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Abstract
A composition method for constructing high order multisymplectic integrators is pre-
sented in this paper. The basic idea is to apply composition method to both the time and
the space directions. We also obtain a general formula for composition method.
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1. Introduction

Composition method originates from the construction of symplectic integrators for separable
Hamiltonian systems. Yoshida applied symmetric composition method to obtaining high order
decomposition of vector field and suggested the composition method for Hamiltonian systems
[12]. Based on the theory of Lie series and formal vector field, Qin and Zhu systematically
suggested the composition method for general ordinary differential equations [8]. Suzuki estab-
lished the general theory of high order decomposition of exponential operators [10]. We will
show in this paper that Suzuki’s theory can be used to obtain a general formula for composition
method.

Recently multisymplectic Hamiltonian systems and multisymplectic integrators are drawing
a lot of attention [1, 2, 9, 3, 4]. Bridges first introduced the concept of multisymplectic Hamil-
tonian systems which possess a completely local multisymplectic conservation law [1]. Bridges
and Reich suggested the concept of multisymplectic integrators which preserve a discrete ver-
sion of multisymplectic conservation law [2]. Reich showed that Gauss-Legendre collocation
in space and time leads to multisymplectic integrators [9]. However, in high order case, the
multisymplectic integrators obtained by Reich are very difficult to implement. Therefore, we
suggest a composition method for high order multisymplectic integrators. The resulting high
order multisymplectic integrators are very easy to implement.

An outline of the paper is as follows. In §2, we present the composition method for ordinary
differential equations. The basic formula for composition method is obtained. §3 is devoted
to developing composition method for constructing high order multisymplectic integrators. We
present numerical experiments in §4. Some conclusions are included in §5.

2. Composition Method for ODEs

We first present the composition method for ordinary differential equations (ODEs). We
know that every one-step integrator for y' = f(y) can be written

Yn+1 = S(T)ynv
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where s(7) is the operator corresponding to the integrator, and 7 is the step length.

Definition 1. Suppose there are n integrators whose corresponding operators are s1(7), s2(7),

, $n(T) respectively, and their corresponding order is py,pa, . .., pn respectively. If there exist
constants ci,cs,...,c, such that the order of the integrator whose operator is the composition
s1(e17)s2(caT) - - - splenT) is m,m > mazx(p;),1 < i < n, then the new integrator is called
composition integrator of the original n integrators. This method which is used to construct
higher order integrators from the lower ones is called composition method.

In the discussion as follows, we also need the concept of adjoint operator and self-adjoint
operator.

Definition 2. An operator s*(1) is called the adjoint operator of s(7), if

where I is the identity operator.
Definition 3. We call an operator s(t) is self-adjoint, if s*(1) = s(7).

The development of composition method relies on the theory of Lie series [5, 7, 11] and the
following theorem [6].

Theorem 1. Every operator s(7) has a formal exponential representation
s(r) = exp(tA+ 1’ B+ 7°C + D + - .),
where A,B,C, D, ... are first order differential operators.

According to the definition of composition method, constructing higher order integrator

s1(c17)s2(caT) - -+ 85(cyT) is to determine constants ¢y, cs,. . ., ¢, such that the scheme s (¢17)
s2 (ca2T) -+ sp(c,7) has order m. Now we will deduce the basis formula for determining the
constants ¢;(i = 1,...,n). By theorem 1, we have

Sj(’r) = exp(ijl +7'2u)]-2 —|—7-3wj3 4o 7P ’U)] + TPi+1 Wip, 1y _|_)

Since s;(7) has order p;, wj1 = Ly, wjs = wjz = --- = wjp, = 0,wj,,,, # 0. Here Ly is the
differential operator corresponding to y’' = f(y) [8]. As in [10], we introduce symmetrization
operator S

!
S(xPz?) = pp+qq ' ZP (zP21

where z, z are arbitrary noncommutable operators, P,, denotes the summation of all the oper-
ators obtained in all possible ways of permutation.
We also introduce time-ordering operator P

T;Tj, if i <j;

Tjx; if j <1,

P(zizj) = {

where z;, z; are noncommutable operators.
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Letting Gy, (1) = s1(e17) - - - sp(enT), we have
Gm() =[] 5i(cs)
j=1

n
= H exp [(¢;T)wj1 + (¢;7)2wje + (¢;7) wjs + -]
j=1

n

= Pexp [Z((cjv-)wjl + (¢j7)2wjz + (c;7)wjs + - - )J

=1
= Pexp(re; + 220 + 75+ ---)
— PS(eT.tleTszeTBm;; .. )

paial +2ns+3ng+---
— n n: n
= 2 it DS astast ), (2.2)

Tn1,M2,MN3,

where 21 = 327 wjn = (X[, () Ly, 11 = 307, Swji.
If G, (7) has order m, then

G(r) = ™7 + O(r™ ).
Therefore, we obtain the condition on which G,, has order m

PS(aytwy*wy® o) =0,
ny+2ns +3ng+--- <m,
excluding no, =ngz =--- =0, (2.3)

n
Zci =1.
i=1

This is the basic formula for composition method. From this formula we can determine the
constants ¢; (i = 1,...,n).

In what follows, we also use the exponential representation of adjoint operators.

Let

sj (1) = exp(Twj1 + T?wjo + TPwjz + - +), (2.4)
then

s5(7) = exp(rij1 + T )2 + T0Wjz + -+ ), (2.5)
where wjom—1) = Wjem-1); Wjem) = ~Wjem)-

The expression (2.5) can be derived from the definition of adjoint operator. Next, we propose
some applications of the basic formula (2.3).
Application 1. Choosing

s1(1) = s3(7) = -+ = 5(7),82(7) = sa(7) = - - = 57(7),
where s(7) is the Euler scheme, then we have

G (1) = s(e17)s* (cam)s(e3T)s™ (eat) - - - s(Cp—17)s™ (CnT).
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In this case,

n n

_ 21 _ 201 _ _
T2l = E Cj W2, Ta—1 = E C;  W2r—1, W2p5 = W2, W(2r-1); = W2l—1-
j=1 j=1

We only consider the case with m = 2, namely
Ga(1) = s(c17)s™(cat) - - - s(Cn_17)s" (cnT). (2.6)

From the basic formula, it follows that

i=1 (2.7)
G+ +-=c 4+
With n = 2, (2.7) becomes
c1+cy = ].,
2.8
g=d 28)

From (2.8), we obtain ¢; = ¢o = 1/2 and (2.6) becomes

Go(r) = S(%T)S*(%T). (2.9)

The integrator with operator (2.9) is just the mid-point scheme.
Application 2. Choosing s1(7) = s2(7) = s3(7) = Ga(7), ¢1 = ¢3, we have

G4 (T) = GQ(ClT)GQ (C2T)G3 (617'),

where G2 (7) is a self-adjoint scheme of order 2.
In this case, the basic formulas takes the form

2¢1 +co =1,
2¢3 + ¢35 = 0.
Thus, we get ¢; = 52775, = —2312—/13/3. For example, if G(7) is the mid-point scheme, we

obtain

1 Yn T Y1/3
3/1/3:yn+2_21/37'f( D) )

—21/3 Y1/3 + Y2/3
Y23 = Y1/3 + 5= 21/3Tf( 5 ), (2.10)
1 Y2/3 + Ynt1

Yn+1 :y2/3+2_21/37'f( B )-

This is a one-step three-stage integrator of order 4. Generally, we have [8] Corollary 1. Let
s(7) be a self-adjoint integrator of order 2n, then the scheme s(c17)s(cat)s(csT), with ci,co
satisfying

20%7“rl + c%”“ =0, 2¢c1+c=1

is of order 2n + 2.
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3. High Order Multisymplectic Integrators by Composition

We first present the concept of multisymplectic integrators introduced by Bridges in [2 ]. A
large class of PDEs (for simplicity, we only consider one space dimension) can be cast into a
system of the form

Mz + Kz, =v7.5(2), z € R", (z,t) € R, (3.1

where M and K are skew-symmetric matrices on R®,n > 3 and S : R® — R is a smooth
function. We call (3.1) a multisymplectic Hamiltonian system.
For example, consider the non-linear wave equation

Ut — Uge + V'(u) = 0. (3.2)
With new variables, v,w, and p, (3.2) is equivalent to

UV = Ut + Pa,

W = —Ug — Pt,

wy + v, =0,

v +we +0'(u) =0,

or with z = (u,v,w,p)” € R*

Mz + Kz, = v.5(2), (3.3)
where
0 -1 0 O 0 0 -1 0
N
0 0 -1 0 0 -1 0 O
and

1
S(z) = 5(1;2 —w?) + V(u).
Associated with (3.1) are the pair of differential two forms defined by
w(U,V)=(MU,V), «k(UYV)=(KUV), VUV eR",

where(-, -) stands for the standard inner product.
A fundamental geometric property of systems of the form (3.1) is that they conserve the
following multisymplectic conservation law

0 0
aw(U, V) + %H(U, V) =0,

where U and V' are any pair of solutions of the variational equation associated with (3.1)
Mdz; + Kdz, = D,,S(2)dz.

A multisymplectic integrator for (3.1) is a numerical scheme for approximating (3.1) which
also conserves a discrete version of multisymplectic conservation law.
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We can formulate the numerical discretization of (3.1) as
Mati’jzm + K(?;’jzm = VZS(Zi,j)a (34)

where z; j = z(x;,t;), and 8}’ and %7 are discretizations of the derivatives d; and 9, respec-
tively.

Using the same discretization as in (3.4), a discrete version of multisymplectic conservation
law can be written as

Z’jwi,j + ai’jm,j =0,
where
wij = (MUij,Vij), ki = (KUij, Vij)-
U;,; and V; ; satisfy the discrete variational equations
Mo dz; j + K8 dz; j = D dz; ;.

We now use composition method to construct higher order multisymplectic integrators from
the lower ones. From the definition of composition method, we can know that composition
method keeps the group property of the original integrator.

Given a multisymplectic integrator for (3.1) with accuracy of O(7? + 79)

M (s()zi;) + K(8(7)zi5) = v=(%i), (3.5)

where s(7) and §(7) are discrete operators in t-direction and x-direction respectively, and 7 and
7 are time step and space step respectively. Z; ; = fs,5(2:,;) is a function of z; ; corresponding
the operators s(7) and §(7).

Suppose Gy, (7) is the composition operator of s(r) with accuracy of O(7™), and G,,(7) is
the composition operator of §(7) with accuracy of O(7™), then the multi-symplectic integrator

M(Gm(r)ziy) + K (Gu(F)zi) = V25 (%5) (3.6)

has accuracy of O(7™ + 7).
For example, if s(7) and §(7) are both the discrete operators corresponding the mid-point
scheme, then (3.6) takes the form

M <Zi+1/2,j+1 - Zi+1/2,j> LK (Zi+1,j+1/2A_ Zi,j+1/2>

T T

(3.7)
= V:S(2ig1/2,541/2),

where
1
Ziv1/2,5 = 5(%ig + 2iv1g),
1
Zig1/2 = 5(Zig + 2ige),
Zi1/2,41/2 = 7 (205 F Zivrg + Zigan + Ziv1ge)-

Bridges and Reich have proved that this integrator is multisymplectic and the integrator is
equivalent to the Preissman box scheme [2].
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Let G4(7) = s(c11)s(car)s(e17), ¢1 = ﬁ,cz = ;i—lf; Here s(7) is the discrete oper-
ator corresponding to the mid-point scheme. Then the following three-stage multisymplectic

integrator has accuracy of O(7* + 72).

Zi+1/2,1/3 — Ri4+1/2,j Zit1,ty — Rt
M< /2:1/ / J) + K (%) = VZS(Zi+1/2,t1)a

C1T
Z; — Z; ; — Zs
M< +1/2:2/3 H/Z’l/B) + K <7zl+1’ti ZMQ) = V:5(2it1/2,85), (3.8)
CoT T
Zi+1/2,j+1 — %i+1/2,2/3 Ri+lts — Zi,
M( i+1/2,5+ — i+1/2,2/ > + K (M) — VZS(Zi+1/2,t3)7

where

1
Zig, = 5(2’@1/3 + zij),

1
Zijty = 5(%,2/3 + 2i1/3), (3.9)

Zigy = 5 (Zig+1 + 2i2/3)-
Similarly, let G4(7) = §(c17)3(cam)3(c17), €1 = 27;1/3 ,Cy = 212211//33. Here §(7) is the discrete
operator corresponding to the mid-point scheme. Then the following three-stage multisymplec-
tic integrator has accuracy of O(72 + 7).

Zmy,j — Zma,j o "J — g
o <%> +K< LSARYE . ’“”) = V25 (Zm, j41/2),

C1T
- ; 22/3,j —A1/3§
M (M) + K ( R 1/3J+1/2> = V25 (s jo1/2), (3.10)
T CoT
S . Ziin — 29/3.;
M (M) T K ( ’“’”1/261% 2/3’”1/2) = V=S (2m, j+1/2),

where

1
Zmig = 5 (2173, + Zig),

1
Zma,j = 5(2’2/3,1' + 21/3,5), (3.11)
Zma,j = 5 (21 + 22/3,5)-

If we use the composition procedure in both z and ¢ directions, we obtain the following
nine-stage multi-symplectic integrator with accuracy of O(7* + 7).

N

K(G4(T)Zi7j) + M(G4(’7A')ZZ7]) = VZS(gi,j)- (312)

4. Numerical Experiments

In this section, we perform numerical experiments with multisymplectic integrators. We
consider nonlinear Schrédinger equation

g + Uge + 2|ul?u = 0. (4.1)
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Using u = p + iq, we can rewrite (4.1) as a pair of real-valued equations

Dt + rz + 2(172 + q2)q = 0>

(4.2)
G — Pzz — 2(0° + ¢*)p = 0.

Introducing a pair of conjugate momenta v = p,,w = q,, (4.2) is equivalent to the multi-
symplectic system

a —ve =2(p° + ¢°)p,
—pr — wy = 2(p° + ¢*)g,
Pz =0,

Qe — W.

(4.3)

Now we discretize (4.3) using mid-point scheme in time direction and symplectic Euler
scheme in space direction and obtain

n+3i n+3
qgj'l — q% _ Um+21 — Um 2 _ 2((pn+%)2 + (q’fH‘%)Q)pn"r%
At A(I; — m m m )
n+1 n+i
_pz’:’l —pz’l _ wm+21 — Wm 2 _ n«‘,»% 2 n+% 2 Tl“r%
N Az =2((pm )" + (gm *))am *,
A L (4.4)
n+3 n+3
Pm ° —DPpn-1 nt3i
Ta e
n+3 n+3
dm — Gy _ wn+%
7A1‘ = Wm -,

1
where p', & p(mAx, nAt), q,’?fz = %(qfn“ +qm), etc. Az and At are the space step length and
time step length respectively.

(4.4) is a multisymplectic integrator with accuracy of O(At? + Ax?) since by eliminating v

and w and using u = p + iq, (4.4) is equivalent to a scheme for (4.1)

1 1 1
nt+l _ .n nty o, nt3 nts
;tm ~ Um n Uppy1 — 2Uum > +u,, 3 + 2|un+%|2un+% -0 (4.5)
At Ax? " " ’ ’

We first perform numerical experiments with the integrator (4.4). The following initial
condition is used.

u(z,0) = sech(z — 100) exp(2iz) + 1.5sech(1.52 + 150) exp(—2iz). (4.6)

The computation is done for 0 < ¢ < 60,—160 < z < 160, with a time step At = 0.02 and
Az =0.1. From Fig.1, we can see that the collision of the two soliton is well simulated by (4.4).
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Fig.1 The collision of two solitons.

Now we use composition method in ¢ direction for (4.4) and obtain

1 1
1 n+s n+s
o ' —Gm _ Vmidl = Um 7o nhye | onkdyay o
oAt - Az = ((pm ) +(Qm ) )pm )
(3
1 1
1 n+3 n+3
p:?L%+ —Pm wm+21 — Wm * -9 n+3\2 n+iy2y nt+3
T oA Az =2((pm *)" + (gm *)7)gm *,
(]
n+3 n+3 (47)
Pm = = DPp-1  n+id
Ax = m
n+% n+%
qm ~qm-1 _ TH-%
Az = Wm
. _ _ 1 _ 9l/3
where ¢ = 1,2,3 and Cl1 =C3 = 2_2—1/3,02 = —331/3-

The composition integrator (4.7) is of order O(At*+ Az?). To demonstrate this, we perform
numerical experiments using one-soliton initial condition

u(z,0) = sech(x) exp(—2ix). (4.8)

We use Az = 0.01 and At = 0.1 so that the error mainly comes from At¢. Table 1 shows
the maximal error between numerical solution and exact solution at different time levels. The
figures roughly indicate the accuracy of (4.4) and (4.7).

Table 1

t=0.1 | t=0.2 | t=0.3 | t=0.4 | t=0.5
Integrator (4.4) | 0.0371 | 0.0760 | 0.0683 | 0.0594 | 0.0728
Integrator (4.7) | 0.0006 | 0.0016 | 0.0023 | 0.0028 | 0.0042
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5. Conclusions

In this paper, we obtain a general formula of composition method for ODEs. Based on

the composition method for ODEs, a composition method for constructing high order multi-
symplectic integrators is presented. The high order multisymplectic integrators obtained by
composition are very easy to implement, compared with the multisymplectic integrators ob-
tained by Reich [9]. Numerical experiments are also reported.
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