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Abstract. In this article, we have introduced a Taylor collocation method, which is
based on collocation method for solving fractional Riccati differential equation. The
fractional derivatives are described in the Caputo sense. This method is based on first
taking the truncated Taylor expansions of the solution function in the fractional Riccati
differential equation and then substituting their matrix forms into the equation. Using
collocation points, the systems of nonlinear algebraic equation is derived. We further
solve the system of nonlinear algebraic equation using Maple 13 and thus obtain the
coefficients of the generalized Taylor expansion. Illustrative examples are presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction

The concept of fractional or non-integer order derivation and integration can be traced
back to the genesis of integer order calculus itself [1, 2]. Fractional calculus has become
the focus of interest for many researchers in different disciplines of science and technol-
ogy. The fractional differential equations (FDEs) have received considerable interest in
recent years. FDEs have shown to be adequate models for various physical phenomena
in areas like damping laws, diffusion processes, etc. For example, the nonlinear oscil-
lation of earthquake can be modeled with fractional derivatives [3], the fluid-dynamic
traffic model with fractional derivatives [4], psychology [5] and etc. [6–9].
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In this paper, we present numerical and analytical solutions for the fractional Riccati
differential equation

Dαy(x)=A(x)+B(x)y(x)+C(x)y2(x), x>0, 0<α≤1, (1.1)

subject to the initial conditions
y(0)=λ, (1.2)

where A(x), B(x) and C(x) are given functions, α is a parameter describing the order of
the fractional derivative. The general response expression contains a parameter describ-
ing the order of the fractional derivative that can be varied to obtain various responses.
In the case of α=1 the fractional equation reduces to the classical Riccati differential equa-
tion. The importance of this equation usually arises in the optimal control problems [10].
The existing literature on fractional differential equations tends to focus on particular
values for the order α. The value α=0.5 is especially popular. This is because in classical
fractional calculus, many of the model equations developed used these particular orders
of derivatives [11]. In modern applications (see, e.g., [12]) much more general values
of the order an appear in the equations and therefore one needs to consider numerical
and analytical methods to solve differential equations of arbitrary order. This equation
is solve numerically in [13–15]. In [13], it is given numerical solution of approximate so-
lution of linear fractional differential equations with variable coefficients by collocation
method. In [14], a modification of He’s homotopy perturbation method is presented. In
this method, which does not require a small parameter in an equation, a homotopy with
an imbedding parameter p∈ [0,1] is constructed. In [15], it is implemented a relatively
new analytical technique, the Adomian decomposition method. The solution takes the
form of a convergent series with easily computable components. The diagonal Pade ap-
proximants are effectively used in the analysis to capture the essential behavior of the
solution.

We seek by collocation method the approximate solution of Eq. (1.1) under the condi-
tion Eq. (1.2) using the fractional Taylor series

yN(x)=
N

∑
i=0

(x−c)iα

Γ(iα+1)
(Diαy(x))x=c, (1.3)

where 0<α≤1 and Diαy(x)∈C(a,b]. This method transforms each part of equation into
a matrix form, and using the collocation points

xi =
i

N
, i=0,1,··· ,N, (1.4)

we derive the nonlinear algebraic equation. Solving this equation, we obtained the co-
efficients of the generalized Taylor series and thus the approximate solutions for various
N. Recently, collocation method has become a very useful technique for solving equa-
tions. For instance, some authors gave the numerical studies for solving linear differen-
tial difference equations [16], Volterra integral equations [17], linear integro-differential
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equations [18–21], Abel equation [22], nonlinear differential equations [23] by some spe-
cial functions. Chen et al. [24] presented the Kansa method, which belonged to the RBF
collocation method, for solving fractional diffusion equations. Fu et al. [25] have given
a novel boundary-type RBF collocation approach, Laplace transformed boundary parti-
cle method, for solving time fractional diffusion equations. Brunner et al. [26] presented
a RBF collocation method, which includes geometric time grid relaxation and adaptive
kernel selection, for solving 2D fractional subdiffusion problems.

2 Basic definitions

In this section, we give the generalized Taylor formula and the definitions related [27].
There are several definitions of a fractional derivative of order α > 0 [1, 2]. The two
most commonly used definitions are the Riemann-Liouville and Caputo. Caputo frac-
tional derivative first computes an ordinary derivative followed by a fractional integral
to achieve the desired order of fractional derivative. Riemann-Liouville fractional deriva-
tive is computed in the reverse order. Therefore, Caputo fractional derivative allows tra-
ditional initial and boundary conditions to be included in the formulation of the problem,
but Riemann-Liouville fractional derivative allows initial conditions in terms of fractional
integrals and their derivatives.

Definition 2.1. A real function f (x), x>0, is said to be in space Cµ, µ∈R if there exist a
real number p (p>µ), such that f (x)=xp f1(x), where f1(x)∈ [0,∞), and it is said to be in
the space Cm

µ iff f (m)∈Cµ, m∈N.

Definition 2.2. The Riemann-Liouville fractional derivative of order α with respect to the
variable x and with the starting point at x= a is

aDα
x f (x)=















1

Γ(−α+m+1)

dm+1

dxm+1

∫ x

a
(x−τ)m−α f (τ)dτ, 0≤m≤α<m+1,

dm

dxm
, α=m+1∈N.

Definition 2.3. The Riemann-Liouville fractional integral of order α is

aD−α
x f (x)=

1

Γ(α)

∫ x

a
(x−τ)α−1 f (τ)dτ, p>0.

Definition 2.4. The Caputo fractional derivative of f (x) is defined as

Dα f (x)=
1

Γ(nα)

∫ x

0
(x−τ)n−α−1 f n(τ)dτ,

for n−1<α≤n, n∈N, x>0, f ∈Cn
−1.
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For the Caputo derivative we further have: DαC=0, as C is a constant,

Dαxn =







0, n∈N, n<⌈α⌉,

Γ(n+1)

Γ(n+1−α)
xn−α, n∈N, n<⌊α⌋.

Theorem 2.1. Supposing Dkα f (x) ∈ C(0,b], for i = 0,1,··· ,n+1, where 0 < α ≤ 1, then we
have [27]

f (x)=
n

∑
i=0

(x−a)iα

Γ(iα+1)
(Diα f (x))x=a+

(Dn+1 f (x))(ξ)

Γ((n+1)α+1)
(x−a)(n+1)α,

where a≤ ξ≤ x, for ∀x∈ (a,b] and

Dnα=DαDαDα ···Dα(n times).

3 Fundamental relations

In this section, we consider the fractional Riccati differential equations Eq. (1.1). We use
the Taylor matrix method [16–23] to find the truncated Taylor series expansions of each
term in expression at x= c and their matrix representations for solving α−th order non-
linear part. We first consider the solution yN(x) of Eq. (1.1) defined by a truncated Taylor
series Eq. (1.3). Then, we have the matrix form of the approximate solution yN(x)

[yN(x)]=T(x)A=X(x)M0A, (3.1)

where

X(x)=
[

1 (x−c)α (x−c)2α ··· (x−c)Nα
]

,

M0=

































1

Γ(1)
0 0 ··· 0

0
1

Γ(α+1)
0 ··· 0

0 0
1

Γ(2α+1)
··· 0

...
...

...
. . .

...

0 0 0 ...
1

Γ(Nα+1)

































, A=



















D0αy(c)

D1αy(c)

D2αy(c)
...

DNαy(c)



















.

The matrix representation of DαyN(x) becomes

DαyN(x)=DαX(x)M0A,
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where

DαX(x)=
[

Dα1 Dα(x−c)α Dα(x−c)2α ··· Dα(x−c)Nα
]

=

[

0
Γ(α+1)

Γ(1)

Γ(2α+1)

Γ(α+1)
(x−c)α ··· Γ(Nα+1)

Γ((N−1)α+1)
(x−c)(N−1)α

]

=X(x)M1,

where

M1=



























0
Γ(α+1)

Γ(1)
0 ··· 0

0 0
Γ(2α+1)

Γ(α+1)
··· 0

...
...

...
. . .

...

0 0 0 ··· Γ(Nα+1)

Γ((N−1)α+1)
0 0 0 ··· 0



























.

Thus the matrix representation of fractional differential term is

DαyN(x)=X(x)M1M0A. (3.2)

Moreover, from [22, 23]
Ym=Ym−1Y, (3.3)

where

Ym−1(x)=











ym−1(x)
ym−1(x)

...
ym−1(x)











, Y(x)=















y(x) 0 ··· 0

0 y(x) ··· 0

...
...

. . .
...

0 0 ··· y(x)















,

and using collocation points in Eq. (3.1) leads to

Ym=TA, (3.4)

where

T(xi)=















T(xi) 0 ··· 0

0 T(xi) ··· 0

...
...

. . .
...

0 0 ··· T(xi)















, A=















A 0 ··· 0

0 A ··· 0

...
...

. . .
...

0 0 ··· A















.

Reference to Eqs. (3.3) and (3.4) gives the following relation

y2(xi)=y(xi)y(xi)=(TA)X(xi)M0A. (3.5)
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Hence, the fundamental matrix relation of the Eq. (1.1) is given by

(

X(x)M1M0−B(x)X(x)M0−C(x)(TA)X(x)M0

)

A=A(x). (3.6)

Similarly, we obtain matrix representation of the condition in Eq. (1.2)

U(0)=X(0)M0A=
[

u0 u1 u2 ··· uN

]

=
[

λ
]

. (3.7)

4 Method of solution

Using collocation points in Eq. (1.4), we can write the Eq. (3.6) as

(

X(xi)M1M0−B(xi)X(xi)M0−C(xi)(TA)X(xi)M0

)

A=A(xi) (4.1)

or in a matrix-vector form
(

XM1M0−BXM0−C(T A)XM0

)

A=F, (4.2a)

X=















1 (x0−c)α (x0−c)2α ··· (x0−c)Nα

1 (x1−c)α (x1−c)2α ··· (x1−c)Nα

1 (x2−c)α (x2−c)2α ··· (x2−c)Nα

...
...

...
. . .

...
1 (xN−c)α (xN−c)2α ··· (xN−c)Nα















, F=















A(x0)
A(x1)
A(x2)

...
A(xN)















, (4.2b)

T=















T(x0) 0 0 ··· 0
0 T(x1) 0 ··· 0
0 0 T(x2) ··· 0
...

...
...

. . .
...

0 0 0 ··· T(xN)















, (4.2c)

B=















B(x0) 0 0 ··· 0
0 B(x1) 0 ··· 0
0 0 B(x2) ··· 0
...

...
...

. . .
...

0 0 0 ··· B(xN)















, (4.2d)

C=















C(x0) 0 0 ··· 0
0 C(x1) 0 ··· 0
0 0 C(x2) ··· 0
...

...
...

. . .
...

0 0 0 ··· C(xN)















. (4.2e)

Hence, the fundamental matrix equation (4.2a) corresponding to Eq. (1.1) can be written
in

WA=F or [W;F], W=[wij], i, j=0,1,··· ,N, (4.3)
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where

W=XM1M0−BXM0−C(TA)XM0.

To obtain the solution of Eq. (1.1) with condition Eq. (1.2), by substituting the row vector
Eq. (3.7) in the last row of the matrix in Eq. (4.2a), we obtain the new augmented matrix;

[W∗;F∗]=



















w00 w01 ··· w0N ; A(x0)
w10 w11 ··· w1N ; A(x1)

...
...

. . .
...

...
...

w(N−2)0 w(N−2)1 ··· w(N−2)N ; A(xN−2)
w(N−1)0 w(N−1)1 ··· w(N−1)N ; A(xN−1)

u0 u1 ··· uN ; λ



















or the corresponding matrix equation

W∗A=F∗. (4.4)

In doing so, we obtain a system of (N+1) nonlinear algebraic equations with (N+1)
unknown generalized Taylor coefficients. If det(W∗) 6=0, we can write Eq. (4.4) as

A=(W∗)−1F∗

and the matrix A is uniquely determined. Therefore, the approximate solution is given
by the truncated fractional Taylor series

yN(x)=
N

∑
i=0

(x−c)iα

Γ(iα+1)
(Diαy(x))x=c.

We can easily check the accuracy of the method. Since the truncated fractional Taylor
series Eq. (1.3) is an approximate solution of Eq. (1.1), when the solution yN(x) and its
derivatives are substituted in Eq. (1.1), the resulting equation must be satisfied approxi-
mately; that is, for x= xq ∈ [0,1], q=0,1,2,··· ,

EN(xq)= |Dαy(xq)−A(xq)−B(xq)y(xq)−C(xq)y
2(xq)|∼=0.

5 Examples

In order to illustrate the effectiveness of the method proposed in this paper, several nu-
merical examples are carried out in this section. In the followings, absolute errors be-
tween N-th order approximate values yN and the corresponding exact values yex Ne =
|yN−yex| are determined and all computations are performed with the computer alge-
braic system in Maple 13.
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Example 5.1. Consider the following fractional Riccati equation:

Dαy(x)=y2(x)−x2y(x)+
Γ(3)

Γ(2.5)
x1.5, x>0,

with initial conditions

y(0)=0.

Then, A(x)= Γ(3)
Γ(2.5)x1.5, B(x)=−x2, C(x)=1. We assume that α=1/2 and use the Taylor

series, for c=0, N=4

y4(x)=
4

∑
i=0

xiα

Γ(iα+1)
(Diαy(x))x=0

as well as the collocation points

x0=0, x1=
1

4
, x2=

2

4
, x3=

3

4
, x4=1.

Fundamental matrix relation of this problem is

(

XM1M0−BXM0−C(T A)XM0

)

A=F, (5.1)

where

X=



























1 0 0 0 0

1
1√
4

1

4

√
4

16

1

16

1
1√
2

1

2

√
2

4

1

4

1

√
3√
4

3

4

3
√

3

4
√

4

9

16
1 1 1 1 1



























, B=













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,

C=













0 0 0 0 0
0 0.0625 0 0 0
0 0 0.25 0 0
0 0 0 0.5625 0
0 0 0 0 1













, M0=















1 0 0 0 0

0 2√
π

0 0 0

0 0 1 0 0

0 0 0 4
3
√

π
0

0 0 0 0 1
2















,

M1=















0 1 0 0 0

0 0 2√
π

0 0

0 0 0 1 0

0 0 0 0 4
3
√

π

0 0 0 0 0















, F=













0.000000
0.188063
0.531923
0.977205
1.504505













.
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Figure 1: Comparison of the absolute errors and error estimation functions for Example 5.1.

Also, we have the matrix representation of conditions

y(0)=
[

1 0 0 0 0
]

A=
[

0
]

and so we solve the Eq. (5.1) and obtain the coefficients of the Taylor series

A=
[

0 −0.478771e−4 0.189414e−3 −0.307615e−3 2.000189
]

.

Hence, for N=4, the approximate solution of Example 5.1 is given by

y4(x)=0.957543e−3
x

1
2√
π
+0.189414e−3x−0.410153e−4

x
3
2√
π
+1.000094x2.

Comparison of numerical results with the exact solution are shown in Table 1 and plotted
in Fig. 1 for various N.

Table 1: Numerical results for Example 5.1.

x Exact solution N=4 Ne=4 N=5 Ne=5 N=6 Ne=6
0.0 0.000 0.000000 0.000e-0 0.000000 0.000e-0 0.000000 0.000e-0
0.2 0.040 0.039985 0.150e-4 0.040000 0.553e-6 0.040000 0.740e-8
0.4 0.160 0.159993 0.700e-5 0.160000 0.352e-6 0.160000 0.530e-8
0.6 0.360 0.359996 0.446e-5 0.360000 0.330e-6 0.360000 0.497e-8
0.8 0.640 0.639996 0.446e-5 0.640000 0.337e-6 0.640000 0.528e-8
1.0 1.000 0.999998 0.219e-5 1.000000 0.464e-6 1.000000 0.673e-8

Example 5.2. Let us consider the following fractional Riccati equation [14]

Dαy(x)=y2(x)+1

subject to the initial condition
y(0)=1.
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Table 2: Numerical results for Example 5.2.

PM HPM
x Exact solution N=6 Ne =6 N=12 Ne =12 Numerical solution Absolute errors

0.0 0.000000 0.000000 0.000e-0 0.000000 0.000e-0 0.000000 0.000e-0
0.1 0.099669 0.099667 0.135e-5 0.099667 0.467e-9 0.099668 0.100e-5
0.2 0.197375 0.197377 0.169e-5 0.197375 0.411e-9 0.197375 0.000e-0
0.3 0.291313 0.291313 0.878e-6 0.291313 0.395e-9 0.291312 0.100e-5
0.4 0.379949 0.379949 0.103e-5 0.379949 0.371e-9 0.379944 0.500e-5
0.5 0.462117 0.462118 0.151e-5 0.462117 0.338e-9 0.462078 0.390e-4
0.6 0.537050 0.537050 0.511e-6 0.537050 0.308e-9 0.536857 0.193e-3
0.7 0.604378 0.604367 0.140e-5 0.604378 0.274e-9 0.603631 0.737e-3
0.8 0.664037 0.664041 0.425e-5 0.664041 0.229e-9 0.661706 0.133e-3
0.9 0.716298 0.716292 0.163e-5 0.716298 0.394e-9 0.709919 0.637e-2
1.0 0.761594 0.761466 0.127e-3 0.761594 0.121e-7 0.746032 0.155e-1

Then, A(x)=1, B(x)=0, C(x)=1. Fundamental matrix relation of this problem is

(

XM1M0−C(T A)XM0

)

A=F.

Also, we have the matrix representation of conditions;

y(0)=
[

1 0 0 0 0
]

A=
[

0
]

.

The exact solution, when α=1, is

y(x)=
e2x−1

e2x+1
.

We approximately solve the fractional Riccati equation for N = 12 and obtained the ap-
proximate solution for α=1;

y12(x)=x−0.559171e−6x2−0.333319x3−0.155476e−3x4+0.134388x5−0.467422e−2x6

−0.398472e−1x7−0.295050e−1x8+0.640148e−1x9−0.390402x10+0.109027x11 .

Table 2 shows the approximate solutions for Example 5.2 obtained by the Present Method
(PM) compared to those from Homotopy Perturbation Method (HPM) [14] for α=1. We
give the comparison of the absolute errors for PM and HPM in Fig. 2. From the numerical
results in Table 2 and Fig. 2, PM is able to achieve higher accuracy than HPM. Addition-
ally, Fig. 3 displays the comparison of the absolute errors and error estimation functions
for N=6,12.

6 Conclusions

In this study, we present a Taylor collocation method for the numerical solutions of frac-
tional Riccati equation. This method transforms the fractional Riccati differential equa-
tion into a set of equations. The desired approximate solutions can be determined by
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Figure 2: Comparison of the absolute errors for PM and HPM.

Figure 3: Comparison of the absolute errors and error estimation functions for PM.

solving the resulting system, which can be effectively computed using symbolic comput-
ing codes in Maple 13. Numerical results show that the Taylor collocation method can be
successfully applied to solve fractional Riccati differential equation at high accuracy.
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[19] M. GÜLSU AND M. SEZER, Approximations to the solution of linear Fredholm integro-differential-
difference equation of high order, J. Franklin Inst., 343 (2006), pp. 720–737.
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