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Abstract

Superconvergence of the mixed finite element methods for 2-d Maxwell equations is
studied in this paper. Two order of superconvergent factor can be obtained for the k-th
Nedelec elements on the rectangular meshes.
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1. Introduction

Superconvergence of the mixed finite element methods for 3-d Maxwell equations was first
considered by Monk [8]. In 1999, Lin and Yan [4] used the integral identity technique to study
this problem once more and improved Monk’s result. One order of superconvergent factor was
obtained by them for k-th Nedelec elements on the cubic meshes. The similar result was proved
for 2-d Maxwell equations by Lin and Yan [5] and Brandts [1]. In this paper, we improve the
Brandts’ result. If the domain is rectangular, two order of superconvergent factor which is one
order higher than Brandts’ result can be obtained for the k-th (k > 1) Nedelec elements on the
rectangular meshes.

The paper is organized as follows: In section 2, the mixed finite element formulation for
solving 2-d Maxwell equations is introduced. In section 3, we will consider the k-th (k > 1)
Nedelec elements on the rectangular meshes and prove some basic estimates. In section 4, the
mixed elliptic projection operator is defined and the error between the interpolation operator
and the projection operator is estimated by utilizing the method introduced in [1]. In section
5, we obtain the superclose result. In the last section, the global superconvergence is obtained
by the postprocessing.

2. Formulation

Consider the following two-dimension Maxwell equations

E; —rotH = -J in Q x(0,7), (1)

Hi+curlE =0 in Q x (0,7, (2)

nxE=0 on 90 x (0,7, (3)

E(O) = E07 H(O) = H07 (4)

where E = (Ey, E»), rotH = (%, —%), curlE = 8£2 — 851 ,nXE = Eyny—Einy, n = (ny,ns)

is the unit outward norm of 9Q, Q@ C R? is a bounded domain. In the following, we will use
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the notations

110, Il llo,e for L*(Q), L*(e)—norm,

and
1l | |lk,e for H*(Q), H*(e)—norm.
Let
Hy (curl; Q) = {v = (v1,12) € (L*())*; curlv € L*(2),n x v |so= 0},
with norm

IVlla(eurio) = {IIVII5.0 + lleurlvil§ o} /2.

The variational formulation based on (1)-(4) reads as: find (E, H) € Hy(curl; ) x L?(Q) such
that

(E¢, ®) — (H,curl®) = —(J, ®) V® € Hp(curl; ), (5)
(Hy, %) + (curlE,¢) =0 Yip € L*(Q), (6)
E(0) =Eo, H(0) = Hy. (7)

Let T}, be a regular partition of Q and Vj, x W C Hp(curl; Q) x L2(2) be the finite element
space. Then the finite element approximation based on (5)-(7) reads as follows ( [7] ): find
(Ep, Hp) € Vi, x W}, such that

((Ep)e, @) — (Hp, curl®) = —(J, ®) VP € Vy, (8)
((Hp)t, ) + (curlEp, ) =0 Vi) € Wy, 9)
En(0) = RyEo, H(0) = RyHo, (10)

where Ry, is the mixed elliptic projection which is given by (22)-(25). Since (8)-(10) is an
ordinary differential equations with respect to time ¢, there exists a unique solution. In this
paper, we will consider the k-th (k > 1) Nedelec finite element spaces [9].

3. Nedelec Finite Element Spaces

Let 2 be a polygon with boundaries parallel to the axes. T}, = {e} is a rectangulation of (2,
where

€= [xe —he,ze + he] X [ye —ke,ye + ke]
and h = max.{he, k.}. Tj is called regular if
Coh2 < meas(e) < Clh2 Ve € Tp,.

The Nedelec finite element spaces come from Raviart-Thomas finite element spaces [10]. We
first list some properties on these two finite element spaces.
Raviart-Thomas finite element spaces (V1) x W), is defined by

(Vl)h = {V = (Ul,’l}g) € Hg(diV;Q);V |eE Qk.H,k(e) X Qk7k+1(6),6 € Th}, (11)
W, = {we L*(Q);w le€ Qr(e),e € T}, (12)
where
Hy(div; Q) = {v € L*(Q)%; divy = % + 88—1;2 € L*(Q),v-n |po= 0}
with norm

IVllraivie) = {lIvllo.q + [Idivl3 o }'/%,
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Q;,j(e) = span{z'y®;0 <t <4,0 < s < j} and Qr = Qgx. For v € (V1)p, by the definition,
we know that the normal component v - n is continuous on the shared-edge of the two adjacent
elements.

Nedelec finite element spaces V, x W}, is defined by

Vy, = {v=(v1,v2);(v2,—v1) € (V1)n}
= {veHy(cur;Q);v [c€ Qrrr1(e) X Qrs1,k(e),e € Th}, (13)
Wi = {weL*(Q);w]|.€ Qrle),e € Th}.

For v € V;,, by the definition, we know that the tangential component v X n is continuous on
the shared-edge of the two adjacent elements.
For the Raviart-Thomas elements, two of the most important properties are [10]

IVliz2@) = IVlE@vie) Vv €Ki, (14)
where K; = {v € (V1); (divv,w) = 0,Vw € W, }.
And
inf sup divv,w) > Cy >0, (15)

0FwEW), 0#AVE(Vi)n ||V||H(div;Q)

where Cy is a constant independent of h.
Accordingly, for the Nedelec elements, we also have

Ivlizzo) = [IVIlE(Ccuro) YV € K, (16)
where K = {v € Vy; (curlv,w) = 0,Vw € W}, }.
And
. (curlv, w)
inf  sup s o>, (17)

0AwEW), 0£AVEV), ||V||H(curl;Q)

The equations (16) and (17) ensure the existence and uniqueness of the mixed elliptic pro-
jection operator Rj which we will define in §4.
Now, we define the interpolation operator

Py - HO(CUI'I; Q) X LZ(Q) — Vi, x W
For (v,w) € Hy(curl; Q) x L?(Q), the interpolation function (P,v, P,w) is defined by
J, (v = Pyv) xngds =0 Vg € Py(l;),i = 1,2,3,4,

[.(v = Pyv) - @dedy =0 Y& € Qpr-1(e) X Qp—1,1(e),
[.(w = Pyw)qdzdy =0 Vg € W,

where I; (i = 1,2, 3,4) are the four edges of e, Py (l;) is the set of the polynomials of degree< k
on [;. For such a special interpolation, we have the following lemmas.

Lemma 1. Assume that u € Ho(curl; Q). Then we have

(curl(u — Pyu),q) =0 Vg e W,

Proof. Note that ¢ € Qk, rotq |¢€ Qk r—1(e) X Qr—1,k(€e). By Green formulation and the
definition of interpolation operator, we get

/curl(u — Ppu)gdxdy = /(u — Ppu) - rotqdzdy — / (u— Ppu) x ngds = 0.

e e Oe

Lemma 2. Assume that w € L*(Q). Then we have
(w — Pyw,curlv) =0 Vv € V.
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Proof. Note that curlv € Wy. The lemma follows from the definition of interpolation
operator.

Lemma 3. Assume that u € (H*"3(Q))2 NHo(curl; Q) (k > 1). Then we have
(0= P, v) = O s [Vltceumy ¥ € Vi
Especially, if curlv = 0, then we have

(u— Pyu,v) = O ) [ulliss]vllo-

Proof. Let u = (u1,us), Pou= (Pruy, Pyus), v = (v1,v2). We first prove

k,2k+2 3k+2u1 8’“1}1
— P, dedy = — < dzd
/e(“1 wi)ordedy = — (o TR T O . By ok e
FOU) [ullisa e ¥llo.e ¥ € Vi (18)
Let é = [-1,1] x [—1, 1] be the reference element and F : e — é be a map defined by
F:(a,y) o (8,9),8 = =550 = T

Let,
U1 (2,9) = ui(z,y),01(2,9) = vi(z,y), Phui(2,9) = Prui(z,y).

Consider the bilinear functional over é

_— 1 8k+2’&1 8]6’131
B(t1,01) = [ (t1 — Phup)01dzdg dzdy.
(i1, 01) /é(“1 wun)o1dedy + e, agee agE
By the inverse inequality [3], we have
|B(t1,01)| < Clla]lk+3,l01l0,e Vi1 € Qe o1 (€)- (19)
If 4, takes
i‘k+1, ii’k+2, i,k+1g’ gk+2
respectively, then the corresponding u; — Igh\ul will be
(k+1)! dF1(22 — 1)k (k +2)! dF+2(22 —1)k+2
(2k + 2)! dzk+1 ’ (2k + 4)! dzk+2 ’
(k+1)! dFt (2?2 — 1)k (k +2)! dF(y? — 1)k+!
2k +2)l dirt! v Qk+2)! dF

(k+1)! dr+i(g2—1)k+?
(2k+2)! dZRFT
p(z) is the (k + 1)-th order Legendre polynomial. p(z) is orthogonalized to the polynomials of
degree< k in L?(—1,+1). Furthermore, the first term of p(#) is 2¥*1, so p(#) — 2**! belongs to
Qk k+1(€). Thus, by the definition of interpolation operator, we conclude that p(Z) = 01 —@1.
For other three cases, we can use the same reason to justify. Note that

/_11 (%) o = %(n!)?

k+2 skl ok+2
7"1: y7y )

. Since

This can be demonstrated as follows. As @; = &%+ let p(2) =

As 4y taking

AR

respectively, a direct calculation shows

B(ﬂl,ﬁl) =0 Vo, € Qk,k+1 (é)
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Now Bramble-Hilbert Lemma [3] and (19) gives
|B(ti1,01)| < Clin k43,6010, V01 € Qpht1(€)- (20)

The inverse map of F’
Fliéesex=x,+het,y=ye+ kel

yields (18).

k
Note that %y’i} can be rewritten as

Ok vy ok 1(curlv) OFvy

dyk o yk—1 + dxoyk—1"

The inverse inequality and integration by parts lead to

2k+2 uy 0%vy
k +/6yk+2 3kddy

. ok 2y ok 1(curlv) ok
_ 2k+2 1 2
= Zke . Dyk+2 < Byh—1 + 3m3yk—1> dzdy

= ) O ) uslpg.clcurlvio
e

8k+3 8]” 1 ak+2 ak 1
+ Z k- 13112 % 1)12 dxdy + / / k+u21 k 1)12 dy (21)
. . 0x0y Jy lon Ji., Oy Oy
where I, 1 and [l > are the right and left edges of e. Recall that v x n is continuous on the
shared edge of the two adjacent elements. Hence, vy is continuous on the [, ; and l. 2, so is

(&

the 2 W' Furthermore, since v x n |go= 0, so v = 0 onl.y or lo2 if lo1 NON = 1. or
le,o NOQY =l 2. Thus the line integrals in (21) disappear and the inverse estimates lead to

w1 OFv
k2k+2/ 6yk+21 3y kld dy = O(W* ) |ulliss|vVIlEEune) YV € Vi

By (18), we have
(w1 — Ppuy,vy) = O(hk+3)||u||k+3||v||H(curl;Q) Vv € V.

In like manner, we can get the error estimate for (us — Pyu2,v2). Combining these two results,
we complete the proof of Lemma 3.

4. The Mixed Elliptic Projection

In this section, we will define the mixed elliptic projection operator [1]. Meanwhile, we will
estimate the error between interpolation and the mixed elliptic projection operator. Now we
construct the mixed elliptic projection operator

Ry, : Ho(curl; Q) x L*(Q) = Vi, x Wy,
Let (X,Y) € Hog(curl; Q) x L2(Q2) be the solution of the following equations
(X, ®) — (V,curl®) = (f,®) VP € Hy(curl; ), (22)
(wlX,y) = (9,0) Vi e I3(®). (23)

where f € (L*(Q))?, g € L*(Q). The mixed elliptic projection function (R, X, R,Y) is defined
by

(RaX,®) — (RpY, curl®) = (f,®) V& €V, (24)
(CuI‘thX,i/J) = (9)1/]) Vdj € Wh' (25)
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By the theory of mixed finite element methods [2] and (16)-(17), we know that (24)-(25) exists
a unique solution. Thus the mixed elliptic projection operator Ry, is well defined.
Agsume that X, Y, f and g are all the function of time ¢. Differentiating the four equations

(22)-(25) with respect to time ¢, we will find that (Rj, a){_()gt) , Ry, a&ggt)) and

(2R X(t), 2 RyY (t)) satisfy the same equations. By the uniqueness of the solution, we have
0 0X(t) o Y (t)
—RyX(t) =R —R,)Y(t) =R . 26
gp X (1) = Ba=5, =, G Y (1) = B =5, (26)

Now, we estimate the error between the interpolation and the mixed elliptic projection
operator.

Lemma 4. Assume that (X,Y) € Hg(curl; Q) N (H*3(Q))? x L2(Q) N HF2(Q) (k > 1)
and satisfies (22) and (23), P, and Ry, are the interpolation and the mized elliptic projection
operator. Then we have

IRy X — PpX]lo < Ch*3||X]|k43, (27)
|RLY — PpYlo < CR* 31X ][k43. (28)

Proof. By (23) and (25), we have
(curl(X — RpX), ) =0 Yo € Wi,

Lemma 1 gives
(Curl(X - PhX),’gZJ) =0 Yy eWy,.

Above two equations yield
(curl(P,X — RpX), ) =0 VYo € Wy,
Especially, taking ¢ = curl(P,X — R, X), we get
curl(P,X — RpX) = 0. (29)
By (22), (24) and Lemma 2, we deduce that
(RpX — P X, ®) = (X — P, X, ®) — (Y — R,,Y, curl®)

= (X - X, ®) — (P,Y — RpY,cutl®) V@ € V. (30)
Taking ® = R, X — P, X, and applying (29) and Lemma 3, we obtain

|RhX — Py X|[§ < Ch*F3 (X |43/ R X — PuX]fo,
s0, (27) holds.

By B-B condition (17), we have

1®, RLY — PLY
|RLY — PrY|lo <C  sup (curl®, Ry hY)
0£PEV), ||§||H(cur1;9)

(31)

By (30), Lemma 3 and (27), we get
(curl®, RyY — P,Y) = (X — P, X, ®) — (RyX — P, X, ®)
< OO X lkysl| @ lm(curse) Y € Vi

Combining (31), we obtain (28) and complete the proof of the Lemma.

Differentiating both sides of (6) with respect to time ¢, we have

(CurlEhd]) = _(Htt71/}) Vdj € LZ(Q) (32)
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By (5), (32) and the definition of the mixed elliptic projection operator, we know that (RjZE ol
Ry, H) satisfies

(Rhaa—]f,'@) _ (RhH curl®) = —(J,®) VP € Vi, (33)
(curth 51/}) —(Hit,p)  Vip € W, (34)

Similarly, integrating both sides of (5) from 0 to t, we obtain
t t
(B,®) - ( / H(t)dt, curl®) = (Eg — / I(t)dt, ®) ¥ € Hy(curl; Q). (35)
0 0
By (35) (6) and the definition of the mixed elliptic projection operator, we know that (R,E,
Ry, fo (t)dt) € V5, x W}, satisfies

(RuE, ®) — (Ry, [} H(t)dt,curl®) = (Eo — [i J(1)dt, ®) V& € Vy, (36)
(curthE,w) = —(H¢,¥) Vi € W, (37)
By (5)-(6), (32)-(37) and Lemma 4, we can easily derive the following corollary.

Corollary 1. Assume that (E, H) € Ho(curl; Q) x L*(Q) is the solution of (5)-(7), and E, E,
Ey, By € (HF3(Q))? (k> 1). Then we have

|\PhH — RpHl|lo < Ch*3||Ey||t3, (38)
|P,E — RyEll0 < Ch*3||E||js, (39)
OH
P < Ch*3||Enllk 4
‘ h o Ry—— En < C IE¢¢||x+3, (40)
PH a2H
P z— < Ch*3)| Bl s 41
PG -S| < ORIl ()

5. The Superclose Estimate

In this section, we will estimate the difference between (Ej, Hy,) and (P, E, P,H). Suppose
that (Ep, Hy) € Vi, x W}, is the solution of (8)-(10), and Ry is the mixed elliptic projection
operator. Then we have

Lemma 5.
OE,, OE B [ 8H
Proof. Subtracting (33) from (8), we get
(a;Jt RhaaE ) (Hh — RyH, cur1<I>) =0 V® eV,

Note that Hy(0) = R,H(0). Taking ¢t = 0 and & = (%=
equation of Lemma 5.
By (9), (37) and the definition of interpolation operator, we have

(curl(Ep, — RyE), ¢) = (Hy — (Hp)t,¥) = (PoHy — (Hi)t,¥) V¢ € W
Note that E;(0) = R,E(0). Taking t = 0 and ¢ = (P, H; — (Hp)+)(0), we obtain

0H,, oOH
W(O) P — e (0).

Combining with (26), we get the second equation of the lemma.

- Rh%—}f)(O), we obtain the first
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Now we can state the superclose result.

Theorem 1. Assume that (E,H) € Ho(curl; Q) x L?(Q), (En,Hp) € Vi x Wy are the
solution of (5)-(7) and (8)-(10) respectively. Furthermore, E, E;, E;(0) € (H*3(Q))?%,
Eu: € L?(0,T;(H*'(Q))?) (k > 1) and Ry, Pj, are the mized elliptic projection and in-
terpolation operator respectively. Then we have

|EL(t) — RhE()]lo < CRFFQY2, (42)
|Hp(t) — RpHp(t)|lo < CRF3QY2, (43)
IEA(t) - BE(®)]lo < Ch**{Q +||E(t) ||H3}”2 (44)
1/2
V(1) — PLH®Dl0 < chk”{mH } , (45)
k+3
where
>E| t+H82E
ot3 ot " as

Proof. Differentiating both sides of equations (8) and (33) with respect to time ¢, we obtain

0 (OE; OE OH, OR,H _
<a <W - Rh§> ,<§> - <W 5 ,cur1<I>> =0 V® €V (46)

Differentiating both sides of (9) with respect to time ¢ and subtracting the result equation from
(34), by the definition of interpolation operator, we get

ol OB, 6E ’ 0*H, 0*RnH "
ot ’ o2 o2’
0?H  0°RpH ’H 62
- (W—Wﬂ/’):(ﬂw ) veew. )

Taking ® = (Ep): — RyE: and ¢ = (Hp): — (RpH)¢ in (46) and (47) and applying Corollary 1,
we obtain

1d 0’°H 82
35 (118 + 101) = (75 - a5 )
OE OB
< ChFt? < ChPkts - 4
S v Al v IR (48)
Applying the Gronwall inequality , Lemma 5 and Corollary 1, we have
OE; 8Hh ~ 8RhH
ot o
1/2
PE|’ 62E
< k+3 — . 4
< Ch { | dt+H = +3} (49)

Observe that p p
ST = 505 =200 ) < 21floll o,

50 %Ilfllo < ||& fllo- Hence

0

5;(En — RiE)

L (1B, — RuBlo -+ |, — RuHl) < H

H— (H, — R,H)

0
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Integrating the above equation from 0 to ¢, by (26) (49) and (10), we can obtain (42) and (43).
The last two equations of the theorem follow from (38) and (39).

6. Global Superconvergence

Theorem 1 means that (Ej, Hy) is superclose to (P,E, P,H). The purpose, however, is to
superclose (E, H). This can be done by constructing the postprocessing operator (I, Jop,).

Let us assume that T} has been obtained from T5;, by dividing each element into four
congruent rectangles. Let 7 = U?:l e; € Ty, with e; € Ty, and (Iop, Jop) a) is defined as: For
(v,w) € Hy(curl; 7) x L?(7),

IZhV‘ € Qam+1,2m+2 X Q2m+2,2m+1;

J,,Tanv — v) x ngdl = 0,Yq € Py (l;),i =1,---,12;

fei (I2hv - V) . ‘I>d35dy = O,V{> € Qm,m—l X Qm—l,m(ei)ai =1,2,3,4
and

thw‘ € Qam+1;
J., (Janw — w)qdzdy = 0,Yq € Qm(es),i = 1,2,3,4;
where I; (i = 1,---,12) are all edges of four e; (i = 1,2, 3,4) and
| (k+2)/2, ifkis even,
| (B+1)/2, else.
It can be proved that (see [6]) (Iap, Jop) satisfying
[T2nv = vilo < Ch¥F3]|v][gts;
IT2nvllo < Cllvilo, Vv € Vi; (50)
IQhV = IQhPhV.
And
| Jonw — wllo < ChEF3||w]|p3;
| 2nwllo < Cllwllo, Yw € Wh; (51)
thw = J2hphw.
Now, the global superconvergence can be obtained by Theorem 1 and the postprocessing
operator.

Theorem 2. Under the assumption of Theorem 1, we have

I En®) —E@)lly < CR*{Q + |E@)I2,5)° (52)
8E 2 1/2
Voo (t) — H@)lo < chk”{mHE } . (53)
k+3

where @ is defined as in Theorem 1.
Proof. We only prove the first equation, the second one can be proved in a similar way.
Note that

I,E; — E = Ly (E; — P,E) + (I, P,E — E). (54)
By (50) and (35), we get
1
|Lon(En — PaE)||o < C||Es — PoE[lo < CR*{Q + |E®)|[7 45} (55)
and
|T21 PLE — Ellg = || 124 E — Ellg < Ch* 3| E||4143- (56)

Hence, by (54)-(56), we obtain Theorem 2.
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