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Abstract. In this work, we examine the mathematical analysis and numerical sim-
ulation of pattern formation in a subdiffusive multicomponents fractional-reaction-
diffusion system that models the spatial interrelationship between two preys and
predator species. The major result is centered on the analysis of the system for lin-
ear stability. Analysis of the main model reflects that the dynamical system is locally
and globally asymptotically stable. We propose some useful theorems based on the
existence and permanence of the species to validate our theoretical findings. Reliable
and efficient methods in space and time are formulated to handle any space fractional
reaction-diffusion system. We numerically present the complexity of the dynamics that
are theoretically discussed. The simulation results in one, two and three dimensions
show some amazing scenarios.
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1 Introduction

Multicomponents system where species share common resources have drawn much at-
tention of researchers dated to the pioneering work of Holt [33] based on apparent com-
petition [41, 45, 56, 61]. Over the years, reaction-diffusion systems arise from the study of
multi-species Lotka-Volterra interactions such as the predator-prey, competition, mutual-
ity and food-chain models have been the subject of great interests [15, 18, 21, 25, 33, 37, 38,
41, 51]. Recently, many authors studied three-species population dynamics with various
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functional responses, impulsive effects, time delays and stage-structures (see, for exam-
ple, [16,22,23,28,32,52,56,63]) and obtained some results on permanence, global existence
of solution, asymptotic stability, or instability of the nontrivial states and periodicity of
solutions. In the present paper, we extension to the study of population dynamics from
two species predator-prey model to a three species space fractional reaction-diffusion
systems consisting of two preys and one predator with impulsive effect.

Many ecological processes are governed by the fact that they experience a sudden
change of state at certain moment of time. These processes evolve as a result of short-
time perturbation with a very small time-lag in comparison with the period of the pro-
cess. In natural sense, it is reasonable to assume that perturbation arise in the form of
impulse, and most biological phenomena involving pharmacokinetics systems, thresh-
olds and optimal control models exhibit some kind of impulsive effects. Various work
has been done where impulsive control strategy is utilized to investigate the behaviour
of the predator-prey dynamics, see [34, 53, 57, 58, 61, 62, 64] and references therein.

The ecological implication of the systems involve three species U, V and W, where
W is the predator that feeds on both preys U and V. This type of ecological systems best
describe the spatial interactions between the prey and predators among many biological
species. Let u(x,t), v(x,t) and w(x,t) be the corresponding scaled density functions of U,
V and W, respectively at position x and time t. Then the ecological equations governing
their density functions are given in the form of Lotka-Volterra type which consist of two
preys and one predator with impulsive effect. A coupled fractional reaction-diffusion
system of n (n ≤ 3, n integer) species which interact in a nonlinear fashion and diffuse
may be modelled by the equations

ut−D1∆η/2u= f (u,v,w), (1.1a)

vt−D2∆η/2v= g(u,v,w) in Ω×[0,∞), t 6=T(ǫ), (1.1b)

wt−D3∆η/2w=h(u,v,w), (1.1c)

B[u]=B[v]=0, B[w]=S on ∂Ω×[0,∞), t=T(ǫ), (1.1d)

u(x,0)=u0(x), v(x,0)=v0(x), u(x,0)=u0(x), (x,t)∈Ω, (1.1e)

where the local kinetics are given as

f (u,v,w)=τ1u

(

1−
u

κ1

)

−
α1 ϕ1uw

β1+u+γ1w
, (1.2a)

g(u,v,w)=τ2v

(

1−
v

κ2

)

−
α2 ϕ2vw

β2+v+γ2w
, (1.2b)

h(u,v,w)=

(

ρ1α1u

β1+u+γ1w
−ψ1

)

ϕ1w+

(

ρ2α2v

β2+v+γ2w
−ψ2

)

ϕ2w, (1.2c)

and ∆ denotes the Laplacian operator in one, two or more dimensional space, ∆η/2 stands
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for the Riemann-Liouville fractional integration of order η given as

∆η/2=
1

Γ(η/2)

∫ x

0
(x−ξ)

η
2 −1F(ξ)dξ, η>0, x>0,

in the superdiffusive interval 1<η<2. The Ω is a bounded region in R3
+ with boundary

∂Ω. The diffusion coefficients Di (i=1,2,3), the intrinsic growth rates τi (i=1,2) and the
cropping rate αi (i = 1,2) are all positive parameters, the carrying capacity of the preys
(U,V) κi, the saturation constants βi, the predator interference γi, predator death rates ψi

in patch i, and ϕi which represents the segment of lifetime an average predator waits in
patch i, the rate, at which resources are converted to a new consumers is denoted by ρi,
for i=1,2 are all nonnegative constants, and we also assume that the initial functions u0,
v0 and w0 are all nonnegative constants. Period of the impulsive effect is denoted by T,
ǫ∈N, N is a set of positive integers [58,61,64], S>0 is the amount release by predator W

at t=T(ǫ).
Fractional calculus is considered as a subject of considerable interest in the fields of

applied engineering, mathematics and physics, [7, 26, 27, 29, 55, 60]. Nowadays, frac-
tional derivatives has gained a significant development to model some real life phe-
nomena in the form of partial differential equations or the ordinary equation. Most
physical problems are modeled mathematically in fractional form by replacing the sec-
ond order partial derivative in classical reaction-diffusion equation with the fractional
derivative of order η. Similar expression are given for the time fractional problems.
Finding an accurate and reliable numerical method to numerically simulate this class of
problem is another research work undertaken in this paper. Among several researcher-
s that have studied the numerical simulation of fractional reaction diffusion problems
include [1–4, 8, 10–12, 14, 39, 40, 47, 48] and references therein.

The aims of this paper are in folds: We begin by establishing the conditions that guar-
antee that model (1.1) is locally and globally asymptotically stable for the preys-species
(U,V) washout periodic solutions. Again, since the nature of system (1.1) permits split-
ting into fractional and reaction terms, we conveniently introduced two notable mathe-
matical ideas for the stiff and moderately stiff parts. We formulate an efficient numerical
method based on the exponential time differencing Adams scheme to advance the re-
sulting system of ordinary differential equations arising from the approximation of frac-
tional reaction-diffusion equation, when the Fourier spectral method is applied. By the
numerical simulation, we examine the influences on the inherent oscillation caused by
the impulsive perturbations in one, two and three spatial dimensions to indicate both
ecological and numerical implications.

The rest of the paper is organized as follows. We present mathematical analysis of
the main results which show that the model is both locally and asymptotically stable
in Section 2. In Section 3, we formulate adaptive numerical methods for solving general
space fractional reaction-diffusion equation. Applicability and suitability of the proposed
method is examined in one and high dimensions in Section 4. We finally conclude the
paper with Section 5.
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2 Mathematical analysis

In the spirits of [6, 36], we examine the local stability analysis of (1.1). let R+ = [0,∞),
R3
+= {X ∈R3|X≥0}. We let G=( f (u,v,w),g(u,v,w),h(u,v,w))T as the map that defines

the reaction terms. Let H : R+×R3
+→R+, then H∈H0 if; H is continuous in (T(ǫ),T(ǫ+

1)]×R4
+, for each X∈R4

+, ǫ∈N,

lim
(t,Z)→(T+(ǫ),X)

H(t,Z)=H(T+(ǫ),X)

exists. And, H is said to be locally Lipschitzian in X. The local stability analysis is ex-
amined in order to see behaviour of the local dynamics in the absence of diffusive terms,
that is, when Di =0, i=1,2,3. The steady states of system (1.1) are determined by setting
the local kinetic terms f (u,v,w)= g(u,v,w)=h(u,v,w)=0.

Definition 2.1. Suppose that function G(t)= (u(t),v(t),w(t)) is smooth and satisfy (1.1)
in R3

+, and every component of G is almost periodic function, we say that G is a spatial
homogeneity periodic solution of (1.1) represented by G(t,T(ǫ)), for every ǫ>0.

Theorem 2.1. Assume (u,v,w) to be any solution of model (1.1), then the equilibrium point
(0,0,ŵ) which corresponds to the extinction of preys species is locally asymptotically stable if

α1 ϕ1

γ1(ψ1ϕ1+ψ2ϕ2)
ln

{

1−
γ1S(1−exp(−ψ1ϕ1T−ψ2ϕ2T))

γ1S+β1(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

}

+τ1T<0, (2.1)

and

α2 ϕ2

γ2(ψ1ϕ1+ψ2ϕ2)
ln

{

1−
γ2S(1−exp(−ψ1ϕ1T−ψ2ϕ2T))

γ1S+β2(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

}

+τ2T<0. (2.2)

Proof. We can determine the local stability of prey eradication periodic solution (0,0,ŵ)
by examining the behaviour of system (1.1) subject to small amplitude perturbation

(u,v,w)=(ū,v̄,w̄+ŵ). (2.3)

Using (2.3) in (1.1), we have the linearized system written in the form

dū

dt
= ū

(

τ1−
α1 ϕ1ŵ

β1+γ1ŵ

)

, (2.4a)

dv̄

dt
= v̄

(

τ2−
α2 ϕ2ŵ

β2+γ2ŵ

)

, t 6=T(ǫ), (2.4b)

dw̄

dt
= w̄(−ψ1 ϕ1−ψ2 ϕ2), (2.4c)

B[ū]=B[v̄]=B[w̄]=0, t=T(ǫ), (2.4d)
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which leads to
(ū,v̄,ū)T=A(ū(0),v̄(0),w̄(0))T, 0≤ t≤T,

where A at point (ū(0),v̄(0),w̄(0)) satisfies

dA

dt
=





τ1−a 0 0
0 τ2−b 0
0 0 −c



A(t), (2.5)

with

a=
α1 ϕ1ŵ

β1+γ1ŵ
, b=

α2ϕ2ŵ

β2+γ2ŵ
, c=ψ1 ϕ1+ψ2ϕ2, A(0)= I,

is the identity matrix, and

[(ū;v̄;w̄)T+(ǫ)]= [1,0,0; 0,1,0; 0,0,1][(ū ;v̄;w̄)T(ǫ)].

So, stability of the periodic prey extinction at point (0,0,ŵ) can be examined by the eigen-
values of [1,0,0; 0,1,0; 0,0,1]A(T), which have an absolute value of less than one. Then,
the state (0,0,ŵ) is locally stable. Based on Floquet theory, all the eigenvalues

λ1=exp

(

∫ T

0
(τ1−a)

)

, λ2=exp

(

∫ T

0
(τ2−b)

)

, λ3=exp(−c(T))<1.

Hence, the point (0,0,ŵ) is locally asymptotically stable if |λ1|< 1 and |λ2|< 1, which
imply that conditions (2.1) and (2.2) are satisfied. The proof is completed.

Definition 2.2. For any positive smooth initial data G(x,0) = (u(x,0),v(x,0),w(x,0)) =
(u0(x),v0(x),w0(x))≥ 0, G(x,0) 6= 0, x ∈ Ω, if there exist a unique nonnegative solution
G(x,t) = (u(x,t),v(x,t),w(x,t)) for the model (1.1), subject to the boundary conditions,
and

lim
t→∞

(G(u,v,w)(x,t)−G(u,v,w)(t,T(ǫ)))

uniformly for all x ∈Ω, we say that spatial homogeneity periodic solution G(t,T(ǫ)) is
globally asymptotically stable.

Definition 2.3. Predator-prey system (1.1) is said be permanent if there exists a compact
Ω ⊂ R3

+ such that every solution (u(x,t),v(x,t),w(x,t)) of the given system (1.1) exist
mainly, and remain bounded in the region of definition Ω.

Theorem 2.2. If (u,v,w) is the solution of (1.1), then the point (0,0,ŵ) which represents the
prey species extinction is said to be globally asymptotically stable if

α1ϕ1

γ1(ψ1 ϕ1+ψ2 ϕ2)
ln

{

1−
γ1S(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

γ1S+β1(1−exp(−ψ1ϕ1T−ψ2 ϕ2T))

}

+τ1T<0, (2.6a)

α2ϕ2

γ2(ψ1 ϕ1+ψ2 ϕ2)
ln

{

1−
γ2S(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

γ1S+β2(1−exp(−ψ1ϕ1T−ψ2 ϕ2T))

}

+τ2T<0, (2.6b)
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and

S ≥max

{

γ1(ψ1 ϕ1+ψ2 ϕ2)T(β1+J +γ1J )

α1 ϕ1
,
γ2(ψ1ϕ1+ψ2ϕ2)T(β2+J +γ2J )

α2 ϕ2

}

.

For a positive constant J , we have u≤J ,v≤J ,w≤J for each solution X=(u,v,w) of ecological
model (1.1), for t large.

Proof. Let H=κ1u+κ2v, from (1.1) in absence of diffusion, we obtain

H′=κ1τ1u−τ1u2−
α1κ1 ϕ1uw

u+γ1w+β1
+κ2τ2v−τ2v2−

α2κ2 ϕ2vw

v+γ2w+β2
.

Also, we let a constant Q> 0 in such a way that u,v,w≤Q for any solution (u,v,w) of
system (1.1) with all t>0 and large enough. Then,

H′≤κ1τ1u−τ1u−
α1κ1 ϕ1uw

Q+γ1Q+β1
+κ2τ2v−τ2v−

α2κ2 ϕ2vw

Q+γ2Q+β2
,

which yields

w′=

(

α1ρ1u

u+γ1w+β1
−ψ1

)

ϕ1w+

(

α2ρ2v

v+γ2w+β1
−ψ2

)

ϕ2w

≥−w(ψ1ϕ1+ψ2ϕ2), t 6=T(ǫ),

B[w]=S , t=T(ǫ).

In the solution, there exists a t1 > 0, and a small positive constant, say δ, in such a way
that w≥ ŵ−δ, valid for all t≥ t1. We have

w≥
Sexp(−(ψ1 ϕ1+ψ2 ϕ2)T)

1−exp(−(ψ1 ϕ1+ψ2 ϕ2)T)
−δ

and

H′≤

(

κ1τ1−
α1κ1 ϕ1Γ

Q+γ1Q+β1

)

u+

(

κ2τ2−
α2κ2 ϕ2Γ

Q+γ2Q+β2

)

v,

where

Γ≡
Sexp(−(ψ1 ϕ1+ψ2ϕ2)T)

1−exp(−(ψ1 ϕ1+ψ2 ϕ2)T)
−δ.

For

κ1τ1−
α1κ1 ϕ1Γ

Q+γ1Q+β1
<0 and κ2τ2−

α2κ2 ϕ2Γ

Q+γ2Q+β2
<0,

then we can say that

S ≥max

{

τ1(ψ1 ϕ1+ψ2 ϕ2)T

α1 ϕ1
(γ1Q+β1),

τ2(ψ1 ϕ1+ψ2ϕ2)T

α2ϕ2
(γ2Q+β2)

}

.
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For t> t1, we have

H′≤

(

κ1τ1−
α1κ1 ϕ1Γ

Q+γ1Q+β1

)

u+

(

κ2τ2−
α2κ2 ϕ2Γ

Q+γ2Q+β2

)

v<0

as H→ 0, so also u,v→ 0 for t→∞. Hence, we conclude that the model (1.1) is globally
asymptotically stable for the prey-species eradication state (0,0,ŵ).

Theorem 2.3. System (1.1) is said to be permanent if

α1ϕ1

γ1(ψ1 ϕ1+ψ2 ϕ2)
ln

{

1−
γ1S(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

γ1S+β1(1−exp(−ψ1ϕ1T−ψ2 ϕ2T))

}

+τ1T>0, (2.7a)

α2ϕ2

γ2(ψ1 ϕ1+ψ2 ϕ2)
ln

{

1−
γ2S(1−exp(−ψ1 ϕ1T−ψ2 ϕ2T))

γ1S+β2(1−exp(−ψ1ϕ1T−ψ2 ϕ2T))

}

+τ2T>0, (2.7b)

and

S<max

{

γ1(ψ1ϕ1+ψ2ϕ2)T(β1+J +γ1J )

α1 ϕ1
,
γ2(ψ1 ϕ1+ψ2ϕ2)T(β2+J +γ2J )

α2ϕ2

}

.

Proof. Let G(t) = (u(t),v(t),w(t) be the solution of the model (1.1) with G > 0. We also
assume that u(t)≤J ,v(t)≤J and w(t)≤J with t ≥ 0, where J is any nonnegative
constant. By considering a subsystem of the form

dw(t)

dt
=(ψ1ϕ1+ψ2ϕ2)w(t), t 6=T(ǫ), w(t+)=w(t)+J , t=T(ǫ), w(0+)=w0.

We have w(t)> ŵ(t)−e for all large t and

w(t)≥
Sexp(−(ψ1ϕ1+ψ2 ϕ2)T)

1−exp(−(ψ1ϕ1+ψ2ϕ2)T)
−e△= ξ1

for large t. Next, we obtain ξ2, ξ3 for u(t)> ξ2 and v(t)> ξ3.
Let e1 be small positive number such that

̺1
△

= exp

(

∫ T(ǫ+1)

T(ǫ)

(

τ1

(

1−
J

κ1

)

−
α1 ϕ1(υ

∗
3+e1)

β1

)

dt

)

>1.

We will now show that there exists ξ2, such that u(t)≥ ξ2 for large t. Also, we will show
there exists a t1 ∈ (0,∞) such that u(t)≥ ξ2. Else, u(t)< ξ2, ∀t>0. From model (1.1), one
gets

dw(t)

dt
≤

(

ρ1α1ϕ1ξ2

β1
+

ρ2α2 ϕ2J

β2
−(ψ1 ϕ1+ψ2ϕ2)

)

w(t), t 6=T(ǫ), (2.8a)

w(t+)=w(t)+J , t=T(ǫ), w(0+)=w0. (2.8b)
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Thus, we get w(t)≤υ3 and υ3→υ∗
3 , as t→∞, where υ3 is regarded as the solution of

dυ3(t)

dt
≤

(

ρ1α1 ϕ1ξ2

β1
+

ρ2α2 ϕ2J

β2
−(ψ1ϕ1+ψ2ϕ2)

)

υ3(t), t 6=T(ǫ), (2.9a)

υ3(t
+)=υ3(t)+J , t=T(ǫ), υ3(0

+)=υ0, (2.9b)

and

υ∗
3 =

Sexp
(

−
(

(ψ1 ϕ1+ψ2 ϕ2)−
ρ1α1 ϕ1ξ2

β1
+ ρ2α2ϕ2J

β2

)

(t−T(ǫ))
)

1−exp(−(ψ1ϕ1+ψ2ϕ2)T)
,

t∈ (T(ǫ),T(ǫ+1)], ǫ∈N.

Thus, there exists a T1>0 such that

w(t)≤3 (t)<υ∗
3+e1

and
du(t)

dt
≥u(t)

[

τ1

(

1−
J

κ1

)

−
α1ϕ1(υ

∗
3+e1)

β1

]

. (2.10)

Assume N1∈N and N1T≥T2>T1, by integrating Eq. (2.10) on time interval (T(ǫ),T(ǫ+
1)), n≥N1, we obtain

u(T(ǫ+1))≥u(T+(ǫ))exp

(

∫ T(ǫ+1)

T(ǫ)

(

τ1

(

1−
J

κ1

)

−
α1 ϕ1(υ

∗
3+e1)

β1

)

dt

)

=u(T(ǫ))exp

(

∫ T(ǫ+1)

T(ǫ)

(

τ1

(

1−
J

κ1

)

−
α1 ϕ1(υ

∗
3+e1)

β1

)

dt

)

=u(T(ǫ))̺1.

Then for u((N1+τ)T)≥ u(N1T)̺κ
1 → ∞, and κ → ∞, there exists a contradiction to the

boundedness of u(t), for t1, such that u(t1)≥ ξ2.
Secondly, if u(t)≥ ξ2 for all t≥ t1, then our aim is achieved. Thus we only require to

consider the solution in the given region R= {u(t) : u(t)< ξ2}. Assume t̂= inft≥t1
, then

u(t)≥ξ2, t∈(t, t̂) and t̂∈(T(ǫ),T(ǫ+1), ǫ1∈N. It is convenient to show that u(t̂)=ξ2 since
u(t) is continuous. Here we let t2 ∈ (T(ǫ1+1),T(ǫ1+1)+ T̂) such that u(t2)≥ ξ2, or else
u(t)< ξ2, t∈ (T(ǫ1+1),T(ǫ1+1)+ T̂),T̂=T(ǫ2+T(ǫ3)). By letting ǫ2,ǫ3∈N in such that

T(ǫ2−1)>
ln
(

e1

(J+S)

)

exp(ω(ǫ2+1)T)̺ǫ3
1

ρ1α1 ϕ1ξ2

β1
+ ρ2α2 ϕ2J

β2
−(ψ1ϕ1+ψ2 ϕ2)

>1.

we now consider Eq. (2.9) with υ3(t̂+)=w(t̂+), to obtain

υ3(t)=



υ(T+(ǫ1+1))−
S

1−exp
(

ρ1α1 ϕ1ξ2

β2
T+ ρ2α2ϕ2J

β2
T−(ψ1ϕ1+ψ2 ϕ2)T

)





×exp

(

ρ1α1 ϕ1ξ2

β1
t+

ρ2α2ϕ2J

β2
t−(ψ1 ϕ1+ψ2 ϕ2)t

)

+υ∗
3(t)
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for t∈ (t(ǫ),T(ǫ+1),ǫ1+1<ǫ<ǫ1+ǫ2+ǫ3+1), then

|vυ3(t)−υ∗
3(t)|

<(J +S)exp

(

−

(

(ψ1ϕ1+ψ2 ϕ2)−
ρ1α1 ϕ1ξ2

β1
−

ρ2α2 ϕ2J

β2

)

(t−T(ǫ1+1))

)

<e1

and

w(t)≤υ3(t)≤υ∗
3(t)+e1,T(ǫ1+ǫ2+1)≤ t≤T(ǫ1+1)T̂,

which justifies that Eq. (2.10) is true for T(ǫ1+ǫ2+1)≤ t≤ T(ǫ1+1)+ T̂. By integrating
(2.10) on T(ǫ1+ǫ2+1),T(ǫ1+1)+ T̂ we get

u(T(ǫ1+ǫ2+ǫ3+1))≥u(T(ǫ1+ǫ2+1))̺ǫ3
1 .

There emerged two possible cases for t∈ (t̂,T(ǫ1+1)).
Firstly, if u(t)< ξ2 for all t∈ (t̂,T(ǫ1+1)), then u(t)< ξ2 for all t∈ (t̂,T(ǫ1+ǫ2+1)), so

that
du(t)

dt
≥u(t)

[

τ1

(

1−
ξ2

κ1

)

−
α1 ϕ1J

β1

]

=ωu(t). (2.11)

By integrating the above equation on (t̂,T(ǫ1+ǫ2+1)), which results in

u(T(ǫ1+ǫ2+1))≥u(t̂)exp(ωT(ǫ2+1)).

Then

u(T(ǫ1+ǫ2+ǫ3+1))≥ ξ2 exp(ωT(ǫ2+1))̺ǫ3
1 > ξ2,

which lead to a contradiction.
Let t3 = inft>t̂{u(t)≥ ξ2}, then u(t3) = ξ2 and Eq. (2.11) is true for t ∈ [t̂,t3). If we

integrate (2.11) on [t̂,t3) we have

u(t)≥u(t̂)exp(ω(t− t̂))≥ ξ2exp(ωT(ǫ1+ǫ2+ǫ3+1))△= ξ̂2.

So for t>t3, we continue with the same argument since u(t3)≥ξ2. Hence we can conclude
that u(t)≥ ξ̂2 for t> t3.

Secondly, let there exists tm∈(t̂,T(ǫ1+1)] such that u(tm)≥ξ2. Assume tk=inft>t̂{u(t)≥
ξ2}, then u(t)< ξ2 for all t∈ [t̂,t4) and u(tk)= ξ2. For t∈ [t̂,tk), Eq. (2.11) is true on [t̂,tk),
we have u(t)≥ u(t̂)exp(ω(t− t̂))> ξ2. The process is continuous as long as u(tk)≥ ξ2.
And we have u(t)≥ ξ2 for all t> tk. Hence, we conclude in both cases that u(t)≥ ξ2 for
all t≥ t1. Similar prove holds for v(t)≥ ξ̂3 for all t≥ t2. Knowing well that the set Ω∈R3

+

is global attractors, the solution of model (1.1) enters and remain in Ω, which shows that
the model is permanent.
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3 Numerical methods

Spectral methods have been considered as the logical extension of conventional finite
differences to infinite order [9,14,19,24], due to its ability to remove the issue stiffness that
is inherent with the diffusive term of fractional reaction-diffusion equations [42, 54, 59].
Based on the known integrating factor technique, we shall formulate the theory here in
one spatial dimension.

In a compact form, system (1.1) can be written as

ut=D1∆η/2u+ f (u,v,w), vt =D2∆η/2v+g(u,v,w), wt=D3∆η/2w+h(u,v,w), (3.1)

where f (u,v,w), g(u,v,w) and h(u,v,w) are nonlinear term functions of u, v and w, Di,
1, 2, 3 are the respective diffusion coefficients of species u(x,t), v(x,t) and w(x,t) in the
spatial direction x and time t. The solution of (3.1) is subject to the initial condition

u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x), (3.2)

and any of the boundary conditions:

• In the case of an infinite system, x∈ (−∞,∞), here R is a subset of (−∞,∞).

• x∈ [0,L], ∂u
∂x (0,t)= ∂u

∂x (L,t)=0, no-flux or Neumann boundary condition for a finite
system, and

• x∈ [0,L], u(0,t)=u(L,t)=ua, called the Dirichlet or fixed concentration boundary
condition, also for a fixed system.

By adopting the integrating factor technique to the Fourier transform of system (3.1)
see, for instance (see [13, 35, 45, 48]), we obtain

Ut(χx,t)=D1(χ
η/2
x )U(χx,t)+F [ f (u(x,t),v(x,t),w(x,t))], (3.3)

where U,V and W are the double Fourier transforms of species densities u(x,t), with
similar expressions for Vt(χx,t) and Wt(χx,t). In other words,

F [u(x,t)]=U(χx,t)=
∫ ∞

−∞
u(x,t)e−i(χxx)dx. (3.4)

To explicitly remove the inherent stiffness in the fractional partial derivative parts, we let

Ωη/2=χ
η/2
x , and set

U= eD1Ωη/2tŪ,

so that

∂tŪ= eD1Ωη/2tF [ f (u,v,w)]. (3.5)
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In case of two spatial dimensions, one requires to discretize the square domain by con-
sidering the equispaced number of points Nx and Ny in the spatial directions of x and
y. We employ the discrete fast Fourier transform (DFFT) [54] to transform Eq. (3.5) to a
system of ODEs

∂tŪi,j= e
D1Ω

η/2
i,j tF [ f (ui,j,vi,j,wi,j)], (3.6)

where ui,j = u(xi,yj) and Ω
η/2
i,j = χ

η/2
x (i)+χ

η/2
y (j). Boundary conditions are now set at

extremes of the domain of size L2 or ±L depending on the choice of boundary conditions.
In the 2D experiment, we use a square Fourier nodes of size L×L for Nx = Ny = N = L.
At this stage, the system has been converted to ODEs, the stiffness issue is far gone.
It should be noted that any explicit higher-order time stepping methods can be used,
and the formulation here can be extended to any higher dimensional space for a multi-
species system. So once the stiffness is removed, one can advance in time with any higher
order time solver, see [17, 20, 35, 42, 43, 49] for details. In what follows, we discuss the
formulation of exponential time differencing method of Adams-type.

3.1 Exponential Adams-type schemes

The main idea behind the exponential time differencing schemes is to construct integra-
tors [30,31] of multistep type through variation of parameters between tn and tn+1=tn+h.
We obtain

ω(tn+1)=eLhω(tn)+etnL
∫ tn+h

tn

e−τLN(τ,ω(τ))dτ

=eLhω(tn)+
∫ h

0
e(h−τ)LN(tn+τ,ω(tn+τ))dτ. (3.7)

The derivation of the numerical method proceeds in the same way as in [17] for explicit
Adams methods. Given that ωj≈ω(tj), we naturally define a new approximation ωn+1≈
ω(tn+1) given by

ωn+1 = eLhωn+
∫ h

0
e(h−τ)LPn,k−1(tn+τ)dτ, (3.8)

where Pn,k−1 is the Lagrange polynomial interpolated through the points

(tn−k+1,N(tn−k+1,ωn−k+1)),··· ,(tn,N(tn,ωn)),

and is given by

Pn,k−1(tn+θh)=
k−1

∑
j=0

(−1)j

(

−θ
j

)

∇jNj, Nj=N(tj,ωj). (3.9)
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Here, ∇ denotes the standard backward difference operator, given by

∇0Nn=Nn, ∇jNn =∇j−1Nn−∇j−1Nn−1, j=1,2,··· . (3.10)

The substitution of the Lagrange interpolation polynomial (3.9) into (3.8) yields the fol-
lowing scheme

ωn+1= eLhωn+h
k−1

∑
j=0

γj(Lh)∇jNn, (3.11)

where

γj(z)=(−1)j
∫ 1

0
e(1−θ)z

(

−θ
j

)

dθ. (3.12)

The weight function (3.12) can be represented in term of the ϕ-functions

ϕj(z)=
1

(j−1)!

∫ 1

0
e(1−θ)zθ j−1dθ, j≥0. (3.13)

As in [30], we can represent (3.11) as

ωn+1= eLhωn+h
k

∑
j=0

β̄ jNn−j, (3.14)

where the coefficients β̄ j are linear combinations of matrix weight functions ϕj.
The explicit (β̄0=0) ETD Adams-Bashforth method of order 4 is given by









β̄1

β̄2

β̄3

β̄4









=









1 11/6 2 1
0 −3 −5 −3
0 3/2 4 3
0 −1/3 −1 −1

















ϕ1(Lh)
ϕ2(Lh)
ϕ3(Lh)
ϕ4(Lh)









. (3.15)

This method serves as the predictor. An implicit exponential Adams-Moulton method
which may serve as corrector, is given by









β̄0

β̄1

β̄2

β̄3









=









0 1/3 1 1
1 1/2 −2 −3
0 −1 1 3
0 −1/6 0 −1

















ϕ1(Lh)
ϕ2(Lh)
ϕ3(Lh)
ϕ4(Lh)









. (3.16)

The ϕ-functions described through (3.13) can be computed explicitly by a recursive for-
mula

ϕ0(z)= ez,

ϕj(z)=
ϕj−1(z)−ϕj−1(0)

z
, j≥1.







(3.17)
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Another way to compute the functions ϕj is to use the Taylor series representation. To
this end we have for all complex numbers z, the representation

ϕj(z)=
∞

∑
k=j

1

k!
zk−j. (3.18)

However, it is known that the computation of these functions in their explicit or Tay-
lor series form suffers from computational inaccuracy for matrices whose eigenvalues
approach to zero. This is generally the case when the spacial discretization is based on
spectral methods. In order to overcome the numerical difficulties encountered in (3.17)
and (3.18), we employ the Krylov projection algorithm [50]. The key idea behind this
method, is to approximate the product of a matrix function ϕ(A) (A is a N×N matrix)
and a vector v using projection of the matrix and the vector onto the Krylov subspace
Km(A,v) = span{v,Av,··· ,Am−1v}. The orthonormal basis {v1,v2,··· ,vm} of Km(A,v) is
constructed using the modified Arnoldi iteration [5, 50] which can be written in matrix
form as

AVm=VmHm+ h̄m+1,mvm+1eT
m, (3.19)

where h̄m+1,m is an entry of the Hessenberg matrix Hm, em = (0,··· ,0,1,0,··· ,0)T is the

unit vector with 1 as the mth coordinate, {v1,v2,··· ,vm,vm+1} is an orthonormal basis of
Km(A,b), Vm=[v1v2 ···vm]∈R

N×m, and

Hm =VT
m AVm (3.20)

is an upper Hessenberg matrix calculated as a side product of the iteration. Matrix P=
VmVT

m is a projector onto Km(A,v), thus ϕ(A)v is approximated as a projection

ϕ(A)b≈VmVT
m ϕ(A)VmVT

m b. (3.21)

Recalling (3.20) and observing that v1=v/‖v‖2 we make the final approximation through

ϕ(A)v≈‖v‖2Vm ϕ(Hm)e1. (3.22)

The advantage of this formulation is that Hm is a m×m matrix of smaller size (m≪ N)
and thus it is much cheaper to evaluate ϕ(Hm) than ϕ(A).

4 Numerical experiments

In this experiment, we present numerical simulation results of system (1.1) in one, two
and three spatial dimensions. We first consider the non-diffusive form (1.1), to confirm if
actually the theoretical and numerical findings are in agreement. Secondly, we now sim-
ulate the full fractional reaction-diffusion system at some instances of fractional power η
in the superdiffusive scenarios.
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4.1 A non-diffusive example

In order to ensure that our mathematical results corresponds to the numerical results, we
first experiment the non-diffusive system (that is, D1=D2=D3=0) with initial conditions
and other parametric values chosen in the first quadrant to make our results biologically
feasible for the prey eradication of system (1.1). With the set of parameters

α1=0.6, α2=0.85, β1=1.52, β2 =2.1, γ1=0.08, γ2=0.85, (4.1a)

τ1=0.9, τ2=1.2, κ1=18, κ2=15, ρ1 =0.35, ρ2 =0.45, (4.1b)

ψ1=0.16, ψ2=0.25, ϕ1=0.31, ϕ2=0.7, (4.1c)

the condition for locally asymptotically stable in Theorem 2.1 is satisfied. It is noticeable
in Fig. 1 that both preys u and v go to extinction. Hence, the theoretical result obtained
in this paper is verified via a numerical solutions, since from Theorem 2.1 the solution
(0,0,ŵ) is locally asymptotically stable. It is natural that in absence of prey which serves
as food for the predator, the whole ecosystem will collapse. As depicted in panels (a)-(c),
predator density is declining with increasing time t.
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Figure 1: Time series of system (1.1) when S=4.5. The numerical results depict preys u and v eradication at
(a) t=15, (b) t=30 and (c) t=150. Other parameters as in (4.1).

With initial populations u0(x)=0.5, v0(x)=0.33 and w0(x)=0.2, the numerical sim-
ulation of system (1.1) as displayed in Fig. 2 depicts a periodic solution in the presence
of coexistence state of the species. The results in panels (b)-(d) are obtained with three
initial values as shown in the figure legends.

4.2 One-dimensional example

In Fig. 3, we experiment the full fractional reaction-diffusion system (1.1) with kinetics
(1.2) using the above parameters set (4.1), subject to zero-flux boundary conditions and
initial populations given as

u(x,0)=0.53x+0.47sin(−1.5πx), (4.2a)

v(x,0)=1+sin(2πx), (4.2b)

w(x,0)= ŵ+10−8(x−1200)(x−2800). (4.2c)
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Figure 2: Coexistence of the species. panel (a) shows the periodic behaviour of the three species as a function
of time. Panels (b)-(d) depict the limit cycles.

It is obvious that the three species exhibit various spatiotemporal oscillations in phase.
Though depending of the choices of initial and parameter values, one can obtain distri-
bution in which both preys u and v will evolve in similar fashion. The results displayed
in Fig. 3 are obtained at time t= 30 for two instances of fractional power η. The upper
and lower plots correspond to η=1.25 and η=1.75 respectively.

We extend the suitability of the proposed numerical method in Fig. 4. Here, we exam-
ined the role of the cropping rates αi, i=1,2 on the numerical results at different instances
of time t and a fixed value of η for fractional reaction-diffusion system (1.1). In the simu-
lations, we let α1=4 and α2=3 as against the previous values in Fig. 3 at various instants
of final time t= 20,60,100,140 for respective rows 1 to 4. We observed different chaotic
and complex spatiotemporal oscillations. The three species, though coexist but oscillate
in phase for all t>0. In our opinions, we strongly believed that these results have some
biological interpretations. It should be mentioned that apart from the dynamical pattern-
s displayed in this paper, other dynamical structures are obtainable depending on the
choice of initial data and parameter values.

There is no exact solution for the predator-prey reaction-diffusion system (1.1). As a
result, we numerically check the convergence of the ETD-ADAMS method by fixing the



K. M. Owolabi and A. Atangana / Adv. Appl. Math. Mech., 9 (2017), pp. 1438-1460 1453

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

x

((
u,

v,
w

),
t)

 

 
u
v
w

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

x

((
u,

v,
w

),
t)

 

 
u
v
w

Figure 3: One dimensional evolution of species for the fractional reaction-diffusion system (1.1) at different
instances of fractional index η. The upper and lower rows correspond to η= 1.25 and η= 1.75 respectively at
t=30. The parameters are: D1=0.07, D2=0.035, D3=0.12 and ŵ=1/30. Other parameter values as in (4.1)
with initial conditions (4.2).

Table 1: Convergence of the ETD-ADAMS method for reaction-diffusion system (1.1) showing the effect of
fractional derivative η.

Step size (∆x) Err(∆x,∆t=1/2048) at η=1 Err(∆x,∆t=1/2048) at η=1.5

∆x=1/2 2.9698e-005 2.0021e-005
∆x=1/4 2.1925e-006 8.3166e-007
∆x=1/8 1.4894e-007 4.1151e-008

∆x=1/16 9.7055e-009 3.2240e-009
∆x=1/32 6.1969e-010 1.8337e-010

time step ∆t at final time T and run some simulations with increasing number of the grid
points. The l∞ norm error is given by

Err(∆x,∆t)= ||ω̄c−ωc||∞

and reported for some values of ∆x in Table 1. The parameters set as in (4.1) with D1=0.7,
D2=0.5, D3=0.2, T=1, and computed with initial data retained as in (4.2).

4.3 Two-dimensional example

In this section, we examine our numerical experiment in two dimensions by considering
the fractional reaction-diffusion system (1.1). In the spirit of [44, 45] in two dimensional
space, subject to the clamped boundary conditions on [0,L]×[0,L], L=200, and the initial
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Figure 4: Different chaotic and complex spatiotemporal oscillations of the species evolving from the perturbation
of the cropping rate αi, i= 1,2 with η = 1.50 at some different instants of simulation time t= 20,60,100,140.
Other parameters and initial conditions are as given in Fig. 3 above.

conditions given as

u(x,y,0)=1−
1

30

[

sin

(

πx−ν

2ν

)̟

×sin

(

πy−ν

2ν

)̟]

, (4.3a)

v(x,y,0)=
29

360

[

sin

(

πx−ν

2ν

)̟

×sin

(

πy−ν

2ν

)̟]

, (4.3b)

u(x,y,0)=3−
116

245

[

sin

(

πx−ν

2ν

)̟

×sin

(

πy−ν

2ν

)̟]

. (4.3c)
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Ecological parameters used for the computations are give as

{α1=0.6, α2=0.8, β1=1.5, β2=2, γ1=0.08, γ2=0.05, τ1=0.9,

τ2=1.2, κ1=20, κ2=15, ρ1 =0.35, ρ2=0.45, ψ1=0.15, ψ2=0.25,

ϕ1=0.3, ϕ2=0.7, ν=0.5, ̟=0.8, D1=0.7, D2=0.5, D3=0.2, L=5}, (4.4)

In Fig. 5, the computer simulation of fractional reaction-diffusion systems (1.1) gives a
strong evidence that pattern formation in the fractional reaction-diffusion case is almost
the same as in classical reaction-diffusion equations, that is when η = 2 [48]. The distri-
butions of species in 2D here result to formation of spots which correspond to the one
obtained by Murray [41]. In ecological sense, this result can be linked to the spot patterns
on animals like Leopard and some birds. The results in the first, second and third rows
correspond to the distributions of u, v and w−species at η=1.25, η=1.55 and η=1.83 re-
spectively. It should be mentioned that formation of other Turing patterns such as stripes
and pure spots are possible, depending on the choice of initial data and parameter values.
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Figure 5: Two dimensional spots formation for fractional reaction-diffusion system (1.1) at different instants of
η=1.25,1.55,1.83 which correspond to the upper-, middle- and lower-rows at t=100. Other parameters are as
fixed in (4.4).
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4.4 Three-dimensional example

Here, we explore the richness of different dynamics of the fractional predator-prey reaction-
diffusion system (1.1) with kinetics (1.2), in three dimensions (3D). We let

∆η/2=(∂η/2/∂xη/2+∂η/2/∂yη/2+∂η/2/∂zη/2),

for u=(x,y,z,t), v=(x,y,z,t) and w=(x,y,z,t) subject to the initial functions

u(x,y,z,0)=1−exp(−10((x−p/2)2+(y−p/2)2+(z−p/2)2)), (4.5a)

v(x,y,z,0)=exp(−10((x−p/2)2+2(y−p/2)2+(z−p/2)2)), (4.5b)

w(x,y,z,0)=1.2−exp(−10((x−p/2)2+(y−p/2)2+2.5(z−p/2)2)). (4.5c)

The nontrivial dynamics of the system was determined by the method of computer sim-
ulation showing the spatial evolution of the three species. The results of numerical simu-
lation in 3D gives amazing scenarios for the distribution of different kinds of chaotic and
spatiotemporal patterns in the parameter regime where pattern formation in the form
of wavefront is partially driven by the fractional power index η. In the computational
experiments, we use 128×128×128 Fourier nodes on a ±L×±L×±L grid for L=5.

In Fig. 6, we noticed that the species distributions in 3D differ from one another, and
as a result, we present our numerical analysis under the auspices of superdiffusive case
at two instances of fractional power η and simulation time t=10. The upper-lower plots
correspond to some chaotic and spatiotemporal patterns obtained for η=1.25 and η=1.45
respectively. A keen look reveals that the evolution of the species are not similar here,

Figure 6: Three dimensional superdiffusive results of system (1.1) showing the spatial evolution of the species
at two instances of fractional power η at p= 0.5 and final time t= 10. The upper-lower rows correspond to
η=1.25 and η=1.45 respectively. Other parameters are given in (4.4) with initial conditions (4.5).



K. M. Owolabi and A. Atangana / Adv. Appl. Math. Mech., 9 (2017), pp. 1438-1460 1457

but it should be mentioned that other complex dynamical and more chaotic structures
are obtainable by varying the initial and parameter data, as well as the fractional value η
in the system.

5 Conclusions

In this paper, we have studied the dynamics of a reaction-diffusion system consisting
of two preys and one predator spatial interactions. Mathematical analysis results have
shown that the predator-prey system considered is locally asymptotically stable. We
show that the mid-level predator and lowest-level prey washout periodic solution is
globally asymptotically stable. It is of great interest that we have formulated a viable
and efficient numerical schemes in both space and time, since the fractional reaction-
diffusion equation can be split into diffusive stiff part and reaction moderately-stiff term.
We formulate Fourier spectral method in space and integrate the resulting ODEs system
in time with the exponential time differencing scheme whose formulation is based on the
ADAMS-type method. Convergence result is displayed in Table 1. This research work
has opened up some mathematical problems for other researchers to explore. At first, we
suggest a theorem for system (1.1) to be globally asymptotically stable and permanent.
Secondly, our methodology have also paved way to how such system of equations can be
formulated in two and higher dimensions. Hence, we investigate the influences on the
inherent spatiotemporal oscillation caused as a result of impulsive perturbation. Com-
puter simulation experiment of the fractional-in-space reaction-diffusion systems in one,
two and three dimensions has given enough and provide a good evidence that pattern
formation in the fractional regime (1< η ≤ 2) is almost the same as in the case of clas-
sical reaction-diffusion system when (η = 2). To keep the study open for researchers to
explore, we present via theorems the conditions for system (1.1) to be globally asymp-
totically stable and permanent. For future research, the methodology presented in this
paper can serve as a good working template to solve any fractional reaction-diffusions
problems in higher dimensions.
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