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Abstract

In this paper, a large class of n dimensional orthogonal and biorthognal wavelet filters
(lowpass and highpass) are presented in explicit expression. We also characterize orthog-
onal filters with linear phase in this case. Some examples are also given, including non
separable orhogonal and biorthogonal filters with linear phase.
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1. Introduction

In [1], I. Daubechies constructed orthogonal and biorthogonal wavelet filters in one dimen-
sion which have been proved to be very useful in signal and image processing. But except
some short filters have explicit solution, almost all the orthogonal filters given in Daubechies’
book are numerical results. In some applications, people need filters with high precision, in this
case, one need to compute the filters himself. In this paper, we give a class of n dimensional
orthogonal and biorthogonal wavelet filters in explicit expression. With these parameterized
filters, we can easily realize the adaptive selection of filters in many applications.

Recently, many researchers are working on nonseparable wavelets(see [2], [3], [5], [6] and
the references therein) because of the shortcoming of separable filters pointed out in [2]. Using
the same method in [5], we can construct n dimensional wavelet filters. It is interesting that
among these filters, we can find many nonseparable filters with linear phase, which can not be
obtained by using the tensor product of one dimensional wavelet filters.

Our main results and their proofs are proposed in next section. By using the method
in section II, some examples are given in section III, including one dimension case and two
dimension case with linear phase.

2. Main Results

We will discuss orthogonal in detail first, then using similar method, we give the expression
of biorthogonal filters.

2.1 Orthogonal case
The well known method to construct wavelet is MRA. The definition of n dimensional
orthogonal MRA is as follows.

Definition. A sequence of subspaces {V;};jcz of L*(R") is called a MRA if it satisfies the
following properties:

(. OV ={0}, OV =LXR");

(b). flx)€eV; & f(2x) € Viq, forallj € Z,z € R";

(c).  There exists a function p(x) € Vo such that {¢(z — k) }rezn is an orthonormal basis
Of Vo.
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Remark.
1). if x = (z1,---,zy), then 22 = (2x1, - - -, 222).
2). Z" is the set of all n dimensional integers.
Let {V;} be a n dimensional MRA, then there exists a function m(&)(¢ € R™) such that

¢(28) = m(§)¢(S),
where ¢ is the Fourier transform of ¢, and m is called Symbol Function of the scaling function
©. The orthogonality of {p(z — k) }rez~ implies that m(&) satisfies
> ImE+vm) =1, (2.1)
veEn
where E™ denotes the set of all vertexes of n dimensional unit square box.

The construction of ¢ can be reduced to construct m(§). We want to solve (2.1) in some
general cases. In this paper, we assume that m(¢) is a polynomial of ¥ with the constant term
does not equal to 0.

Let £ = (&1, +,&n). Rewrite m(€) in its polyphase form as

m(©) =3 o f(a?), (2.2)
veE™

where z = e, 2V =2} .. ... o xp =€ k=1,--- n,v= (v, ,v,) € E"
It is easy to see that (2.1) is equivalent to

' 1
> AP = 5 (2.3)
veE™
To solve (2.3), a theorem is needed as follows.
Theorem 1. Suppose that {fe,,exr € E", k=1,---,2"} satisfies (2.3), define
(Feu"')Fezn)T:UD(feu"')fezn)T (2'4)

where U is any real unitary matriz of size 2" x 2", and D = diag(z®,---,z"), E" = {ey, k =
1,---,2"}. Then {F,,v € E"} also satisfy (2.3).
Proof. Since U and D are both unitary matrices, the proof is immediately.

Define
T?L(f) = Z 1‘”F,,(1‘2), (25)
veE™
then m(&) is a trigonometric polynomial which satisfies (2.1).
Denote the set of all real unitary matrices with size 2" x 2" by U, and the set of all 2"
dimensional real unit column vectors by V,,. Define

(f€17"'7f€2n)T = 2_%(®IICV=1U]€DIC)V (26)
where U, € U, V € V,,, Dy, = diag(z*®*,---,z¢"), for k=1,---,N.
Let
Fnn={flf =272 (@0, U D)V, Uy, € Uy, k =1,--- 2"V € V, }. (2.7)

Then we have the following theorem:

Theorem 2. For all f € Fn o, then the set {fe,,ex € E™" k = 1,---,2"} satisfies equation
Proof. The proof is immediately.
Denote Xg = (z°,---,x%").
Define
m(€) = Xp - f(2) (2.5)

where f € Fn p, - is the matrix multiply operator. Then m(&) satisfies (2.1).
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Define
Snon = {m(§)|m(§) = Xi - f(2°), f € Fnn} (2.9)

and
Ly = {m(§)|m(€) € Sn,n,m(0) = 1} (2.10)

then each member of Ly, is a lowpass filter. It is necessary to find corresponding highpass
filters. The following theorem present a set of highpass filters.

Theorem 3. Assume that m(§) € Ly, be defined as in (2.8). Let U € Uy, U = (V1,---,Van),
where Vi, is k" column of U, and V| equals to V defined in (2.6) corresponding to m(§). Then
for k=23,---,2" define

mi(€) = Xp - f*(2?) (2.11)

where
f* =275 (81, U D,)Vi, (2.12)

then my(§), k = 2,3,---,2"™, are the corresponding highpass wavelet filters.

Proof. Denote M =23 (f, f2,---, f?") is matrix of size 2" x 2". Since U € U,,, then M is a
unitary matrix. Therefore we can see that the conclusion is true.

Theorem 3 shows that if we have lowpass filter defined as (2.8), then the construction of
highpass filter is reduced to find a constant unitary matrix with the one column is known. It
also shows that the highpass filters corresponding to one lowpass filters in high dimension case
are not unique.

In the following, we characterize the set Ly ,, Theorem 4 give the representation of Ly .

Theorem 4. For m(§) € Ly, if and only if
m(¢) =2 "XpUnD*---UD°UY - UX Vo,
where Vo = (1---1)T is a column vector with all entries equal to 1.
Proof. Let m(&) € Ly, then
m(§) =272 XgUND?--- U, D?V.

and m(0) = 2= 5 VTV, where V = Uy --- U1V is a unit vector. It is easy to see that m(0) = 1
if and only if V. =2"%V,. Then V =2-3UT -..ULVp. The proof is completed.

Up to now, by using Theorem 3 and Theorem 4, we can freely construct n dimensional
wavelet filters for any given positive integer n.

In previous theorems, we have propose some solutions of (2.3), but we can not prove that
the solution is complete, but in one dimension case, we can prove this conclusion.

Theorem 5. When n = 1, for any trigonometric polynomial m(§) with the constant term is
not 0, and m(§) satisfies (2.1), then there exist a positive integer N such that m(§) € Sn 1.
To prove the theorem, the following two lemmas are needed when the dimension n = 1.

Lemma 1. Given a trigonometric polynomial m(§) which satisfies (2.1), and the constant term
is not 0, then the degree of m() as the polynomial of ¥ must be odd.
The proof of the lemma, is obvious.

Lemma 2. Given a trigonometric polynomial m(§) which satisfies (2.1) with degree 2N + 1,
rewrite m(€) into its polyphase form as m(€) = fo(x?)+xf1(x?), then there exists a real unitary
matriz U, such that m(£) = Fy(2?) + xF1 (2) satisfies (2.1), where

(Fo(x), F1 (2))" = diag(1, 2~ U (fo(z), fr(2))". (2.13)

Proof. It is easy to find a real unitary matrix U such that both Fy and F; defined by (2.13)
are polynomials of z. We also can see that m(§) = Fy(z?) + xF;(z?) has degree 2N at most.
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From Lemma 1, we know that m(¢) must be a polynomial of e with degree 2N — 1. Because
m(&) satisfies (2.1), then m (&) defined above must satisfy (2.1).

By using Lemma 1 and Lemma 2, we can see that Theorem 4 is valid.

In some applications, it is better to use a filter with linear phase than a filter with nonlinear
phase. But it is well known that in one dimension case, there does not exist a orthogonal filter
with linear phase except Haar filter. But in high dimension case, we can find many filters with
linear phase.

Before constructing filters with linear phase, we define a matrix operator. For a matrix A
of size m x m, define AS := H,,AH,,, where H,, = (hkl)Z,Ll:l is a matrix of size m x m, with
ht = 1 when k41 = m + 1 and 0 otherwise. It is easy to check that (A%)T = (A7), and
(AB)® = ASB? for any two square matrix A and B of the same size.

Denote
Jn = {UU € U,,U® = £U}. (2.14)
Definition. Given a trigonometric polynomial m(§), & := (& ---&n) € R™, if
m(€) = te M. g7 Mubny (), (2.15)
where My, is positive integer for k =1,---,n, then we say m(§) has linear phase.

Denote Wy, == {m(&)|m(€) € L n,m(€) = £e ICNTD(E++&)m (€)Y, Tt is clear that
each member in Wy, is a square lowpass filter with linear phase. We only consider Wy, in
high dimension case because they are square filters.

Theorem 6. Let m(¢) = 27 "XgUND?--- Uy D?UL - -ULVo, if Up € Jn, k=1,--- N, then
m(§) € Wn n-
Proof. It is easy to see that
V€A ) = 2 XU D U DAUS)T - (U)o

IfUg € Jp, k=1,---,N, then m(¢) = £e!CNTD(E++&n)i(€) that is, m(€) € Wi p.
It is interesting to investigate the member of Wy ,,. It is well known that Wy ; only include
Haar filter, the following theorem give a simple proof of the conclusion.

Theorem 7. Assume that m(§) € W 1, then m(§) = %(1 + lCN+DEY
Proof. Let m(¢) € W 1. From Theorem 5,
m(¢) =2 ' XgUnD?- - U, D*UT - - ULV,
and from the definition of Wy 1,
m(§) =27 XU D? - Uy D*(U))* -+ (UX) Vo
Under t~he assumption that the constant term of m(£)~is not~0, we can prove that UﬁUﬁ, = ﬁ,
where D is a diagonal matrix. It is easy to see that D = D, therefore D = +I;, where I; is

the identity matrix of size 2 x 2. Hence we can prove that UgU,f =40, fork=1,---,N. For

any U € Uy, UTUS = +1I, if and only if U has one of the following form: ( (Tl 11 ), or

+1 0
we can see that U = £1I;. The theorem is proved.

i From Theorem 6, we know that if we want to construct a filter with linear phase, we must
investigate the necessary set J,.

Denote

< 0 £ ) . Under the assumption that the constant term of m(&) is not zero and m(0) = 1,

Dn = {D|D = (dw)} 11 € Un,diy = —1,0 or 1,D = DT = £D%}.
For .J,,, we have the following theorem.

Theorem 8. U € J,,, if and only if there exists a De D, such that DU € J,.
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Proof. Suppose U € J,,, then US = +U. For any De D,
(DU)® = DU = +DU,
that is DU € Jn. B B L
On the other hand, if for certain D € D, such that DU € J,, then U® = (DDU)® =
D%(DU)® = £DDU = +U, that is U € J,,.
The proof is completed.
It is complicated to write out the explicit expression of J,, but for n = 2, we can write Js

easily.
Denote
a b c d
b —a —-d ¢
Bla,ao) = . _5 _. (2.16)
d c b a
where a = cos aj cosas, b = cosa; sinas, ¢ = sin a; cos ay, d = — sin a; sin as.
Then we have the following theorem whose proof can be found in [5].
Theorem 9. B B
Jo = {U|U = B(al,ag)D,al,az €ER,De D2} (217)

2.2 Biorthogonal wavelet filters
Using the similar method of orthogonal case, we can construct biorthogonal wavelet filters.
Define

mn(€) =27"Xp - UyD?--- U, DU - U Vp (2.18)

where Vj is a column vector of size 2" with all its entries are 1, and Uy, is a nonsingular matrix
fork=1,---,N.
According to my(£), define another polynomial

—~ —~ =1 o~
my(§) =2 "Xg-UyD*---U,D*U;  ---Un Vg (2.19)
~T
where U, = U,;l, k=1,---,N. Then we have the following theorem.

Theorem 10. my and my satisfy the following equation:

Z my (€ +vm)ymy(E+vm) =1 (2.20)
veE™
Proof. Let
f= UND---UlDUfl---U;,lVg
and

F=OxD- 000 00,

then (2.20) is equivalent to f T(€) - f(€) = 2". From the definition of f, we can see that the
conclusion is valid.
i From the well known definition of biorthogonal wavelet theory, we know that mpy and my

are a pair of lowpass wavelet filters.
Given lowpass filters my(§) and my(§) are defined as (2.18) and (2.19). Let U be any real
unitary matrix of size 2™ x 2™ such that the first column of U equals to V. Suppose

U: (‘/0 ‘/i VN—I)a
then for k =1,---,2™ — 1, define
g5 (&) =2 "Xp -UxD?--- U, DU - Uy'Vi (2.21)
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and
35 (6) =2 "X - UyD? - U.D*U; --Un Vi (2.22)

The following theorem prove that gk and g% are the corresponding highpass filters.

Theorem 11. Let my(§) and my(€) are the lowpass filters defined as in (2.18) and (2.19)
respectively, then fork =1,---,2"—1, gk (&) and g% (€) defined in (2.21) and (2.22) respectively
are the corresponding highpass filters.

Proof. Since U is unitary matrices, from the theory of wavelets ([1]), we know that the
conclusion of the theorem is valid.

It is also useful to construct symmetric biorthogonal wavelet filters. The following theorem
present a simple method.

Theorem 12. Let m(¢) = 27 "XgUnD?---UD*U" - -UN'Vo, if Uy, € Ju, k= 1,---,N,
then m(&) has linear phase.
Proof. It is easy to see that

e NN in () = 27" XpURD? - UF D*(UF) ™'+ (UR) ™ Vo
fUp € Jn, k=1,---,N, then m(¢&) = £e!CN+tD(E++&)m(€), that is, m(€) has linear phase.

3. Examples

In this section, we will give some examples.
n=1.
Orthogonal case:

Denote A(a) := ( cosa —ema > and D := diag(1 2?), then define
sin o cosa
1
my(§) = E(l 2)A(o)D -+ - Alan)D(cosag  sinag)T (3.1)
then it is easy to see that my(§) satisfies (2.1) for all g, -, an.

For a lowpass filter, my(0) = 1 is a necessary condition. We have

mpy(0) = %(cos(ao +--ay) +sin(ag + - an))
such that mpy(0) = 1 holds if and only if ag +---ay = T. As it is pointed out in Theorem 5,
all one dimensional orthogonal wavelet filters are included in this form.
Examples associate this form with Daubechies wavelets can be found in [6].
Biorthogonal case:
The biorthogonal pair of lowpass filters are:

m(w):é(1+w)3=1—16(15”)<; i’) ((1) ;)2)(_31 _31> (i)

(—1+3x+3x2—l‘3):1i6(1 a:)<_31 —31> ((lJ lg) <;’ i)> <i>
n—=2

Orthogonal case:
These examples can also be found in [5].
The lowpass filter is:

m(x) =

=

0.1188  0.0142  0.0259 —0.0081
0.0794 —0.0944 -0.0236 0.0115
0.0077  0.1562  0.0975  0.0876
—0.0487 —0.0077 0.2430  0.3405
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The three highpass filters are

0.2800 0.0336 —0.0053 0.0016
0.1871 —0.2223 0.0048 —0.0023
—-0.0136 -0.2752 —-0.0111 —-0.0100
0.0858  0.0135 —0.0277 —0.0388

0.1489  0.0179  0.1357 —0.0424
0.0995 —0.1183 —0.1238 0.0604
0.0159  0.3199 —0.0505 —0.0454
—0.0998 —-0.0157 —0.1259 —0.1765

—0.0696 —0.0083 0.3137 —0.0979
—0.0465 0.0552 —0.2861 0.1395
—0.0077 —-0.1560 0.0136  0.0122
0.0486  0.0076  0.0340  0.0476

We also compute some symmetric filters. From Theorem 9 in section II, we can construct
many filters with linear phase. For example, we have the following four filters.
The lowpass filter is:

1 1 1 -1
1 1 -1 1 1
1 1 -1 1
-1 1 1 1
The three highpass filters are
1 1 1 -1
1 1 -1 1 1
8| -1 -1 1 =1 |’
1 -1 -1 -1
1 1 -1 1
1 1 -1 -1 -1
8 1 1 1 -1 |’
-1 1 1 -1
-1 -1 1 -1
11 -1 1 1 1
8 1 1 1 -1
-1 1 -1 -1
Biorthogonal case:
Decomposition lowpass filter:
11 1 1
1112 21
2011 2 2 1/’
11 11
Decomposition highpass filters:
11 -1 -1
2 -2 -1,
411 2 =2 -1}’
11 -1 -1
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1 1 1 1
11 o2 2 1),
1l -1 -2 -2 -1’

-1 -1 -1 -1

1 1 -1 -
111 2 -2 - )
41 -1 -2 2 1)
-1 -1 1 1
Reconstruction lowpass filter:
1 1 1 1
11T -4 -4 1
411 -4 -4 1)’
1 1 1 1
Reconstruction highpass filters:
11 -1 -
111 -4 4 - .
2011 -4 4 - ’
11 -1 -
1 1 1 1
111 -4 -4 1
20({-1 4 4 - '
-1 -1 -1 -
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