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Abstract

In this paper, the solution of back-Euler implicit difference scheme for a semi-linear
parabolic equation is proved to converge to the solution of difference scheme for the corre-
sponding semi-linear elliptic equation as ¢ tends to infinity. The long asymptotic behavior
of its discrete solution is obtained which is analogous to that of its continuous solution. At
last, a few results are also presented for Crank-Nicolson scheme.
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1. Introduction

Consider the following initial-boundary value problem

O = du— o)+ fe), (yt) € QX Ry, (L.11)
ulag =0, (1.1.2)
u|t:0 = UO(way)a (way) € Qa (113)

where A is Laplac’s operator, Q2 is a rectangular [0,]%, Ry = (0,00), ¢'(u) > 0. As t tends to
oo and ¢'(u) satisfies some conditions, the solution of (1.1) converges to that of the following
semi-linear elliptic boundary value problem

Au—o(u)+ f(z,y) =0, (z,y) €, (1.2.1)
ulon =0,

Comparing to the case of continuous problem, it is very interesting to discuss the asymptotic
behavior of discrete solution of difference scheme for (1.1). For one-dimensional problem (1.1)
and ¢(u) = u3, Hui Feng and Long-jun Shen proved the solution of backward Euler difference
scheme and forward Euler difference scheme converge to the solution of the difference scheme
for the relevant nonlinear stationary problem as ¢ tends to infinity and obtained the long time
asymptotic behavior of discrete solution in [1] and [2] respectively by energy method.

In this paper, we consider back-Euler implicit difference scheme for (1.1) and give the
asymptotic error estimates by using Browder fixed point theorem, maximum principle and
energy method. For the Crank-Nicolson difference scheme, some similar results are also given.
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Let h, At,, be the space step-size and the time step-size respectively, h = [/J, where J is
an integer. Denote Qp = {(z;,y;) | ; = th,y; = jh,0 < i,j < J}and H = {w | w =
{wi;}] o, wio = wiy =woj =wy; =0,0< 4,5 < J}.

For w € H, introduce the following notations:

SawWiy1 ;= (Wit1,; —wig)/h,  Syw; i1 = (wij41 —wis)/h,
Sqwij = (Wit1,; — 2wi; +wim1g) /B, Swij = (i1 — 2wi; +wij1)/h?,

_ 52 2
Ay Wi = 5xwij + 5ywij,

J—-1J-1
lolle =, _max fwgl, ol = |72 35 3 (i),
i=1 j=1
J—-1J-1 J—-1J-1
owwll = [h2 | 30D (awiyy )2+ Y D (Oywi i 4)?),
=0 j=1 i=1 j=0
J—-1J-1
B ENEDIPI NS
i=1 j=1

It is easy to know that ||w]|., ||w||, ||0rw]|| and || A w|| are all norms of the space H. In
addition, if v € H and w € H, we define the inner product

J—-1J-1

(’U,’LU) = h2 Z Z VijWij .

i=1 j=1
It is obvious that

lwll = v/ (w, w).

The back-Euler implicit difference scheme for (1.1) we will consider is as follows

n n—1

% = Apuiy — o(uiy) + fzi,95),

1<i,j<J—1n=1,23, - (1.3.1)
ujy = upy = ug; =uy; =0,0<4,5 < Jn=1,23,-, (1.3.2)
u?j =wuo(zi,y;), 0<14,5 < J. (1.3.3)

For (1.2), we construct the following difference scheme
Apujy; = ¢(uj;) + fxi,y;) =0, 1<4,5 < J -1, (1.4.1)

* * * * ..
Uiy = uzy = ug; =uy; =0,0<4,5 < J,

In next section, the difference schemes (1.3) and (1.4) are proved to have unique and bounded
discrete solutions respectively. In section 3, the asymptotic error estimates are given, from which
it is known that the solution of (1.3) converges to the solution of (1.4).

The main result of this paper is Theorem 3.1 proved in section 3.

2. Preliminary Results

For our need, we list following lemmas.
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Lemma 2.1. For any discrete function w € H, we have

[6nwll® + (w, Apw) =0,

»_ P 2
lwll” < g lInwll,
l2

[16pw]]” < sl &n wl|*.
Lemma 2.2B374. Let (H,(-,-)) be a finite dimensional inner product space, ||-|| the associated
norm, and g : H — H be continuous. Assume, moreover, that

Jda >0, Vz € H, |z|| =, (9(2),2) >0,

then, there exists an element z* € H such that g(z*) = 0 and ||z*|| < a.
Lemma 2.3. Let T, = Y, Aty,. Suppose the sequence {a,} satisfies

an < exp(—c1Aty)an—1 + caexp (—esT,)Aty,, n=1,2,3, -,

where a, > 0,n=0,1,2,---,¢; > 0,1 =1,2,3, then

2
) S (ao + ﬂ) exp (_6Tn)>n = 172)37"'7
C3

where § = min{c;, $}.

Proof.
apn, <exp (—c1Aty)an—1 + ca exp (—esTy) Aty
<exp (—c1Atp)[exp (—e1 Atp_1)an—2
+coexp (—csTh—1)Aty_1] + coexp (—c3Ty) Aty
<exp[—c1(At, + Atp_1)]an—o
+ c2 [exp(—c1 Aty) exp(—cgTy—1)Atp—1 + exp (—c3Ty) Aty]
<
<exp[—c1(At, + Atp—1 + -+ Aty)]ao
+ co {exp[—c1(Aty, + Atp_1 + -+ + At2)] exp(—c3T1) Aty
+exp[—c1 (Aty + Aty + -+ - + Ats)] exp (—c3To) Aty + - - -
+ exp (—c1 Aty) exp(—esTy—1)Aty,—1 + exp (—c3Ty) Aty }
<exp (—c1Tp)ag + co {exp[—c1 (T, — Th)] exp (—e3Th) Aty
+exp[—c1(Ty — T2)] exp (—esT2) Aty + - - -
+exp[—e1 (Ty, — Th-1)] exp(—c3Th—1)Atp—1 + exp (—esTy) Aty } .
Since

exp [—c1 (T, — T;)] exp (—%Ti) <exp[-0(T,, —T;)] exp (—0T;) < exp (—dT,),

exp (—c1Ty) < exp (—0Ty), exp (—%Tn) < exp (—0Ty),
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we have

a, < exp (—0T},) {ao + co {exp (—%03T1)At1
1 1
+exp (—§C3T2)At2 + - +exp (—503Tn)Atn] }

<exp (—0T}) {ao + 02/ exp (—%c;;t)dt}
0

= (ap + @) exp (—dT},).
C3

Lemma 2.4. The difference scheme (1.3) has a unique solution.
Proof. In order to prove the lemma by the induction, assume u®,u',---,u”?"!
g : H — H be defined as follows:

9()ij = vij — Atn[Apvij — (o) + fziy)] —ufy 1 <i,j < J—1.

Then g is clearly continuous. Furthermore, using Cauchy-Schartz inequality and Lemma
2.1, we have

(9(v),v) =

exist. Let

(v,9) = Atu[(Apv,v) = ($(v),v) + (f,0)] — ("™, 0)
= (v,0) + Aty ||5hv||2 + Aty ($(0) = $(0),v) + At (¢(0) — f,v) — (u" ™, v)
> (v0,0) + Atn(4(0) — f,v) = ("', v)
> [[vll* = Atall¢(0) = fII ol = [l ] o]
= [[olllllvll = (Atall$(0) — £l + [lu D).
When ||v]| = At,||¢(0) — fI| + |[u™ Y|, (9(v),v) > 0. By Lemma 2.2, there exists an element
v* € H such that g(v*) = 0 and |[v*|] < At,||¢(0) — f]| + |Ju™||. This v* is just the solution
u™ of (1.3).
The proof of the uniqueness is easy and we omit it.
Lemma 2.5. Let

= 20l + 160D, b= luolls..

then the solution u™ of (1.3) satisfies

1
lu"le < 5P%a+b, n=0,1,2,-

Proof. Let ufy = wiy + alz;(l — z;) +y;(I —y;)]. Then

—1

wl] w n ..
T = Apwiy — d(uiy) + fzi,y5) —4a,1 <4, < J - 1. (2.1)
n
Since wf; < uf;, we have p(w};) < ¢(uf;). It follows from (2.1) that
wh — w?fl

U = Al — p(uly) + flzi,y;) — 4da

Aty
< Apwiy — [p(wiy) — #(0)] + f(wi,y;) — ¢(0) — 4a
= Apwiy — ¢'( n)wZ + f(@i,y;) — 6(0) — 4a
S Ahw - ¢ ( ) z]: (22)

where {7 is between w; and 0. From (2.2), we have

J

(14 Aty¢' (E)]wis < Aty Apw + w7, 1<i,j<J-1 (2.3)
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Let

n n
20,J0 1<i,j<J—1 1Y)

If w? . >0, then by using (2.3) we have

10,J0

n I(¢n n n n—1 n—1
Wiy ,jo < [1 + At"¢ (fio,jo)]wio,jo < Atp A, Wi ,jo + Wi, jo < 1<iH]1g)§71 Wij

ie.,
max w;; < max wi™!
1<i,j<J—1 1<, j<J—-1 Y
Therefore
-1
max{0, max w’} <max{0, max w}’ n=123, -
10, s i} < maxt0 oy vy ) T
By recursive process, we have
0
max{0, max w}}<max{0, max w;;}<bn=12,3,--- 2.4
{,1§i,j§J71 z]}_ {71§i’j§‘]71 z]}_ ’ ) 4y )y ( )

from which we obtain

noL n (1 — (] — s
1§ZI’I}%§71 U’z] —= 1g§}%§71{w” + a[xl(l lel) + Yj (l y])]}

1 1
< ny < 2] = .
< 12;1}%}}7110” + 2l a < 2l a+bn=0,1,2, (2.5)

If wi ;. <0, the validity of (2.5) is obvious by the definition of {w;;}.
Similarly, let uf; =@ — a[z;(I — z;) + y;(I — y;)], we can obtain
1
i no> _(Z]2 = .
| min g > (21 a+b),n=0,1,2, (2.6)

Combining (2.5) and (2.6), we have
1
[u"lle < PPa+bn=0,1,2,-.

Lemma 2.6. The difference scheme (1.4) has a unique solution.
Proof. Let g : H — H be defined as follows

9()ij = — Apvij + d(vij) — fziyy;),1 < i, 5 < J—1.
Then g is clearly continuous. Applying Lemma 2.1 and Cauchy-Schwarz inequality, we have
(9(v),v) = = (Anv,v) + (¢(v),v) = (f,v)
= [|6n0]* + (6(v) — 6(0),v) + (6(0) — f,v)
> [|8n[* = [1¢(0) = £1I llv]l
8
> zllvl* = 116(0) = £l [lv]

> §||U||(||U|| - E||¢>(0) i)
=P 8 )

When ||v]| = §||¢(0) — fll,(g(v),v) > 0. By Lemma 2.2, there exists a v* € H such that

g(v*) =0 and |[v*|| < %”QS(O) — f|l. It is easy to know that this v* is just the solution of (1.4).
It is not difficult to show the uniqueness of the solution of (1.4).
Lemma 2.7. The solution of (1.4) satisfies
N 1
ol < 5%,

where a is defined in Lemma 2.5.
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The proof is similar to that of Lemma 2.5. We omit it.

3. Asymptotic Behavior of Implicit Difference Solutions

We will analyze the difference between the solution of (1.3) and the solution of (1.4). Let

Vi = U — U
Subtracting (1.4) from (1.3), we have
n_ ,n—1
S = Al = (o) - o).
1<i,j<J—-1,n=12,3,-- (3.1.1)
vip = vig = vy =vy; =0,0<4,5 < Jn=1,2,3,-, (3.1.2)
v = uo(wi, yj) —ui;,0 <i,j < J. (3.1.3)

Taking the inner product of (3.1.1) with 20", we obtain
o™ = llo™ = HI? + o™ — w12
:2Atn(vn7 Ahvn) - 2Atn(vn) ¢(un) - QS(’U‘*))
= — 2At,[|00"||* — 2At, (u™ — u*, p(u™) — (u*))
< — 2At,||0p0™ 2.

Then,
[0"[17 + 2At,[|6p0" 17 < "M%, n=1,2,3,---. (3.2)

Using Lemma 2.1, we have

16
(1+l_2Atn)||Un||2 S ||,UTL—1||2, n = 172737"'7

or,
1

,Un 2<7
IloI” < (1+ 2Aty)

8
0" H17 < exp (=55 A8) 0" M, n=1,2,3,--,

when Z%Atn < 1, where we have used 14+ 2z > e¢* (0 < z < 1). Repeatedly applying above
inequality, we obtain

oI < exp[— gy (At + Aty -+ At)] [
:exp(—l%Tn)HvOHQ,n: 1,2,3,---. (3.3)
Rewriting (3.2) as follows:
0112 + 2At, ||6pv" |12 < 0" 7%, k=1,2,3,---.
Summing up for k from n+ 1 to m, then letting m tend to co and applying (3.3), we can obtain
oo
S AtellgnotIP < 5 exp(— Tl m =1,2,3,-- (3.4)
k=n+1
Taking the inner product of (3.1.1) with 2 Ay, v™, we have
2(Ap", 0" — 0" ) = 240, || Ap 0" ]2 — 2At, (ARv™, p(u™) — ¢(ut)).

Since
—2(Apv™, 0" = 0" ) = [6p0™1F — [1650" 17 + |0n (0™ — 0™ )|
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and
2(Anv", d(u™) = ¢(u))| < | Anv™|* + [0,
where ¢ = max|y <1244 ¢ (1), we have
=(lonv™ I = 16n0" 7HIZ + 160 (0™ — 0" D)%) > 24| Ap 0™ [* = Aty (l] A 0™ |2 + [l0"]7),
or,
18n0" 12 = 116n0" 71 1* + Atyl Ap 0" (2 < Aty lo"]]. (3.5)
Applying (3.3), we obtain
_ 8
16n0™ 1 = [1050" 7H I + At ]| A 0" |I* < *Atpexp(=5Tn) [I0°IP,n=1,2,3,-. (3.6)

And using Lemma 2.1, we have

8 8
(1+ l—2Atn)||5hv"||2 < |I8pv™ 7Y + AL, exp(—l—2Tn) |02, n =1,2,3,- -,
or,

8
Tn)“UO”z:n = 172737 Tty

4 _
|6p0™]|? < exp (—l—zAtn)Héhv” Y7 + 2At, exp(—l—2

when Z%Atn < 1. By Lemma 2.3,
n|(2 o2 o L 22002 4
150071 < (I + 3P IOIP) exp (~ 5 Ta)m = 1,23, (3.7)
Rrewriting (3.6) as follows:
16n0F (12 — [|0n0" 2|7 4+ Atg]] An 0¥ |2 < At exp(—l%Tk) [0°))%,k =1,2,3,---.

Summing up for k from n + 1 to m, then letting m tend to co and using (3.7), we can obtain

Y Al &gt

k=n+1

= 8
<lI6n0" 1> + 001 > Atkexp(—ﬁTk)
k=n+1

o 8
<[P+ o0l [ exp(- o)t
T,

n

1 8
<||6pv"||* + gczl2||vo||2 exp(——Tn)

3 4
<0 + SR exp(= 5 Ta) m = 0,1,2, . (3.8)

Summarizing above results, we have

Theorem 3.1. Let {u}}} and {uj;} be the solutions of difference schemes (1.3) and (1.4)
respectively and denote v} = uj; — uj;. If

Atngﬁ/sa n:1)273)"'>
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then, we have

8
[o"I1” < exp (=g Tu) I, n=1,2,3,--;
S k2 1 8 0112
Z Atk”éh’l} || S §exp(_l_2 n)“v || ) n:172737"';
k=n+1

1 4
[18n0" (2 < (lonv°|* + 10212||v0||2)exp (—l—2Tn), n=123,-;

= 4
S Aul AP < (0l + SR ep(—5T), n=1,23,0,
k=n+1

where Ty, = > p_, Aty, c = max|, (<1244 ¢ (1)

4. Crank-Nicolson Scheme

Consider Crank-Nicolson scheme for (1.1) as follows:

u™ —u?fl _1 1
”ATJ = Ahug : - ¢(UZ ®) + f(@i,y5),
1<ij<J—1,;n=1,23,- (4.1.1)
’U,% ZU?J :ugj :ugj :07 OS Z).] S J: n = 1)273)"') (412)
n*l .
where u;; ® = $(ufy +uj; ). (4.1.1) can be rewritten as
2uly  — up) .
’ Aty, ’ = Ahuz' ’ _¢(U’Z' 2)+f(wi7yj)7 1<4,j<J—-1n=12.3,--.
Theorem 4.1. The difference scheme (4.1) has a unique solution.
Proof. We will prove the theorem by induction. Assume u®, u', -+, 4! exist. Let g: H —

H be defined as
9(0)ij = 2vij — Atp[Apvij — d(vij) + fwi )] — 2ufy 1< 0,5 < T -1
Obviously, ¢g(v) is continuous. In addition,

(9(v),v) = 2(v,0) = Atu[(A40,0) = ($(v),0) + (F,0)] = 2(u" ", v)
= 2|lvll* + Aty [IIoa0]]* + (6(v) = $(0),v) + ($(0) = f,v)] = 2(u""",v)
> 2l|oll* — Atullé(0) = £ lloll = 2[ju" || Jo]

= 2[Jv[| {lloll = (%Atnll¢(0) = fll+ "D |-

When |[[v]] = £ A, [|¢(0) — fIl + [[u"~Y], (9(v),v) > 0. Thus, by Lemma 2.2, there exists a
v* € H such that g(v*) = 0 and [|v*|| < $A%,[|¢(0) — f|| + [[u"~"||. Observe that 2v* — u™~! is
just the solution u™ of difference scheme (4.1).

The proof of the uniqueness is simple, which we omit.

Next we will discuss the asymptotic behavior of the difference scheme (4.1). We have the
following results.
Theorem 4.2. Suppose {u};} and {uj;} are the solution of ({.1) and (1.4) respectively and
vis = ujs — uj;. Then, we have

0™ |2 + 288, 1050 21 < [0 1%, n=1,2,3,---. (4.2)
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In addition, if {Atn,}02, has a positive lower bound, then

nhﬂrr;OHU || =0. (4.3)

Proof. (a) Subtracting (1.4) from (4.1), we obtain the error equations

v — U?~_1 1 n—l. p_1 ..
%:Ahvi]‘ 2_¢I(nij 2)’Uij >, 1<i,5<J-1L,n=1,23,.--

n (4.4.1)
vly = vy :vgj :v}‘j =0,0<i,j<J, n=1,2,3,--, (4.4.2)
viy = uo(wi, y;) —ujj, 0<i,j < J. (44.3)

1 1
n—sz . n—sz
where 7;; * is between u;; * and uj;.

Multiplying (4.4.1) by v} + Ufjfl and summing up for 7 and j, we have

J—-1
n_1l n_1\2
(||vn||2 _ ||,Un71||2) -9 (’l}ni%,Ah’l}nié) —9h2 Z ¢’(nij 2) (vij 2)

ij=1

<2 (v A = 200,

At,,

or,
[0"[2 + 288, 1650 2|2 < "Y1, n=1,2,3,---.

This is (4.2).
(b) It follows from (4.2) that the sequence {|[v™||}22, is a decreasing one and has a lower
bound 0. So {||v™||}22, has a limit as n tends to co. Denote

nlLIr;O [[v™]] = e. (4.5)
Taking the limit in the two sides of (4.2) and using above equality, we have
m At,||5,0" 2|)? = 0.
n—o0
Since {At,}22, has a positive lower bound, we have
lim [|8,0" "% |)> = 0. (4.6)
n—o0

Lemma 2.1 gives )
lim [[o""2|> =0,
n—oo

or,
_1
lim v;; =0, 1<i,j<J—1 (4.7)
n—r00
It follows that . L
li Ik d Ul nTE gk
1Mooty Ug; an 1My 00T); Ujj-

Taking the limit for n in (4.4.1) and applying (4.7), we have
lim (v —of ') =0, 1<4,j<J-1 (4.8)

Now, taking the limit for n in the equality

2[(0)” + @ ) = (ofy +oi )+ (0f =)’
and using (4.7) and (4.8), we get
lim [(vf})”+ (v 1)?] =0, 1<i,j<J—1

n— o0 Y
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Summing up above equality for i and j, we obtain
. ni2 n—102) _
Jim ([l + (0" 7H?) = 0.
Inserting (4.5) into the left hand side of above equality, we have ¢ = 0. Thus,

lim |[o™]| =0.
n—o0

This completes the proof.

It is hoped that some estimates similar to those listed in Theorem 3.1 can be obtained, but
we have not succeeded.

Using the results of this paper and following the idea of the paper [5], we can obtain the
error estimates, uniformly in time, of the difference scheme (1.3).

Acknowledgement. We wish to express our gratitude to the referees for their helpful com-
ments and suggestions which improve the results of Theorem 4.2.
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