. We address the open question of how to take advantage of the gradient of

a Lipschitz-differentiable objective. We make an attempt in this note to combine ideas in [10,13]

and present our preliminary results.

Specifically, we propose ExtraPush, which is a two-step iteration like Extra and incorporates

the push-sum protocol. At each iteration, the Extra variables are approximately normalized

by the current push-sum variables. When the stationary distribution of the network can be

easily computed, we propose to first apply the push-sum protocol to obtain the stationary

distribution and then run the two-step iteration Normalized ExtraPush. At each iteration, its

running variables are normalized by the stationary distribution.

Our algorithms are essentially the same as found in the recent work by Xi and Khan [18].

They attempted to prove convergence for a strongly convex objective function. They noticed

that a certain matrix that is important to the analysis (as a part of their convergence metric)

is positive semi-definite. Our analysis also uses this property. However, their analysis breaks

down due to incorrect assumptions. More specifically, each function fi is assumed in [18] to be

strongly convex and also has a bounded and Lipschitz gradient (i.e., its gradient is bounded

and Lipschitz continuous). However, no function can satisfy these assumptions simultaneously

since gradients of a strongly convex are strictly increasing and unbounded.

It is worth noting that our algorithm can be applied to a time-varying directed network after

a straightforward modification; our convergence proof, however, will need a significant change.

The rest of this note is organized as follows. Section 2 introduces the problem setup and

preliminaries. Section 3 develops ExtraPush and Normalized ExtraPush. Section 4 establish-

es the optimality conditions for ExtraPush and shows its convergence under the boundedness

assumption. Section 5 assumes that the objective is strongly convex and shows that Normal-

ized ExtraPush produces a bounded sequence that converges linearly. Section 6 presents our

numerical simulation results. We conclude this paper in Section 7.

Notation: Let In denote an identity matrix with the size n× n, and 1n×p ∈ Rn×p denote

the matrix with all entries equal to 1. We also use 1n ∈ Rn as a vector of all 1’s. For any

vector x, we let xi denote its ith component and diag(x) denote the diagonal matrix generated

by x. For any matrix X , XT denotes its transpose, Xij denotes its (i, j)th component, and

‖X‖ ,
√

〈X,X〉 =
√
∑

i,j X
2
ij denotes its Frobenius norm. The largest and smallest eigenvalues

of matrix X are denoted as λmax(X) and λmin(X), respectively. For any matrix B ∈ Rm×n,

null(B) , {x ∈ Rn|Bx = 0} is the null space of B. Given a matrix B ∈ Rm×n, by Z ∈ null(B),
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we mean that each column of Z lies in null(B). The smallest nonzero eigenvalue of a symmetric

positive semidefinite matrix X 6= 0 is denoted as λ̃min(X), which is strictly positive. For any

positive semidefinite matrix G ∈ Rn×n (not necessarily symmetric in this paper), we use the

notion ‖X‖2G , 〈X,GX〉 for a matrix X ∈ Rn×p.

2. Problem Reformulation

2.1. Network

Consider a directed network G = {V,E}, where V is the vertex set and E is the edge set.

Any edge (i, j) ∈ E represents a directed arc from node i to node j. The sets of in-neighbors

and out-neighbors of node i are

N in
i , {j : (j, i) ∈ E} ∪ {i}, N out

i , {j : (i, j) ∈ E} ∪ {i},

respectively. Let di , |N out
i | be the out-degree of node i. In G, each node i can only send

information to its out-neighbors, not vice versa.

To illustrate a mixing matrix for a directed network, consider A ∈ Rn×n where

{
Aij > 0, if j ∈ N in

i

Aij = 0, otherwise.
(2.1)

The entries Aij satisfy that, for each node j,
∑

i∈V Aij = 1. An example is the following mixing

matrix

Aij =

{
1/dj, if j ∈ N in

i

0, otherwise,
(2.2)

i, j = 1, . . . , n, which is used in the subgradient-push method [10]. See Fig. 2.1 for a directed

graph G and an example of its mixing matrix A. The matrix A is column stochastic and

asymmetric in general.

A =











1
4

1
4 0 1

2 0
1
4

1
4 0 0 1

3
1
4 0 1

2 0 1
3

0 1
4 0 1

2 0
1
4

1
4

1
2 0 1

3











Fig. 2.1. A directed graph G (left) and its mixing matrix A (right).

Assumption 1. The graph G is strongly connected.

Property 1. Under Assumption 1, the followings hold (parts (i) and (iv) are results in [10,

Corollary 2]):

(i) Let At =

t
︷ ︸︸ ︷

A×A · · ·A for any t ∈ N. Then

At → φ1T
n geometrically fast as t→∞, (2.3)

for some stationary distribution vector φ, i.e., φi ≥ 0 and
∑n

i φi = 1.
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(ii) null(In − φ1T
n ) = null(In −A).

(iii) Aφ = φ.

(iv) The quantity ξ , inft min1≤i≤n(A
t1n)i ≥ 1

nn > 0.

Proof. Part (iii) is obvious from (ii) since φ ∈ null(In − φ1T
n ) and

∑n
i φi = 1. Next, we

show part (ii). First, let z ∈ null(In−φ1T
n ), which means z = φ1T

nz and thus Az = Aφ1T
n z. By

(2.3), it is obvious that Aφ1T
n = φ1T

n . Therefore, Az = φ1T
nz = z and hence null(In − φ1T

n ) ⊆
null(In − A). On the other hand, any z ∈ null(In − A), equivalently, z = Az, obeys z = Atz

for any t ≥ 1. Letting t → ∞, it holds that z = φ1T
n z, that is, z ∈ null(In − φ1T

n ). Therefore,

part (ii) holds. �

2.2. Problem Given in the Matrix Notation

Let x(i) ∈ Rp denote the local copy of x at node i, and xt
(i) denote its value at the tth

iteration. Throughout the note, we use the following equivalent form of the problem (1.1) using

local copies of the variable x:

minimizex 1T
n f(x) ,

n∑

i=1

fi(x(i)), subject to x(i) = x(j), ∀i, j ∈ E, (2.4)

where 1n ∈ Rn denotes the vector with all its entries equal to 1,

x ,









— xT
(1) —

— xT
(2) —
...

— xT
(n) —









∈ Rn×p, f(x) ,








f1(x(1))

f2(x(2))
...

fn(x(n))







∈ Rn.

In addition, the gradient of f(x) is

∇f(x) ,








— ∇f1(x(1))
T —

— ∇f2(x(2))
T —

...

— ∇fn(x(n))
T —







∈ Rn×p.

The ith rows of the above matrices x and ∇f(x), and vector f(x), correspond to agent i. For

simplicity, one can treat p = 1 throughout this paper.

For a vector x̄ ∈ Rn, let x̄ave , 1
n (
∑n

i=1 x̄i) ∈ R. A special case of (2.4) is the well-known

average consensus problem, where fi(x(i)) =
1
2 (x(i) − x̄i)

2 for each node i and the solution is

x(i) = x̄ave for all i.

3. Proposed Algorithms

3.1. Reviews of Extra and subgradient-push

Extra [13] is a “two-step” iterative algorithm for solving (2.4) over an undirected network.

Let W ∈ Rn×n be a symmetric and doubly stochastic mixing matrix, and W̄ , In+W
2 . The

Extra iteration is

xt+2 = (In +W )xt+1 − W̄xt − α(∇f(xt+1)−∇f(xt)), t = 0, 1, · · · , (3.1)
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which starts with x1 = x0 − α∇f(x0), any x0 ∈ Rn×p and uses a properly bounded step size

α > 0. Extra converges at a rate o(1t ), measured by the best running violation to the first-order

optimality condition, provided that f is Lipschitz differentiable. It improves to a linear rate of

convergence if f is also (restricted) strongly convex.

The subgradient-push algorithm [10] is proposed to solve the decentralized optimization

problem (1.1) over a time-varying directed graph. It is a combination of the subgradient method

and the push-sum protocol [1,6,7]. Let A(t) be the mixing matrix at the tth iteration as defined

in (2.2) for a time-varying directed network. The iteration of subgradient-push is







zt+1 = A(t)zt − αt∇f(xt),

wt+1 = A(t)wt,

xt+1 = diag(wt+1)−1zt+1,

(3.2)

where αt > 0 is the step size at the tth iteration that decays as follows:
∑∞

t=1 αt = ∞,
∑∞

t=1 α
2
t < ∞, and αt ≤ αs for all t > s ≥ 1. It is shown in [10] that the convergence rate of

subgradient-push algorithm is O(ln t/
√
t).

3.2. Proposed: ExtraPush

ExtraPush combines the above two algorithms. Specifically, set arbitrary z0 and w0 = 1n;

set x0 = z0; for t = 1, set w1 = Aw0, z1 = Az0 − α∇f(x0), and x1 = diag(w1)−1z1. Letting

Ā , In+A
2 , for t = 2, 3, . . . , perform







zt = (A+ In)z
t−1 − Āzt−2 − α(∇f(xt−1)−∇f(xt−2)),

wt = Awt−1,

xt = diag(wt)−1zt.

(3.3)

By the structure of A, each node i broadcasts its z(i) to its out-neighbors at each ExtraPush

iteration. The step size α > 0 needs to be properly set. The iteration (3.3) of ExtraPush can

be implemented at each agent i as follows:






zt(i) = zt−1
(i) +

∑

j∈N in
i
Aijz

t−1
(j) −

∑

j∈N in
i
Āijz

t−2
(j) − α(∇fi(xt−1

(i) )−∇fi(xt−2
(i) )),

wt
i =

∑

j∈N in
i
Aijw

t−1
j ,

xt
(i) =

zt
(i)

wt
i

,

where Āij is the (i, j)th component of Ā, and wt
i is the ith component of wt, for all i, j.

3.3. Proposed: Normalized ExtraPush

Normalized ExtraPush first computes the stationary distribution φ of A and saves each φi

at node i. Next, in the main iteration, the w-step from (3.3) is removed, and n · φ instead of

wt is used to obtain xt. As such, the main iteration of Normalized ExtraPush simplifies (3.3).

Letting,

D , ndiag(φ).

the iteration of Normalized ExtraPush proceeds as follows: set arbitrary z0 and x0 = D−1z0;

for t = 1, set z1 = Az0 − α∇f(x0) and x1 = D−1z1. For t = 2, 3, . . . , perform

{
zt = (A+ In)z

t−1 − Āzt−2 − α(∇f(xt−1)−∇f(xt−2)),

xt = D−1zt.
(3.4)
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At each agent i, the iterate (3.4) of Normalized ExtraPush can be implemented as follows:

{
zt(i) = zt−1

(i) +
∑

j∈N in
i
Aijz

t−1
(j) −

∑

j∈N in
i
Āijz

t−2
(j) − α(∇fi(xt−1

(i) )−∇fi(xt−2
(i) )),

xt
(i) =

zt
(i)

nφi
.

Next, we present two equivalent forms of Normalized ExtraPush. Letting fφ(z) , Df(D−1z),

we have ∇fφ(z) = ∇f(D−1z). Substituting the x-step of (3.4) into its z-step yields the single-

value iteration:

zt = (A+ In)z
t−1 − Āzt−2 − α(∇fφ(zt−1)−∇fφ(zt−2)). (3.5)

Upon stopping, one shall return xt = D−1zt. The iteration (3.5) is nearly identical to the Extra

iteration (3.1) except that (3.1) must use a doubly-stochastic matrix.

Letting Aφ , D−1AD and Āφ , 1
2 (In + Aφ), which are row stochastic matrices, gives

another equivalent form of Normalized ExtraPush

xt = (Aφ + In)x
t−1 − Āφx

t−2 − αD−1(∇f(xt−1)−∇f(xt−2)), (3.6)

which, compared to the Extra iteration (3.1), has the extra diagonal matrix D−1. Indeed, this

iteration generalizes Extra to use row-stochastic matrices Aφ and Ā.

4. Preliminary Analysis of ExtraPush

In this section, we first develop the first-order optimality conditions for the problem (2.4)

and then provide the convergence of ExtraPush under the boundedness assumption.

Theorem 1. (first-order optimality conditions) Suppose that graph G is strongly connect-

ed. Then x∗ is consensual and x∗
(1) ≡ x∗

(2) ≡ · · · ≡ x∗
(n) is an optimal solution of (1.1) if and

only if, for some α > 0, there exist z∗ ∈ null(In−A) and y∗ ∈ null(1T
n ) such that the following

conditions hold
{

y∗ + α∇f(x∗) = 0,

x∗ = D−1z∗.
(4.1)

(We let L∗ denote the set of triples (z∗,y∗,x∗) satisfying the above conditions.)

Proof. Assume that x∗ is consensual and x∗
(1) ≡ x∗

(2) ≡ · · · ≡ x∗
(n) is optimal. Let z∗ =

ndiag(φ)x∗ = n(φx∗T
(1)). Then φ1T

nz
∗ = φ1T

nnφx
∗T
(1) = nφx∗T

(1) = z∗. It implies that z∗ ∈ null(I−
φ1T

n ). By Property 1 (ii), it follows that z∗ ∈ null(In−A). Moreover, letting y∗ = −α∇f(x∗),
it holds that 1T

ny
∗ = −α1T

n∇f(x∗) = 0, that is, y∗ ∈ null(1T
n ).

On the other hand, assume (4.1) holds. By Property 1 (ii), it follows that z∗ = φ1T
nz

∗.
Plugging x∗ = D−1z∗ gives x∗ = 1

n1n1
T
nz

∗, which implies that x∗ is consensual. Moreover, by

y∗ + α∇f(x∗) = 0 and y∗ ∈ null(1T
n ), it holds 1T

n∇f(x∗) = − 1
α1

T
ny

∗ = 0, which implies that

x∗ is optimal. �

Introducing the sequence

yt ,

t∑

k=0

(Ā−A)zk, (4.2)
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the iteration (3.3) of ExtraPush can be rewritten as







Āzt+1 = Āzt − α∇f(xt)− yt+1,

yt+1 = yt + (Ā−A)zt+1,

wt+1 = Awt,

xt+1 = diag(wt+1)−1zt+1.

(4.3)

Theorem 2. Suppose that the sequence {xt} generated by ExtraPush (3.3) and the sequence

{yt} defined in (4.2) are bounded. Then, any limit point of {(zt,yt,xt)}, denoted by (z∗,y∗,x∗),
satisfies the optimality conditions (4.1).

Proof. By Property 1, {wt} is bounded. By the last update of (4.3) and the bounded-

ness of both {xt} and {wt}, {zt} is bounded. Hence, there exists a convergent subsequence

{(z,y,w,x)tj }∞j=1. Let (z∗,y∗,w∗,x∗) be its limit. By (2.3), we know that w∗ = nφ and

thus that x∗ = D−1z∗. Letting t → ∞ in the second equation of (4.3) gives z∗ = Az∗, or
equivalently z∗ ∈ null(In − A). Similarly, letting t → ∞ in the first equation of (4.3) yields

y∗ + α∇f(x∗) = 0. Moreover, from the definition (4.2) of yt and the facts that both A and

Ā are column stochastic, it follows that 1T
ny

∗ = 0 and 1T
n∇f(x∗) = 0. Therefore, (z∗,y∗,x∗)

satisfies the optimality conditions (4.1). �

5. Convergence of Normalized ExtraPush

In this section, we show the linear convergence of Normalized ExtraPush under the smooth-

ness and strong convexity assumptions of the objective function. Similar to (4.3), introducing

a new sequence yt =
∑t

k=0(Ā − A)zk, the iterative formula (3.4) of Normalized ExtraPush

implies






Āzt+1 = Āzt − α∇f(xt)− yt+1,

yt+1 = yt + (Ā−A)zt+1,

xt+1 = D−1zt+1.

(5.1)

Theorem 3. Suppose that the sequence {xt} generated by Normalized ExtraPush (3.4) is bound-

ed, and that the sequence {yt} is also bounded. Then, any limit point of {(zt,yt,xt)}∞t=0,

denoted by (z∗,y∗,x∗), satisfies the first-order optimality conditions (4.1).

The proof is very similar to that of Theorem 2. It only needs to replace the sequence

{wt} with its limitation nφ in the proof procedure, thus we omit it here. From Theorem 3,

it shows that Normalized ExtraPush has subsequence convergence to an optimal solution of

the considered optimization problem under the boundedness assumption. To obtain the linear

convergence of Normalized ExtraPush, we still need the following assumptions.

Assumption 2. (existence of solution) Let X ∗ be the optimal solution set of problem (1.1),

and assume that X ∗ is nonempty.

Assumption 3. For each agent i, its objective function fi satisfies the following:

(i) (Lipschitz differentiability) fi is differentiable, and its gradient ∇fi is Li-Lipschitz

continuous, i.e., ‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖, ∀x, y ∈ Rp;
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(ii) (quasi-strong convexity) fi is quasi-strongly convex, and there exists a positive con-

stant Si such that Si‖x∗ − y‖2 ≤ 〈∇fi(x∗) − ∇fi(y), x∗ − y〉 for any y ∈ Rp and some

optimal value x∗ ∈ X ∗.

Following Assumption 3, there hold for any x,y ∈ Rn×p and some x∗ ≡ 1n(x
∗)T

‖∇f(x) −∇f(y)‖ ≤ Lf‖x− y‖, (5.2)

Sf‖x∗ − y‖2 ≤ 〈∇f(x∗)−∇f(y),x∗ − y〉, (5.3)

where the constants Lf , maxi Li and Sf , mini Si.

Assumption 4. (positive definiteness) D−1Ā+ ĀTD−1 ≻ 0.

By noticing D−1Ā + ĀTD−1 = D−1/2(D−1/2ĀD1/2 +D1/2ĀTD−1/2)D−1/2, we can guar-

antee the positive definiteness of D−1Ā+ ĀTD−1 by ensuring the matrix Ā+ ĀT to be positive

definite. Note that Āii >
∑

j 6=i Āij for each i, which means that Ā is strictly column-diagonal

dominant. To ensure the positive definiteness of Ā+ ĀT , each node j can be “selfish” and take

a sufficiently large Ajj .

Before presenting the main result, we introduce the following notation. For each t, intro-

ducing ut =
∑t

k=0 z
k, then the Normalized ExtraPush iteration (3.4) reduces to







Āzt+1 = Āzt − α∇f(xt)− (Ā−A)ut+1

ut+1 = ut + zt+1

xt+1 = D−1zt+1.

(5.4)

Let (z∗,y∗,x∗) ∈ L∗, where x∗ has been specified in (5.3). Let u∗ be any matrix that satisfies

(Ā−A)u∗ = y∗. For simplicity, we introduce

vt =

(
zt

ut

)

, v∗ =

(
z∗

u∗

)

, G =

(
NT 0

0 M

)

, S =

(
0 M

−MT 0

)

, (5.5)

where N = D−1Ā, M = D−1(Ā − A). Let fD(z) , f(D−1z) and f̄(v) , fD(z). Then

∇f̄(v) = [∇fD(z), 0]. By (5.2) and (5.3), there hold

‖∇f̄(v1)−∇f̄ (v2)‖ = ‖∇fD(z1)−∇fD(z2)‖ ≤ L̄‖z1 − z2‖, (5.6)

µ̄‖z∗ − z‖2 ≤ 〈∇fD(z∗)−∇fD(z), z∗ − z〉 = 〈∇f̄(v∗)−∇f̄ (v),v∗ − v〉, (5.7)

where L̄ ,
Lf

σ2
min(D)

and µ̄ ,
Sf

σ2
max(D) . By (5.4) and (5.5), the Normalized ExtraPush iteration

(3.4) implies

GT (vt+1 − vt) = −Svt+1 − α∇f̄ (vt). (5.8)

Next, we will show that G + GT is positive semidefinite, which by Assumption 4 implies

that N +NT is positive definite. It is sufficient to show that M +MT is positive semidefinite.

Note that

M +MT =
D−1(In −A)

2
+

(In −A)TD−1

2

= D−1/2

(

In −
D1/2ATD−1/2 +D−1/2AD1/2

2

)

D−1/2 , D−1/2ΛD−1/2,
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and by Property 1 (iii), nφT is the left eigenvector of AT corresponding to eigenvalue 1, and

thus, Λ is the Laplacian of a certain directed graph G′ with AT being its corresponding transition

probability matrix [3]. It follows that 0 = λ1(Λ) ≤ λ2(Λ) ≤ · · · ≤ λn(Λ), where λi(Λ) denotes

the ith eigenvalue of Λ. Therefore, M +MT is positive semidefinite, and the following property

holds

‖x‖2G =
1

2
‖x‖2G+GT ≥ 0, ∀x ∈ Rn.

Let

c1 =
λmax(MMT )

λ̃min(MTM)
, c2 =

λmax(
M+MT

2 )

λ̃min(MTM)
, c3 = λmax(NNT ) + 3c1λmax(N

TN),

and let

∆1 =

(

µ̄− η

2

)2

− 6c1L̄
2, ∆2 =

L̄4

4η2
− 3c1L̄

2σ
(

c3σ − λmin(N
T +N)

)

for some appropriate tunable parameters η and σ. Then we describe our main result as follows.

Theorem 4. Under Assumptions 1-4, if the step size parameter α satisfies

µ̄− η
2 −
√
∆1

3c1L̄2σ
< α < min

{

µ̄− η
2 +
√
∆1

3c1L̄2σ
,
− L̄2

2η +
√
∆2

3c1L̄2σ

}

(5.9)

for some appropriate η and σ as specified in (5.25) and (5.26), respectively, then the sequence

{vt} defined in (5.5) satisfies

‖vt − v∗‖2G ≥ (1 + δ)‖vt+1 − v∗‖2G, (5.10)

for δ > 0 obeying

0 < δ ≤ min

{

− 1
σ + (µ̄− η

2 )α− 3
2c1L̄

2σα2

λmax(
N+NT

2 ) + 3c2α2L̄2
,
λmin(

NT+N
2 )− c3σ

2 − L̄2α
2η − 3

2c1L̄
2σα2

3c2(λmax(NTN) + α2L̄2)

}

.

From this theorem, the sequence {vt} converges to v∗ at a linear rate in the sense of “G-

norm”. By the definition of v∗ in (5.5), v∗ is indeed defined by some optimal value (z∗,y∗,x∗).
Roughly speaking, bigger δ means faster convergence rate. As specified in Theorem 4, δ is affect-

ed by many factors. Generally, δ decreases with respect to both λmax(
N+NT

2 ) and λmax(N
TN),

which potentially implies that if all nodes are more “selfish”, that is, they hold more informa-

tion for themselves than sending to their out-neighbors. Consequently, the information mixing

speed of the network will get smaller, and thus the convergence of Normalized ExtraPush be-

comes slower. Therefore, we suggest a more democratic rule (such as the matrix A specified in

(2.2)) for faster convergence in practice. To ensure δ > 0, it requires that the step size α lie in

an appropriate interval. It should be pointed out that the condition (5.9) on α is sufficiently,

not necessary, for the linear convergence of Normalized ExtraPush. Normalized ExtraPush

algorithm may not diverge if a small α is set. In fact, in the next section, it can be observed

that both ExtraPush and Normalized ExtraPush algorithms converge under small values of α.

In general, a smaller α implies a slower rate of convergence.

To prove Theorem 4, we need the following lemmas.
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Lemma 1. For any (z∗,y∗,x∗) ∈ L∗, let u∗ satisfy (Ā−A)u∗ = y∗. Then there hold

Mz∗ = 0, (5.11)

MT z∗ = 0, (5.12)

Sv∗ + α∇f̄ (v∗) = 0. (5.13)

Proof. By the optimality of (z∗,y∗,x∗), the followings hold: (i) (Ā − A)z∗ = 0, and thus

Mz∗ = 0; (ii) D−1z∗ = x∗ is consensual; from the column stochasticity of both A and Ā, it

follows MT z∗ = (Ā − A)Tx∗ = 0; (iii) Mu∗ + α∇fD(z∗) = D−1y∗ + αD−1∇f(x∗) = 0, with

MT z∗ = 0, which imply Sv∗ + α∇f̄ (v∗) = 0. �

Lemma 2. For any t ∈ N, it holds

N(zt+1 − zt) = −M(ut+1 − u∗)− α[∇fD(zt)−∇fD(z∗)]. (5.14)

This lemma follows from (5.4) and the fact Mu∗ + α∇fD(z∗) = 0 in the last lemma.

Lemma 3. Let {vt} be a sequence generated by the iteration (5.8) and v∗ be defined in (5.5).

Then, it holds

‖vt+1 − v∗‖2G − ‖vt − v∗‖2G ≤ −‖vt+1 − vt‖2G + ‖zt+1 − zt‖2σ
2 NNT+αL̄2

2η In

− ‖z∗ − zt+1‖2(αµ̄−αη
2 − 1

σ
)In

+
σ

2
‖u∗ − ut+1‖2MMT , (5.15)

where σ, η > 0 are two tunable parameters.

Proof. Note that

‖vt+1 − v∗‖2G − ‖vt − v∗‖2G = −‖vt+1 − vt‖2G + 〈v∗ − vt+1, G(vt − vt+1)〉
+ 〈v∗ − vt+1, GT (vt − vt+1)〉. (5.16)

In the following, we analyze the two inner-product terms:

〈v∗ − vt+1, G(vt − vt+1)〉 = 〈z∗ − zt+1, NT (zt − zt+1)〉+ 〈MT (u∗ − ut+1),ut − ut+1〉
(∵ (5.11),Mz∗ = 0) = 〈z∗ − zt+1, NT (zt − zt+1)〉+ 〈MT (u∗ − ut+1), z∗ − zt+1〉

≤ σ

2
‖zt − zt+1‖2NNT +

1

σ
‖z∗ − zt+1‖2 + σ

2
‖u∗ − ut+1‖2MMT ,

(5.17)

and

〈v∗ − vt+1, GT (vt − vt+1)〉 = 〈v∗ − vt+1, Svt+1 + α∇f̄ (vt)〉 (∵ (5.5))

= 〈v∗ − vt+1, S(vt+1 − v∗) + α(∇f̄ (vt)−∇f̄(v∗))〉 (∵ (5.13))

(∵ S = −ST ) = α〈v∗ − vt+1,∇f̄ (vt)−∇f̄(v∗)〉
= α〈v∗ − vt+1,∇f̄ (vt+1)−∇f̄(v∗)〉
+ α〈v∗ − vt+1,∇f̄(vt)−∇f̄ (vt+1)〉

≤ −αµ̄‖zt+1 − z∗‖2 + αη

2
‖z∗ − zt+1‖2 + αL̄2

2η
‖zt − zt+1‖2.

(5.18)
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Substituting (5.17) and (5.18) into (5.16), then we can conclude the lemma. �

Proof. (for Theorem 4) In order to establish (5.10) for some constant δ > 0, in light of Lemma

3, it is sufficient to show that the right-hand side of (5.15) is no more than −δ‖vt+1 − v∗‖2G,
which implies

‖zt+1 − z∗‖2P + ‖zt+1 − zt‖2Q ≥ ‖ut+1 − u∗‖2R, (5.19)

where

P =

(

αµ̄− αη

2
− 1

σ

)

In − δ
N +NT

2
, Q =

NT +N

2
− σ

2
NNT − αL̄2

2η
In,

R =
σ

2
MMT + δ

(
M +MT

2

)

.

Establishing (5.19): Step 1. From Lemma 2, there holds

‖u∗ − ut+1‖2MTM = ‖M(u∗ − ut+1)‖2

= ‖N(zt+1 − zt) + α[∇fD(zt+1)−∇fD(z∗)] + α[∇fD(zt)−∇fD(zt+1)]‖2

≤ 3‖zt+1 − zt‖2NTN + 3α2L̄2‖zt+1 − z∗‖2 + 3α2L̄2‖zt+1 − zt‖2

= ‖zt+1 − z∗‖23α2L̄2In
+ ‖zt+1 − zt‖23(NTN+α2L̄2In)

. (5.20)

Note that

‖u∗ − ut+1‖2σ
2 MMT +δM

σλmax(MMT )
2 + δλmax(

M+MT

2 )
≤ ‖u∗ − ut+1‖2 ≤ ‖u

∗ − ut+1‖2MTM

λ̃min(MTM)
.

If the following conditions hold
{

P � 3(12c1σ + c2δ)α
2L̄2In,

Q � 3(12c1σ + c2δ)(N
TN + α2L̄2In),

(5.21)

then (5.19) holds. To show (5.21), it is sufficient to prove
{

(λmax(
N+NT

2 ) + 3c2α
2L̄2)δ ≤ − 1

σ + (µ̄− η
2 )α− 3

2c1L̄
2σα2,

3c2(λmax(N
TN) + α2L̄2)δ ≤ λmin(

NT+N
2 )− c3σ

2 − L̄2α
2η − 3

2c1L̄
2σα2.

(5.22)

Let c4 , (µ̄− η
2 )+

√
∆1, c5 , L̄2

η , c6 , 2c4c5+12c1L̄
2

c24
, c7 ,

λ2
min(N

T+N)
4c3

, c8 , a(c7 +2)− (2− c7)

for some positive constant a ∈ (0, 1), ∆3 , λ2
min(N

T + N) − 4c3c6. After reduction, we claim

that if the following conditions hold

2− c7
2 + c7

< a < 1, (5.23)

µ̄ >

(√

6c1
1− a2

+
1

c8

√

1− a2

6c1

)

L̄, (5.24)

µ̄

(

1−
√

1− 4L̄2

c8µ̄2

)

< η < min

{

µ̄

(

1 +

√

1− 4L̄2

c8µ̄2

)

, 2

(

µ̄−
√

6c1
1− a2

L̄

)}

, (5.25)

λmin(N
T +N)−√∆3

2c3
< σ <

λmin(N
T +N) +

√
∆3

2c3
, (5.26)

µ̄− η
2 −
√
∆1

3c1L̄2σ
< α < min

{
µ̄− η

2 +
√
∆1

3c1L̄2σ
,
− L̄2

2η +
√
∆2

3c1L̄2σ

}

, (5.27)

then (5.22) holds for some positive constant δ. We then end the proof of this theorem. �
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6. Numerical Experiments

In this section, we present the results of a series of numerical experiments that demonstrate

the effectiveness of the proposed algorithms relative to the subgradient-push algorithm. The

used network and its corresponding mixing matrix A are depicted in Fig. 2.1.

6.1. Decentralized Least Squares

Consider the following decentralized least squares problem:

x∗ ← argmin
x∈Rp

f(x) =
n∑

i=1

fi(x), (6.1)

where fi(x) = 1
2‖B(i)x − b(i)‖22, B(i) ∈ Rmi×p, b(i) ∈ Rmi for i = 1, . . . , n. The solution x∗ is

B†b, where B =
∑n

i=1 B
T
(i)B(i), b =

∑n
i=1 B

T
(i)b(i), and B† is the pseudo-inverse of B. In this

experiment, we take n = 5, p = 256, and mi = 100 for i = 1, . . . , 5. For both ExtraPush

and Normalized ExtraPush, we first choose an α in the hand-optimized manner (in this case,

α = 0.1) and then take a smaller one like α = 0.02 to show the difference due to a smaller step

size. The step size of the subgradient-push algorithm is handed optimized to αt = 0.8√
t
. The

experiment results are illustrated in Fig. 6.1.
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Fig. 6.1. Experiment results for decentralized least squares regression. History of ‖xt −x
∗‖2, where x

∗

is the exact solution. The performances of ExtraPush and Normalized ExtraPush are very similar.

As illustrated in Fig. 6.1, the performances of ExtraPush and Normalized ExtraPush are

almost identical. Their linear convergence rates are affected by different step sizes; a smaller α

leads to a slower rate, as one would expect.

6.2. Decentralized Huber-like Regression

Instead of least squares, this experiment minimizes the Huber loss function, which is known

to be robust to outliers:

x∗ ← argmin
x∈Rp

f(x) =

n∑

i=1

fi(x), (6.2)
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where fi(x) =
∑mi

j=1 Hξ(B(i)jx− b(i)j), B(i)j is jth row of matrix B(i) ∈ Rmi×p and b(i)j is the

jth entry of vector b(i) ∈ Rmi for i = 1, . . . , n. The Huber loss function is defined as

Hξ(a) =

{
1
2a

2, for |a| ≤ ξ (ℓ22 zone),

ξ(|a| − 1
2ξ), otherwise (ℓ1 zone).

(6.3)

Similar to the experimental setting in [13], we let ξ = 2 and set the solution x∗ in the ℓ22 zone

while initializing x0
(i) in the ℓ1 zone for all agents i. Similar to the last experiment, we teset

two different step sizes, α = 0.1 and 0.02, where α = 0.1 is hand-optimized. The step size of

the subgradient-push algorithm is hand optimized to αt =
5√

t+100
. The numerical results are

depicted in Fig. 6.2.

As shown by Fig. 6.2, when α = 0.1, both ExtraPush and Normalized ExtraPush algorithms

have the sublinear convergence in their first 500 iterations and then show linear convergence,

as xt
(i) for most i have entered the ℓ22 zone. While for α = 0.02, more iterations (about 2500)

are needed before both algorithms start decaying linearly.
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Fig. 6.2. Experiment results for decentralized Huber regression. History of ‖xt −x
∗‖2, where x

∗ is the

exact solution. The performances of ExtraPush and Normalized ExtraPush are very similar.

7. Conclusion

In this note, we propose a decentralized algorithm called ExtraPush, as well as its simplified

version called Normalized ExtraPush, for solving distributed consensus optimization problems

over directed graphs. The algorithms use column-stochastic mixing matrices. We show that

Normalized ExtraPush converges at a linear rate if the objective function is smooth and strongly

convex. In additional, we develop the first-order optimality conditions and provide the conver-

gence of ExtraPush under the boundedness assumption. The convergence as well as the rate

of convergence of ExtraPush should be justified in the future. Moreover, when applied to a

directed time-varying network, the performance of the proposed algorithms will also be studied.

Another line of future research is to generalize ExtraPush to handle the sum of smooth and

proximable (possibly nonsmooth) functions as done in [14] that has generalized Extra this way.
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