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Abstract

An optimal order of the multigrid method is given in energy-norm for the
nonconforming finite element for solving the biharmonic equation, by using the
nodal interpolation operator as the transfer operator between grids.

r 1. Introduction

Several aspects of the nonconforming finite element method have been discussed in
[1-5]. In this paper, we will introduce the multigrid method and prove that the multigrid
method of nonconforming finite elements can attain the same optimal convergence order
as the nonconforming finite element method in energy-norm.

The multigrid method of conforming finite elements has been studied"—8l. For the
multigrid method of nonconforming finite elements, because the finite element spaces
associated with the nets are not nest (Vi_; & Vi), it is difficult to define the transfer
operator or the prolongation operator , especially when the nonconforming element
interpolation order is greater than 2, as in Fraeijs de Veubeke triangular elements, the
Adini rectangular element, the Zienkiewicz triangular element, etc.!4. For the Morley
elements, the transfer operators between grids can be defined e.g. [10-12]. At present
we try to use the nodal interpolation operator as the intergrid transfer operator. The
error estimate of an optimal order convergence property of the multigrid method is
given in energy-norm for the multigrid method of nonconforming finite elements such
as the Morley element, Fraeijs de Veubeke triangular elements, the Adini rectangle
element and the Zienkiewicz triangular element. Furthermore, the method presented
in this paper is effective for other high order conforming or nonconforming element

interpolations.

The remainder of the paper is organized as follows. In Section 2, the nonconforming
finite elements and their properties of approximating the biharmonic equation as well
as properties of the nodal interpolation operator as the intergrid transfer operator are
stated. In Section 3, the multigrid method is given. In Section 4, the convergence
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properties of the multigrid method of nonconforming finite elements are analyzed in
energy-norm.

2. The Biharmonic Equation and Nonconforming Finte Element

We consider the biharmonic equation:

Ay = §, in §2,
2.1
U—au—-{], on Of2 .
on

where Q C R? is a bounded polygonal domain, f € H!, 1 =0,1.
The boundary problem (2.1) has a unique solution u € H*Y(Q) n HZ(N), which
satisfies the elliptic regularity!®:

I o ety < () | |l iz—1a - (2.2)

Let V = HZ(S). A variational form of equation (2.1) can be written as: Findu € V
such that

!

a(u,v) = ./s:z Jvdz, YveV | (2.3)

2 2
&y 8%
where a{u.v) = / D*uD?vdz = / E dx.
ity 0 Q5= Ozidy; Oz.0y;

Let I'y be an initial triangulation and satisfy the quasi-uniformity condition, namely,
for V7 € Ty,

'l < A (2.4)

p(r) ~
where A(7) denotes the diameter of triangle ., p(7) denotes the diameter of the inscribed
circle for triangle 7, and ) is a constant independent of k(7). If the following finite ele-
ment space 18 the Zienkiewicz finite element space, then the above initial triangulation
must be in such a way that the three sides of every triangle in I’y are parallel to three
given directionsl!!,

We now construct 'y, for k > 1, inductively. For each 7 € Iy, four triangles
in 'ty are obtained by connecting the midpoints of the edges of triangle r. Thus
I'4+1 satisfies the quasi-uniform condition (2.4). For the Zienkiewicz finite element,
three sides of all 7 € ['44; are also parallel to three given directions. We denotes
hie = max{diam,7 € Tx}. Then hyt1 = Lhy.

Let Vi be the nonconforming finite element space associated with triangulation I'k.
Then Vi, ¢ V and V; is affine (such as the Adini element and the Zienkiewicz element) or
almost-affine (such as the Morley element and Fraeijs de Veubeke elements). Thus the
interpolation polynomials of nonconforming elements satisfy the inverse inequalityl4l
namely, there exists a constant c independent of hy, such that

' Uk 'HE(T)S ﬂhk_z ” Vi ||L2(T)? fﬂ?‘ V’Uk € E’E‘,,T € Pk, (25)
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where | vk | g2y = / Dy, D%y dzx.
T
The finite element approximation of equation (2.3) is as follows : Find u; € V4

such that
ar(tr, V) = Lkadx, Vo € V}, (2.6)

where the bilinear form ay (ug, vi) = Z D?u; D%vdz.
el V7
We define a matrix operator A; associated with the bilinear form ar(:, -} by

ar(u,v) = (Agu,v), VYu,v eV
and the mesh-dependent energy norm by

| ulle= /ar(u,u), Vue Vi

Let I; denote a nodal interpolation operator of the nonconforming element from
Sobolev space H*(2)NHg(f?) onto Vi. Then according to [1-4], we have the interpolaton
approximate property as follows:

Lemma 1. Assume that the triangulation Ty (k > 1) is quasi-uniformity. Then for
Vr € Iy, there exists a constant ¢ independent of hy such that: for allu € H 3(1)

v — Tt |mr<chy ™ |ul3r, 0<m<3. (2.7)

If I, is used as the transfer operator between grids in the following multigrid method,

then we have
Corollary 1. For Y7 € T’y and u;, € Vj_1, there exists a constant c independent of

hg, such that
| ur — Lttg fm < chi’m | ug 2, 0<m<2 (2.8)

Proof. By the inverse inequality (2.5) and the interpolation approximate property
(2.7}, (2.8) can be obtained immediately.
Corollary 2. For Vv € V)._; and 7 € T, we have

! = (L) |10 che | v |2.r (2.9)

where c is a constant independent of k;, and v! denotes a linear interpolation of v.

Proof. Since v!and (Ixv)! are linear interpolation functions of v and I v respectively
at the k — 1 level and the k level, by the interpolation approximation theorem!¥ and
(2.8) for m = 1, we have

| v ~ (o) o |7 =0 1 + | v = B hr + | T — (o) |1
<che_1|v|2r +ch | var +ehy | v |2,
< che | v gy +chy | Irv — v |or +ehy | v |2y

< Chk | v |2,1"

where we used h,\, = %hk——b
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Corollary 3. For Yv € Vj_;, we have
| (I = T)v k< cllvlr-1- (2.10)

Proof. In virtue of Corollary 1, m = 2, summing over all T € I's, (2.10) is obtained.
Corollary 4. For Yv € Vj,_;, we have

| v || < ||Vl e—1- (2.11)

Proof. Due to (2.10) of Corollary 3 and the triangle inequality, we can get (2.11).

3. The Multigrid Algorithm

We now introduce the multigrid algorithm of the nonconforming finite element for

solving the biharmonic equation (2.1). |
From the spectral theorem, there exist eigenvalues 0 < A1 € A <+ < A, and

eigenfunctions 1,12, - ¥n, € Vi at the k level, such that
#
ﬂk(tf.'i, 'U) = l,,;('l,bi,*u), Vv € V},
where (1;,%;) = 6;; (the Kronecher delta). According to the inverse inequality (2.5),
there exists a constant ¢ > 0, such that

A 2l

The nodal interpolation operator is used as the intergrid transfer operator and the

k level algorithm is defined as follows.
Assume zg is the initial guess value of the solution. M G(k, 2o, () is an approximate
solution to the following problem : Find z € V}, such that

ax(z,v) = Gv), Yv€ Vi, GeV, (3.1)

where V,: denotes the conjugate space of V3, G(v) = L fvdz.

For k = 1, MG(1, 29, G) is the solution obtained from a direct method.

For k > 1, there are three steps.
1) Correction step. Let G € V,:_l be defined by

G(v) = G(Ixv) — ar(z0, Ixv) = ar(z — 29, Ixv), Vv € Vp—1.
Let g; € Vic1(0 < i < p, p=2 or 3) be defined recursively by
0=0, ¢=MGEk-1,q¢1,G).

- Let 2y = zo + Irqs.
2) Smoothing step. The weighted-Jacobi iteration method is used and z; € Vi (2 <
i <m+1) is defined as

(2 — 24-1,0) = KIZ(G(U) — ar(2i-1,v)), Vv € Vg - (3.2)
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where A; = ch;4, and m is a positive integer to be fixed.
Let zm+1 = MG(k, 20, G).
3) Stepsize control step. The final approximation is determined by

Zm+2 = 21+ ﬂmm(zmﬂ = 31)-

(f—Arzi {Zmt+1—21)
(2m+1—21)" Ax(zZm41—21)

| 2 — zm+2 (k= min || z — 21 — a(zm+2 — 21) ||k -
acR

1s chosen such that

Here apip =

The parameter api, ensures that the energy-norm of the error decreases in any casel!?.
In the analysis of the algorithm, however, we will only estimate || z — zm41 ||k -

The nested iteration fully multigrid algorithm is defined as

Let #%; be the approximate solution of (2.6) which is obtained by the direct method.
Uy is the approximate solution of (2.6) (k > 1), which is obtained recursively by the
following multigrid algorithm:

uf = Ly,

o = MG(k,uf ,@), 1<i<r, Glv)= / fods,
2

U = u,’f

where r 1s a positive integer to be determined.

4.The Convergence Analysis

Before the convergence property of the multigrid algorithm is given, we first analyze
the convergence property of the k level.
Given v € Vi, then v = Y_7*, ¢;1;. Defining the norm as follows:

Ne 3 s %
N v llog= (3" c2a7)".
=1

Note that ||| v |[[2=]| v ||z and ||| v |[lox=]| v ||z2 - From [11], we have
Lemma 2. For Yup € Vi, there has |

I vk M1k < (I vk ey +oe l| ok k) - (4.1)

where v' i3 a Zinearinterpoldtion of v.
Let 2 be the exact solution of the % level, ¢ = 2 — 20,61 = 2 — 21 = e —

i

IkGpy " y8m41 = Z — Zm41.
Let g € Vj._.1 satisfy

ar—1(q,v) = G(v) = ax(eg, v), Vv € Vi_,. (4.2)
Let zy = 29 + Ixq. The fuction z; € Vy (2 <i<m+1) is defined recursively by

(Z; — Zi—1,v) = -)%;(G(U) — ax(Z;-1,v)), Vv e V. (4.3)
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Finally, let & =2z—2 (1<i1<m+ 1). Obviously, €n41 denotes the error of the
k level iteration.

Now we will give the effect of the smoothing step, the proof of which can be found
in {11].

Lemma 3 (Smoothing Property).

1
g < chit & : 4.4
| Em+1 xS chy, e T 1 i €1 |1,k (4.4)

The next lemma will give the correction iteration error estimate of the Adini element
and the Zienkiewicz element. The proof for the Morley element and Fraeijs de Veubeke

elements is similar to our following proof. See also Brenner [10] as well as Peisker and
Braess [11].

Lemma 4. g
. | &1 | ()< chu || eo |l (4.5)

where & is a linear interpolation of €;.

Proof. By the trifngle inequality and linear interpolation approximate property, for
Vr € T, we have

| & i) = €0 — (Ieq) 12 (a)

FA

eg —eo |gey + | & L) + [ Ikg — (I@)" |10
< chi || eo llx + | € |3 (a) +cha Il Teg i -
In (4.2), taking v = q, we get

I g llx-1< ¢l eollx - (4.6)
By (2.11) and (4.6), we have

& | ey < cha |l eo lle + | &1 L) +ehw |l @ lle— )
< chi |l eo lle + | &1 lar@) -

To estimate |é1|y1, we apply the duality techmique. Since for the Zienkiewicz ele-

ment and the Adini element, Vi C C°(€2) N H}, then let ¢ = —Aé; be the right term
of the following biharmonic equation:

{ﬁ2f=¢, in {2,

o
5_311

whose variational equation makes sense for ¢ € H —1(Q). O is also a convex domain.
Thus the elliptic regularity (2.2) implies that

0, on o2

| € Nasey< cll @ la-rey=c| & lar @) -
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| €1 g () may be written in the form

| €1 3¢y = (,&1) = {(fi’, é1)— Y /D2£D2(E¢] - q)da:}

+{Zf

D*¢D*(eq — q)dz } = I + Iy.
rel'y 8

For I, since
hi={(¢e0) - 3 [ D*D%oda}+{(4,0)~ T [ D*¥D%qdz}+ (4,0~ Iug)
relp 7 =t L

from the consistency error estimate[l""‘],

| (¢3,U) = ak(&ﬂv) '

sup < chi | € |3y -
veVi vl R (4.8}
v#£0
We obtain
{@.e0) = 3 [ D*eDeods}| < chu | € Ll eo I
» 7€, ¥

< chi | &1 |l o |

{6.0- ¥ [D%D%ds}| < chi-r | € lusioyll @ -t

TE k-1
< chg—1 | €1 |yl g llo-1 -
Applying the Schwarz inequality and Corollary 3 of Lemma 1, we have
| (6,9 — Ixq) |<| &1 |lgyey] 9 — Tnq |11y < chi | €1 |l ¢ llk—1 -
Hence by hy = 1/2h;_y and (4.6), we get
| It | < chi | &1 |yl €o llk +chie-1 | €1 |mryll ¢ [le-1

+ chi | €1 |yl g llk-1< che | €1 [mrall €o il -

For I, since

L= [D¥¢-L&)Dodz+ ¥ f D (11t — L(Ix_1€)) D2epdz

T€ly ¥ rel'y 5

+ ¥ [ Dllire)Dendz+ Y [ DeDde

TelL 2 ey 1
= ar(€ — Ix,e0) + ar(Ix€ — In(Ix—1£), €0)

+ ak(Ik(Ik—IE)i ED) o ak—l('ﬁ! Q)
from Lemma 1, Corollary 3 of Lemma 1 and (4.6), we get

| Iz | <|| € = Ii€ |lzagenyll €0 e + || Ik€ — Te{Zk—18) k|l €0 llx + | @x—1(Zx-1€ — &, q) |
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< chi | € syl €0 e + 1| (€ — Ti-18) — In(€ = Te—1§) |xl €o 1
+ || € = Tea€ Nkl €0 llx + 11 € = Ze—1€ lle—1ll @ lx—1
< chi | € |g3l €o & +chx | & — Ie—1€ | oyl €o fk -
+ chg—1 | € |H3(ﬂ)“ eo ||x +chx—1 | & |H3(n)|| q |le-1
< chi | € lasiy |l €o lle +ehi—1 | € las(ayll €o i -
Hence by hi = 1/2hg—1, we have

| I |< chi | € lasy €o k< che | &1 layayll eo % -

Therefore
| &1 |2 e<| I |+ | 12| che | &1 ool eo I - (4.9)

By (4.7) and (4.9), we get (4.5) of Lemma 4,
In fact, for the Morley element and Fraeijs de Veubeke elements, (4.5) can be proved

directly. (2.6) can he modified to
ak(uk,vk) = Lfv{d:c, Vv € Vi

where v{ is a linear interpolation of vy,. Since vi € HY, the above variational equation
makes sense for f € H~1(R?). By the consistency error estimtel?,

‘;biv — a0 5,'1}
Sup l ( )" - “’:c( ) 1 < Chk | E |H3(ﬂ)

vEV)
v¥EQ

where ¢ = —A&l € H~1(). Using a similar proof, we can get (4.5).
Lemma 5 (Approximation Properity).

I} €1 1< che || €o llx - (4.10)

Proof. By Lemma 2 and Poincare’s inequality, we have

1 &1 Max< el & la +he 1l & k) < el & L +he ll € lle):

By Corollary 4 of Lemma 1 and (4.6), we have

| &1 llx<ll eo lx + Il Teq le<li €0 l +cll g lle-1< € | eo |lx -

Hence by Lemma 4, we get (4.10).
After having the smoothing property and the approximation property, we consider

the error reduction in a couple cycle.
Theorem 1. There exists a constant 0 < v <1 and a positive integer m indepen-

dent of hy such that if
g —ap k-1 7 || g lle-1, ~ (4.11)

then
| ems1 k< v | €0 ll& - (4.12)
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Proof. By the triangle inequality,

” €Em+1 HkSH Em+1 — Em+1 Hk + “ €m+1 Hk '

And || em+1 — €m+1 [|x satisfying
. 1 2
(6{, — Ei,t?) = A—k(G(‘U) = ak(ei_l — &i_l,ﬂ)), Yv € Vk.

Hence, from the fact that in each relaxation step ||| . |||s.x i8 not increased, (2.11),
(4.11) and (4.6), we have

| ems1 — Ems1 ||k<]) €1 — €1 ||x=]| Tulq — @p) Ik

<cllg—ap k1< || g llk-1< ev® || eo [[i -
According to Lemma 3 and Lemma 5, we have
1 C

é < ch;! &1 1 p< éo ||k -
| ém+1 [le< chy ) | &1 [|l1x< Vi T | € ||%
If v € (0,1) is small enough , then cy? < g If m is large enough, then '3/4; = < g—

»
For such a choice, we have the result of Theorem 1.
| In [1, 4], the Adini element and the Zienkiewicz element have the following error
estimate.

Lemma 8. Let u € H*(Q) and uy € Vi, be the solutions of (2.3) and (2.6), respec-
tively. Then there has

| % — wk f|e< chi | u|magm) - (4.13)

For the Morley element and Fraeijs de Veubeke elements, (4.13) needs to be modified
as follows:

| v —uk [|6< chel| v |gsy R || £ llz2(n))- (4.14)

Without loss of generality, we only use (4.13) to prove the following multigrid algorithm
convergence. (4.14) is also used similarly.

Theorem 2. If the parameter r is chosen large enough, then there exists a constant
¢ independent of hy such that

| w — i ||x< chi | u |gseq) - | (4.15)
Proof. By (4.13) and (4.12), we have
| — g <[ w—wu flx + || vk —ax < chr | u |gs) +e7" || vk — Ted—1 [|x - (4.16)
Applying (2.7) and Corollary 4 of Lemma 1, we get
| we — Tetie—1 a<|| v — v ||x + || v — Txug—1 |k + || Zete—1 — Ietii—1 |l&

<chi | ulmsy + || v — Tew fle + || Ji(u — uk-1) [|x

+ || Te(ur—1 — x—-1) ||< chi | v |gsq) + | (v — uk—1) — T(u — vge—1) [[&
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+ ” U — Uk—] ”k +c ” Ug—1 — Up—1 Hk-lﬁ chi | u |H3(ﬂ) +chy | 4 — ug—1 'Hﬂ(ﬂ)

+chuy | u sy +¢ | oy — Bi1) fik-1

< chi | u | g3y +chi—1 | |3y +¢ Il ve-1 — @k-1 [lk-1- (4.17)
By virture of hy_1 = 2hx, (4.16) and (4.17), inductively, we have

| % — dik |l < chi | u |y FeheY” | w e +e7" || ve-1 — Be-1 k-1

< chy | » IHa(m +chpy" | u H3(5Y) +C2hk—1’}’2r | u |H$(n)

4+t Ckhl"r‘kr | U lHE(ﬂ)

Chk"}‘r
< chg | u |H3(ﬂ) | 1= 2¢y" K” |H3(ﬂ) -

Choosing a positive integer r so that 2¢y" <1, we obtain

| w— g |6 che | u [m3(q) -
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