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Abstract

In a composite-step approach, a step si is computed as the sum of two components
v and hg. The normal component v, which is called the vertical step, aims to improve
the linearized feasibility, while the tangential component hj, which is also called horizontal
step, concentrates on reducing a model of the merit functions. As a filter method, it reduces
both the infeasibility and the objective function. This is the same property of these two
methods. In this paper, one concerns the composite-step like filter approach. That is, a
step is tangential component hj, if the infeasibility is reduced. Or else, s is a composite
step composed of normal component v, and tangential component hy.

Key words: Composite-step like approaches, Filter methods, Equality constraints, Sequen-
tial quadratic programming(SQP) algorithms, Normal component, Tangential component,
Convergence.

1. Introduction

In this paper, we consider the problem of minimizing a (linear or nonlinear) function f of n
real variables z, which satisfy a set of (linear or nonlinear) constraints ¢;(z) = 0,i = 1,---,m,
namely

minimize  f(z)

subject to  ¢(x) =0, (1.1)

where z € R". The functions ¢ : R* — R™,m < n,f : R" — R are assumed to be contin-
uously differentiable. Then, we introduce composite-step like approaches and filter methods
respectively.

1.1 Composite-Step Like Methods

An approach, whose every step s is consisted of two components v, and hy, is termed
composite-step method. Where the normal component vy, is to degrade the degree of constraint
violation, while the tangential component hj aims to reduce a model of the merit functions.
There are two kinds of composite-step like approaches. One is Vardi-like methods. The other
is Byrd-Omojokun-like approaches.

A: Vardi-like methods

From (1.1) one recognizes that the set

Fy, = {d|c(zr) + A(z)d =0 and ||d]| < Ag}, (1.2)

may be empty, where A(x) = ye(zg). Vardi[19] and Byrd, Schnable and Schultz[5] instead
relax the linearized constraints so that agc(zy) + A(z)d = 0 for some 0 < ay < 1 for which

Fi (o) = {dare(zr) + A(z)d = 0 and [|d]| < Ag}, (1.3)
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is not empty. Clearly, Fi(0) and any oy < ez is not empty, where ay,q. is the solution of
the following problem.

max min |Jac(zg) + A(zg)d|| = 0.

e min loe(ar) + Al )d||
Certainly, it may be expensive to find ay,4,. In practice, to obtain the normal component an
approximation v§ to v¢(zy) for which c¢(zy) + A(z)v = 0 may be computed instead, and ay,
subsequently found so that v, = avy, lies in the trust region.

The normal step found, the tangential component is chosen to reduce a model of the merit

function. Specially, if we consider a merit function of the form

¢(z,0) = f(z) + ollc(z)]]- (1.4)

Let mg(zy + 8) = q(xr, + s) + omb (z + s) where

1
Al +5) = f(on) + 5 g(on) + 55" Hys and mf (z + 5) = lle(on) + A(on)sll. (1)
In a tangential component, the following conditions are satisfied
my (i + vg + hi) = my (z, + v) and q(zx + v + he) < q(zp + o).

Thus, the tangential component is obtained by approximately solving the problem.

1
minimize k% (g(z1) + Hyvr) + §hTHkh

subject to  A(zk)h =0 (1.6)
IRl < Ag = [Jogl].

Of course, the above requirements may readily be satisfied using suitable conjugate-gradient
methods.

B: Byrd-Omojokun-like approaches

Byrd-Omojokun-like approach is proposed by Omojokun [14] and Byrd, Gilbert and No-
cedal[3]. And it forms ETR, NITRO and BECTR algorithms, which is given by Lalee, Nocedal
and Plantenga[13], Byrd, Hribar and Nocedal[4], and Plantenga[l5], respectively. In a Byrd-
Omojokun method, it is not required that the linearized constraints should be compatible.
That is, the main difference lies in the computation of the normal step. Instead of shifting the
linearized constraints, to obtain v one solves the following subproblem approximately.

minimize  ||c(zy) + A(xg)v]|

subject to [lul| < €V A, (L.7)

for some 0 < ¢V < 1.

Apparently, (1.7) may have many solutions. Obtaining an exact solution to (1.7) may
be costly. A cheaper choice is to calculate an approximate solution giving a reduction in
lle(zr) + A(zk)v|| no worse than a fraction of Cauchy point for this problem, which is,

v = —agAzr) e(a), (1.8)

where

T

ap = Ar8o<q<eN Ay /|| Alzr) T e(zy)|| TN le(zr) — aA(zr) A(zr) " clz)||.

At every step, (1.8) is satisfied if suitable conjugate-gradient method is used. Meanwhile, (1.5)
is also met.

For Vardi-like approaches and Byrd-Omojokun-like methods, the superlinear convergence is
obtained under suitable assumptions.

1.2. Filter Technique
Filter approach is proposed by Fletcher and Leyffer[8]. It has been applied extensively so far.
In [9], filter method is used to SLP(sequential linear programming) and its global convergence
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to first order critical point is shown. In 1999, filter method is combined with SQP by Fletcher,
Leyffer and Toint[10]. In[12], filter method is used to bundle nonsmooth approach. Audet and
Dennis[1] present a pattern search filter method for derivative-free nonlinear programming. In
2000, Ulbrich et al.[18] use interior-point filter method to nonconvex programming. Further-
more, the filter idea has proved to be very successful numerically in the SLP/SQP framework(8].

Filter methods have several advantages over penalty function methods. A penalty parameter
estimate, which could be problematic to obtain, is not required. Practical experience shows
that they exhibit a certain degree of nonmonotonicity which can be beneficial. Then, it is
introduced as follows.

Our purpose is to minimize both the objective function f and a nonnegative continuous
constraint violation function p where p(z) > 0, p(z) = 0 if and only if x is feasible ( p(z) > 0
if and only if x is infeasible). The filter will be used as a criterion for accepting or rejecting a
step generated by subproblem.

Fletcher et al.’s definition of filter is based on the definition of dominance, which is originated
from multiobjective terminology. The definition of dominance is:

Definition 1. For a pair of w,w' with finite components. w dominates w', written w < W' if
and only if w; < w} for each i and w # W'.

Similarly, we use w < w' to indicate that either w < w' or that w = w', which is the notion of
dominance in earlier filter papers. Combined with our problem, we define z <, ) ' if and
only if (p(z), f(x)) < (p(z'), f(z')) where ” < ” is listed in the Definition 1. In order to simplify
the terminology, we use x < z' rather than z <(, r) '. As above, z < 2’ indicates that either
x < x' or equivalent. A filter is defined as follows:

Definition 2. A filter F is a set of points in R"™ such that for any z,z' € F. x < x' is not
true.

To acquire the convergence, stronger conditions are required to decide whether to accept a point
to the filter or not. There are diverse rules in different papers. We give a rule combining their
definitions. A point 2’ is filtered, if it satisfies:

o e F=J{z'{z <2’} or (p(a') =0, f(z") = R, £, £7)},
reF

where R is a monotonic increasing function to p!, ff, % and

= min{f(z) : p(x) = 0}, (1.9)
f! = min{f(2) : p(z) > 0}, (1.10)
pl = min{p() : p(z) > 0}. (1.11)

The constraint violation function is defined as follows
Pr+1 = c(xg + sk)Tc(a:k + S)- (1.12)

Certainly, in an algorithm, filtered point is rejected by the set F. This means that the trial
step does not produce a successful iteration. On the contrary, unfiltered points are accepted.
It is pointed out that the filter points are related to when it is generated. In this paper, a point
is acceptable to the filter (unfiltered conditions) if it satisfies:

either py11 < Bp; or fry1 +vpr1 < fj, (1.13)

for all j € Fj where 0 < v < 8 < 1 are constants. To obtain the convergent results, we use
(1.13). There are some reduction to f or p to guarantee the convergence properties.
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In practice, to obtain good properties some additional conditions are necessary. For example,
Fletcher and Leyfler[8] define the “envelope” and Audet and Dennis use “poll search” in[1].

The paper is organized as follows: In Section 2 the algorithm is presented. In Section 3 the
convergence properties are given. Some numerical results and remarks are given in Section 4.

2. Motivation

The properties of the composite-step approach and filter method motivate us to combine
them together. Furthermore, Yuan[20] points out the shortcoming of null-space methods. That
is, when the two side reduced Hessian matrix is replaced by a quasi-Newton update, the method
in range step is a Newton step while the approach in null-space is quasi-Newton step. Just as the
null-space method, the composite-step method has the same disadvantage. In the same case,
the normal step is Newton step while the tangential one is quasi-Newton step. In [20], Yuan
uses more null-space steps to overcome this unbalance. But, the optimal number of null-space
steps is flexible because of the difference of quasi-Newton methods. Meanwhile, in some case,
the tangential component increases the constraint violation. In this case, it is not necessary to
adopt a normal component with several tangential components.

Therefore, the composite-step like filter is brought out. Our method is: the tangential step
is computed if the constraint violation is reduced. Or else, a restoration step is presented to
make the value of constraint violation reduced, which is the idea of filter method. Certainly,
we can use the normal step as a restoration step.

A straightforward way to solve equality constraint problems is to add the trust-region con-
straint to the (QP) subproblem to restrict the size of the step. That is, at each step, we solve
the following trust-region subproblem

1
minimize  g¢.(s) = 57 g, + isTHcs + fe
subject to Ac.s+¢. =0 (2.1)
Isll < Ae.

However, as pointed out in section 1, this problem may be inconsistent. In this paper, we take
the technique of Vardi’s or Byrd-Omojokun’s to deal with it. But there is difference in dealing
with the trust region radius. Namely, the following subproblem is dealt with:

1
minimize  ¢.(s) = s” g, + isTHcs + fe
subject to  A.s =10 (2:2)
sl < Ae.

Then, to compare the reduction of model with the actual reduction, we denote ared(sy) =
f(@r + sk) — f(ax) and pred(sy) = qr(sk) — f(zr). I

ared(sg
T = WES:; > >0, (23)
where 7, is constant and zj + si satisfied the unfiltered conditions (1.13), then the trial point
is accepted. That is, xxr1 = xp + sx. Namely, if (2.3) and (1.13) are satisfied, z + sy is
acceptable to the filter Fy.
Then, the next trial step is considered. In our algorithm, our major object is to guarantee
the feasibility. Thus, the following inequality is the rule to decide the way of next trial step.

Prt1 < mzmin{p, a AT} (2.4)

where 13 and p are positive constants. If (2.4) is satisfied, the tangential component is still
used in the next step. Or else, the next step is obtained by restoration algorithm. we get s by
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solving the following subproblem:

minimize  ||ac(zg) + A(zr)sk]|

subject to  ||sk]| < Ag, (2.5)

where « satisfies the conditions in section 1. Namely, the normal step of Vardi’s is used.
Certainly, we can also use Byrd-Omojukun like approach to get the next iteration under the
conditions analyzed above

minimize  ||c(zr) + A(zk)sk]|

subject to  ||sg|| < €N A, (2.6)

for some 0 < ¢V < 1. Then, the accepting criterion is listed as follows for the restoration
algorithm. That is p(zr + sx) < 73 min{pi, alAi+D‘2}, where 0 < n3 < 1. After a restoration
algorithm, the trust region radius is kept unchanged. Of course, the sufficient reduction is
required
lle(@oll” = lle(wr) + Aee)sell® > uille(zy )| minfus|le(zr) ||, €Y Ar}, (2.7)

where u1,us are positive constants independent of k. Then, a restoration algorithm is listed as
follows. In brief, a restoration algorithm generates a point which has the following properties

(1) p(zx + s1) < n3 min{pk, a1 A7T**} where 0 < 73 < 1.

(2) the trust region radius is not changed.

(3) z1 + sy is acceptable to the filter.

In the restoration algorithm, we define the criterion of estimate the trial point.

eIl — lle(s, + sp)l
lle@@i)ll = lle(a) + Alzp) sl
Algorithm 1. Restoration Algorithm

0. Let :L‘g = :L’k,Ag = Ap,ap,as € [0,1],] =0,m2,7m3 € (0,1)

1. pr(a:i) < mymin{ pl, 1 A2t*2} and xi is acceptable to the filter, then let x}, := a:fc and
stop.

2. Compute

J_
r, =

minimize ||c(a:fc) + A(mi)si [
subject to  ||sy|| < A%
to get si Calculate ri.
3. If ri < ng, then let xi‘H = wi,AiH = %Af;,j :=j + 1 and goto step 2.
4. a:i“ = xi + si,AiH = 2A§;,j :=j + 1. Compute Ai“ goto step 1.
As for the update of the trust region radius, it observes the following rules: when the trial step

is “good”, the trust region radius is increased. Or else, it is not changed or reduced. Then we
list in a algorithm.

Algorithm 2. The Update of Trust-region Radius
0. Give vy € (0.25,0.75],v2 € [1.0,1.25),v3 € [1.25,2.0] are constant.
1. If xp, + sy, is rejected by the filter, then

Apg1 = 11Ag;
2. If sy, is obtained by (2.5) or (2.6), then
Apyr = Ay
3. If sy is obtained by (2.2) and (2.4) is satisfied, then
Apg1 = v3Ay;

4. If sy is obtained by (2.2) and (2.4) is not satisfied,then
Ak+1 = ’UgAk.
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Then, our algorithm is presented as follows.

Algorithm 3. Composite-Step-Like Filter Algorithm

Step 0: Choose vy € (0.25,0.75],v2 € [1.0,1.25),v3 € [1.25,2.0], zo,A¢ > 0,1,z €
[0,1],m2,m3 € (0,1),m2 > 0. Set k := 0,F¢ = {xo}. Compute po by (1.12).

Step 1: Compute pi, fL, fF.

Step 2: Compute s by (2.2). If s, # 0 goto Step 3. If pr, = 0 then stop. Or else, goto Step

Step 3: Compute ry, = Z:zggzzg

Step 4: If r, < m, then x4 := xy, goto Step 8.

Step 5: Compute f(xy + si) and pr . And decide whether xy + sy, is acceptable to the filter.
If it is not, go to Step 8. Or else, x11 = ) + Si. Then

(1)let x4, enter the filter and pr+1 = P, fr+1 = f(Tk + Sk)-

(2)remove the point dominated by xg+1, update the trust region radius and Hy.

Step 6: If pry1 < nz min{pu, alAi+a2} then k := k+ 1 goto Step 1. Or else, k := k+ 1 goto
Step 7.

Step 7: Use Restoration Algorithm to get the point x} = xy + s}, where s, is obtained by
Restoration Algorithm, then let x; = x}, and goto Step 2.

Step 8: Using Algorithm 2 to update the trust region radius. Then, k := k+1 and goto Step

2.

The composite-step-like filter methods have several advantages over composite-step-like ap-
proaches.

(1) If the approximate Hessian is used, then normal step is obtained by Newton method,
while the tangential step is quasi-Newton step. Thus, the convergence rates are inconsistent.
Combined with filter technique, the shortcoming is overcome to a certain degree.

(2) As for the composite-step-like methods, if it fails in some step, we have to recompute
v and hg. That is, some useful information is lost. While composite-step-like filter methods
avoids this.

(3) It is an infeasible method. The difficulty to find a feasible point, which is thought to be
as difficult as solving the problem, is avoided.

(4) Finally, this is a nonmonotonic method which is beneficial to a certain degree. When
the restoration step is used, the objective function value may be increased.

Furthermore, in filter technique, to obtain the optimization point we pay more attention to
the value of constraint violation.

3. The Convergence of the Algorithm

Just as [1,8,9,10,18], our analysis of the convergence properties to Algorithm 3 is based on
the assumption as follows. Meanwhile, the sufficient reduction condition plays a key role in
getting the convergence.

Assumption 1.

(1) The set {z1} € X is nonempty and bounded.

(2) The function f(x) and c(x) are twice continuously differentiable on an open set containing
X.

(3) The matriz sequence {By} is bounded.

(4) When (2.2) is solved, we have qi(0) — qi(sk) > Bollgel| min{||ge||, Ax} where By > 0 is fixed
and g, = Z{§ g, where AyZy = 0 and Z§ Zy, = 1. For (2.6), we have ||ck|| — || Ars} + cx|| >
up min{|le ||, EN Ax}.

(1) and (2) are the standard assumption. (3) plays important role to obtain the convergence
result. But it has minor effect to obtain local convergence rate. (4) is the sufficient reduction
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conditions, which is reasonable because many algorithms satisfy these conditions because of
(3). For example, Cauchy step satisfies it. In trust region method, it guarantees the global
convergence. The following results are based on these assumptions.

As for the restoration algorithm, it should be terminated finitely. Otherwise, it is impossible
to make our algorithm terminate finitely. Then, we give this conclusion as follows.

Lemma 1. The restoration algorithm terminates finitely.

Proof. If p,{ — 0, the result is true clearly. Then we consider the cases when pfc — 0 is not true.
That is, there exists € > 0 and pj, > € for all j. Denote

eIl = lle(a + sl
lle(@i)ll = lle(a) + Ala) sl
From the above set K, (2.6) and the Assumption 1, we have

K = {jIr} = > > 0} (3.1)

oo > S (@Y = D)) = 3 mallletad) | - llee]) + Ale])siD
K

j=1

>y Y us minfle(an) I, €V ALY
K

Therefore, Afc — 0 for j € K. From the restoration algorithm, Ai — 0 for all j. On the other
hand, it is apparent that

le@DIl = lle(@], + sl = lle@@DIl — lle(z]) + Al])sil| + o(AY),

when Ai — 0. Thus, according to the algorithm, the trust region radius Ai will be increased.
That is, Afjl > Ai, which contradicts with our assumption. When (2.5) is used, in the same
way do we obtain the result. Therefore, the result is true.

For (1.13), the left hand inequality is an apparent way to define a sufficient reduction to
p, while the second inequality is to obtain a sufficient reduction to f. In such a way does it
guarantee the iterates toward feasibility.

|

fe

The

p
Figure 1

Lemma 2. Suppose there are infinitely many points added to the filter. Then
lim p(x;) = 0. (3.2)
12— 00
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Proof. If the theorem were not true, there would have infinite components in K4, which is
defined as follows.
Kl = {k|pk > 6},

Because of the Assumption 1 we assume that |fx| < M for all k£ without loss of generality,
where M is a positive constant. Then we analyze with two cases.

(1) If min;ek,{fi} exists. Let fir. = minek,{fi}. And pi. is the corresponding value
related to (1.12). Then, according to the definition of the filter, the other components, which
lie behind zg. in the filter, satisfy:

Pr < Pre, and fy > fre.

Then, all the filter points, which enter the filter behind z., can be covered with a square,
whose area is no more than 2Mpy.. We consider the area lies to the south-west of the filter in
this square. When a new point z. enters the filter, the next point zy.41 should lies south-west
of the points in the filter Fj.. and the area which lies south-west of the Fj.11 in the square is
smaller than that of Fy.. Therefore, we think that the area is reduced if a new point enter the
filter. If a new point enters K of the filter, the area of this square, more than (1 — 3)vye?, will
be reduced (When a point is added to the filter, its p is less than every point, which lies to the
left of this point, to more than (1 — B)e. its f is less than every point, which lies to the right
of this point, to more than ~e. Therefore, the area of this square, more than (1 — 3)ve? will be
reduced ). (See Figure 1, there is a symbol ‘2™’ inside this area which is reduced.) Thus, the
area will be reduced to 0 after finite times. When the area is zero, it means that a point can
not enter K1, which is contradicted with the infiniteness of K.

(2) If miniecr, {fi} doesn’t exist. From the conditions in this Lemma, let f. = inf;cx, {fi}-
From the definition of inf there exists fr. > fe and fre < (fe + v€). Then, according to the
definition of the filter, the other components, which lie behind xj. in the filter, satisfy:

Pk < Pre, and fr, > (fre — ve)-

Using the same techniques as that in (1), the result is gotten.

Thus, the conclusion is obtained.

As for the case of finitely many points added to the filter, it is apparent that the following
result be true.

Lemma 3. Suppose there are finitely many points added to the filter. Then p(xy) = 0 where k
is the number of points added to the filter.

Proof. The result is apparent from the terminating condition of Step 2 in Algorithm 3.

Then, the global convergence of Algorithm 3 is obtained under Assumption 1 as follows. In
the proof process, the matrix Z, is appeared, where Ay Z), = 0 and ZkTZk = I. By the way, Zj
is not unique. But it is not appeared in our algorithm. Similar to Dennis et al’s, we also make
some assumptions to the normal component.

Assumption 2. Ay, has full rank and (AxAL)™t is bounded.

Under Assumption 2, the following results are reasonable for some algorithms to solve (2.6).
skl < Kallexl, (3-3)

and
lerll” = 1| Arsy + cxll® > kalleg]| min{ks||cg||, Ax}. (3.4)

where ki,k> and k3 are positive constants independent of k. Furthermore, several ways of
computing s} satisfy (3.3) and (3.4) in [6]. For example, conjugate-gradient method of Steihaug
and Lanczos bidiagonalizatioon approaches do. Meanwhile, the Newton method is used to
compute c(z)c(z) = 0. Without loss of generality we assume ||c(z), + s7)|| < ks||c(z)|] where
ks € (0,1).



Composite-Step Like Filter Methods For Equality Constraint Problems 621

Theorem 1. Under Assumption 1, (3.3) and (3.4), then
lim inf([|g[| + [|lp]l) = 0, (3.5)
k—o00

where gj, = Z,?gk, ArZr =0 and Z{Zk =1.

Proof. From Assumption 1, we have that g, gr are bounded. We prove the theorem by
contradiction. If (3.5) were not true, there would exist

gxll + llpell > €, (3.6)

for all k.

If the algorithm terminates finitely, (3.5) is true apparently. Then, we assume that the
algorithm terminates infinitely.

If there are infinitely or finitely many steps to enter the filter, from Lemma 3 and Lemma
2 we have p; — 0. Then ||gi|| > € for all sufficient large k. Firstly, we analyze the Restoration
Algorithm. We consider every normal component sj.

1
0k (0) = ai (st) = =[5 (s0)" Besi; + gi 5] = —halleel|(lgell + 11Billllsill) > —Fallekl-
where k4 is positive constant independent of k. Let |le(zy + s)|| = |lct]]. If the terminate

condition of the restoration algorithm is satisfied after ¢ normal steps, then
0:(0) — i (sy) = a(0) — qr((si)" + -+ + (s7)") =
—%((82)1 +o o (5D Be((s) + -+ (51)) — gk (53 + -+ (1))
> —ka(llexll + llekll + -+ lleg  DUgell + I Brll(lexll + ekl + - - + llei D]

> —ki (llexll + ksllexll + - - + k5 HlerD gl + 1Bl (lexll + Esllexll + - - + k5~ e D]

2 -7C

= lexllCllgxll + 1 Brllllex 1)
5

> —4kallckll;

where k4 is a positive constant. Certainly, the above relation is also true if there is no normal
component in some step. We denote the tangential component in the k-th step as s{. Then we
consider every successful step. If ||gx|| > € were true, we would have

qr(s}) — qr(sy, + s%) > Boemin{e, Ay}. (3.7)

Thus,
qk(0) — gqi(sj, + si) > Boemin{e, Ay} — 4ky||cl]. (3.8)

On the other hand,

WE

00 > Y [f(we1) = F(@e)] > m Y [k (0) — qi(sf, + s})]
k=1

k

I
=)

o0

> > (Boe minfe, Ay} — 4kl lex ).

k=0

Thus, we have Ay — 0 because ||cgx|| = 0.
On the other hand, when Ay and ||s}|| are small enough, from Taylor expansion we have

far) = fn + s+ i) = ax(0) — qu(sk + s3) + o(l| Al)).
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We consider r > n; when k is large enough. If s = 0 then f(zy) — f(zr—1) > 0 from (3.7).
If s, # 0, then ngalAi+a2 < hy < 64773041Ai+"2, or (ngal)%Ai+TZ < ekl £ 8(n3a1)%Ai+72.
(We will show this result.) From (3.8) we have

Flak) = flae + sp +s1) > m(qe(0) — qr(sy + 1))

> 1 (Boe min{e, A} — 4kallck])) > mi (Boe min{e, Ag} — 32ks(nzan) T A, T2 ) >0,

when Ajp < min{e, (%)%} Thus, every trial step will be accepted by the filter.
32]\74(1’]3&1)2

Therefore, the trust region radius will not be reduced if & is large enough, which is contradicted
with Ay — 0. Thus, the conclusion is met.

Factually, ||c(zr+sp)|| < ks||e(zr)]| can be obtained from (3.4) where k5 € (0,1) is constant.
Thus, the result is reasonable.

From the above analysis, we get the global convergent property under Assumption 1. The
following results are deduced immediately:

Theorem 2. Under Assumption 1, Assumption 2, if {xr} is a bounded sequence, then x}, has
an accumulation point satisfying the first-order KKT conditions.

Proof. From the Assumption 1, Assumption 2 and Zj, there exists a subsequence k; such
that lim;_,o Z,z; gk; = 0. Thus, when j is large enough, g, almost lies in the subspace which

is generated by the columns of A{j. Namely, there exists a vector Ay, which satisfies
. T _
leHolo Gk; + A, Ak, = 0.

Therefore, our result is obtained because {z} is a bounded.
Now, we show 7730(1Ai+a2 < h < 64173a1Ai+"2.

Theorem 3. If Ay — 0, k is large enough, ||/ ¢il| < My fori=1,2,---,m and s; # 0 where
M is a positive constant, then,

7730(1Ai+a2 S hk S 647730(1Ai+a2. (39)

Proof. The first part is obvious. We show the second part. If z := zp_1, then hy = hy_
and Ak Z iAk—l- Thus, hk = hk—l S 7730(1Ait?2 S 647]3041Ai+a2.

If 4, # x_1, then, from Taylor expansion and our algorithm we have A, < Ay, A(xp_1+
sp_1)(Sk—1 — s},_;) =0 and

le(@r)ll < lle(zr—1 + sj—1) + A@r—1 + sp_1) (k-1 = sp_1) || +2mM|lsp 1 = sp_ |l

S (7’]3&1)%Ait:72 + 2mM2Ai_1 S (ngal)%Ai+aT2 + 2mM2A%
Thus,
hk S ((ngal)%A}j% + 2mM2A%)2 S 647]3&1A2+a2

: 7(773a1)% =
if A < (5254 )% 2. Therefore, the result holds.

2m

4. Numerical Results and Remarks

Algorithm 3 is also a kind of SQP filter method. For our algorithm, some promising numer-
ical results are obtained. Especially, when the initial point is infeasible, our algorithm works
efficiently. Some numerical results are listed in Table 1.
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Table 1
Problem | n | m | NF | NG | Iter | L’s NF | L's NG
HS6 2|1 20 11 10 30 13
HST7 211 10 7 6 8 7
HS8 2| 2 4 4 4 6 6
HS42 4| 2 11 5 3 5 5
BT2 3|1 7 6 5 13 13

In Table 1, L’s is Lalee et al’s result in[13]. We compared our results with that in[13] because
the methods in [13] is composite step approaches. Meanwhile, they all use exact Hessian. But
our exact Hessian is different from that in [13]. Iter, NF and NG means numbers of iterations,
function evaluations and gradient evaluations respectively. The error tolerance is 10~7. In our
algorithm, § = 0.98,v = 0.05.

When the Hessian is updated by BFGS approaches, some results are reported in Table 2,
which is promising. Lalee et al’s results are obtained by [-BFGS techniques. HS8 has no Hessian
for Lalee et al’s method.

Table 2
Problem | n | m | NF | NG | L’s -BFGS NF | L’'s NG
HS8 2 2 4 4 — —
HS39 4 2 9 9 26 19
HS60" 3 1 8 4 13 11
HS100* | 10 | 3 30 15 30 24
BTS 5 2 7 6 13 13

*Test problem was created specifically for equality constrained problem.

From Table 1-2, our algorithm needs fewer steps than that of Lalee et. al’s. Hence, our
algorithm does very well because the constraints and objetive function are balanced. Further,
our algorithm is more flexible.

On the other hand, filter method is a nonmonotonic method which may be beneficial. In
a filter algorithm, we consider a way to avoid the close relation between f and p. In this way
is the algorithm more flexible. About the parameter 3,7 where 1 > 8 > v > 0. ( is required
to close enough to 1. While « sufficiently close to 0. There are several advantages: (1) The
acceptable criterion is not very strong. (2) The relation of f and p becomes more implicit.
Certainly, we can modify some conditions in the algorithm to get the global convergence.

By the way, there are no locally superlinear result to filter methods till now. For our
algorithm, superlinear result is not obtained yet. It is still a problem. As for the norm of the
constraint violation function, the other forms can be chosen instead, such as /;-norm or l5-norm.
The method is similar.
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