Journal of Computational Mathematics, Vol.21, No.4, 2003, 463—-472.

A SUCCESSIVE LEAST SQUARES METHOD FOR
STRUCTURED TOTAL LEAST SQUARES *V

Plamen Y. Yalamov
(Center of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria)

Jin-yun Yuan
(Departamento de Matemdtica, Universidade Federal do Parand, Centro Politécnico, Caiza Postal
19.081, 81531-990 Curitiba — PR, Brazil)

Abstract

A new method for Total Least Squares (TLS) problems is presented. It differs from
previous approaches and is based on the solution of successive Least Squares problems.
The method is quite suitable for Structured TLS (STLS) problems. We study mostly the
case of Toeplitz matrices in this paper. The numerical tests illustrate that the method
converges to the solution fast for Toeplitz STLS problems. Since the method is designed
for general TLS problems, other structured problems can be treated similarly.
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1. Introduction

Total Least Squares (TLS) problems appear in many engineering applications such as signal
and image processing, systems identification, and systems response prediction. A good survey
of areas of application and computational methods is given in [17].

The TLS problem can be stated as follows:

||E | r||r = min, where (A+ E)z =b+r. (1)

Here A,E € R™*™ (usually m > n), and z € R",b,r € R™. The subscript F' denotes the
Frobenius norm. E and r are called errors in the model.

All the algorithms in [17] are based on the Singular Value Decomposition (SVD) analysis
(see [9, 10]). Other approaches are taken in [3] (general matrices) and [12] (Toeplitz matrices)
where methods for nonlinear equations are used to solve the problem. All these methods are
suitable for general matrices, and do not take into account any structure in the matrix E. Very
often in practice the matrix A has some structure, e. g., Toeplitz, or Hankel [13]. Sometimes
the matrix E requires to have the same structure as A. We will call this problem a Structured
TLS (STLS) problem. For this problem the SVD based methods of [17], and the methods of
[3, 12] do not produce a matrix E with the desired structure.

A different approach is applied in [15] where minimization techniques are used to solve
STLS problems. Toeplitz and sparsity structures are considered as an application. This method
produces a matrix E with a prescribed structure. The method is suitable only for TLS problems
of small size.
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A number of methods for solving large Structured LS (SLS) problems ([2, 4, 5, 6, 7]) mo-
tivates us to establish some method for solving STLS problems by using SLS methods. The
purpose of this paper is to propose such a method for the STLS problem in which the basic
kernel is the solution of a LS problem. In this way the proposed method can be used for solving
large STLS problems. We give a general framework of the method. Then, by a suitable choice
of a parameter, the method is applicable to structured, or unstructured problems (We use the
same idea as in [15]). We prove global convergence for any structure. In the case of Toeplitz
A and E we show also that each iteration step is faster than one step of the method in [15].
While the minimization of the errors in [15] is with respect to the 1, 2, and infinity norms,
here we discuss only the 2-norm. Clearly, this norm is the best choice when LS solutions are
involved. In this paper, the existence of solution of the structured total least squares problem
(1) always assumed. The outline of the paper is as follows. In Section 2 we present the new
method and study its convergence. In Section 3 the implementation for Toeplitz STLS problems
is considered. Finally, numerical experiments are give in Section 4.

2. The LS Method

Since the equation
(A+E)x=b+r (2)

is nonlinear with respect to the unknowns F, x, and r, we assume that the unknowns in a
nonlinear system can be split into two groups, for example, one group for x and another group
for £ and r. With this splitting, if the unknowns in one of the groups are constants the problem
becomes linear with respect to the unknowns from the other group, and vice versa.

In such nonlinear problems we can start with some initial value for one of the groups of
unknowns, and then alternatively compute approximations of the two groups of unknowns by
solving linear problems according to some iteration scheme.

For the TLS problem we suggest the LS solution (9, Az(®) = b + r(©) as an initial value
for z. The same initial value is chosen also in [3, 15]. This choice is natural because the LS
problem is just a special case of the TLS problem, and in many cases z(®) will be close enough
to the solution of the TLS problem.

Let us also note that if z is constant, and E and r are variables then problem (1) can be
rewritten as ‘

Here the matrix X and vector « are chosen in such a way that
Xa=Fx.

"I =min, Az+ Xa=b+r. (3)

2

This choice depends on the structure of the matrix E. We present a few examples:

e F is unstructured. Then we have

1 P Tn
1 [ Tn
_ mXxXmn
X = _ €ER ;
1 P Tn
o =

T

Vec(E) = (611,612,...,eln,egl,em,...,egn,...,eml,emg,...,emn)

e FE is general sparse. Then X and « are also sparse, and their sparsity pattern depends on
the sparsity pattern of E.
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e FE is general Toeplitz. Then we have

Ty Tp-1 -0 X1 0
l‘n ... 1‘2 ',1:1
_ mX(m+n—1
X = . o e R ),
0 Tp "t To X1

a = (en_l ...€1 €ep€e_1... 6_m+1)T e R

e F is banded Toeplitz. In this case we get

Ty41 Ean e I
Ty+2 Tyl 0 T2 T
_ . mXx(ut+l+1
X = ; - e Rm>(utHh)
Tn T2
In Tn—1+2
_ T
a=(ey,...,€1,€0,6_1,...,e_1)" ,

where u is the upper bandwidth (number of nonzero super-diagonals), and [ is the lower
bandwidth (number of nonzero sub-diagonals) of matrix E.
= min

2.
(—IX)(Q):b—Ax, (4)

i. e. the couple (r,a) (or the entries of (F,r), respectively) is the minimum-norm solution
of the underdetermined linear system (4). Here I € R™*™ denotes the identity matrix, and
X € R™*k where k depends on the structure of the matrix £. We can decompose every vector

()-()-

where z is belong to the null space of (=1, X). Then, the solution of (4) is (2) = (-1, X)Ty

where y satisfies (5) (see [2]).
Let us denote s = b — Az for brevity. Let (r,a) be the LS solution of problem (4). One of
the ways to find this solution is to solve

(I+XXT)y=s, (5)

Then (3) is clearly equivalent to

b

a

and then set

r=-y, a=XTy.
We discuss this method of solution because the matrix I + X X7 is not difficult to compute in
practical applications, and has some nice properties. Let us note that I + X X7 is symmetric
positive definite (s.p.d.), and its smallest eigenvalue is not less than 1. So, when it is necessary

to solve system (5) we can use conjugate gradients with a suitable preconditioner.
Now we give the matrix 7 + X X7 and the vector a for the four example structures above:

e E is unstructured:
T+ XXT =1+ |z/3)1, Q(i—1)n+j = Yizj (in this case E = yzl).
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e FE is general sparse:

a(1) q(m)
I+ XXT =diag{(1+) a3 ),....,(1+ Y «} )},
p=1 p=1
Qi—1)n+jp, = YiLjps

where ji,ja,...,Jq() are the positions of the nonzero entries in row i of matrix F, and
q(4) is the number of nonzero entries of E in row i.

e FE is general Toeplitz:

I+xxT=

n n—1
toeplitz([1 + Z(a:f»k_l))Q], Z ﬂfgk_l)wﬁi?”a

=1 i=1
n—2
Z mgk—l)mgigl)’ s )xgk_l)mgzk_l)7 07 T ’0)’
i=1

a = XTy7

where toeplitz(c) denotes a symmetric Toeplitz matrix whose first row is ¢, and « is a
product of a Toeplitz matrix and a vector. The matrix I+ X X7 is also s.p.d. and banded
(with 2n + 1 nonzero diagonals).

e [ is banded Toeplitz. In this case matrix I + X X7 is banded with lower bandwidth 21,
and upper bandwidth 2u; « is the product of this banded matrix and a vector.

Let us note that in the last example matrix I + X X7 is not Toeplitz but is close to Toeplitz.
The difference is in the first max(u,l) rows. The rest of the rows form a Toeplitz submatrix.

So, when z is given we can compute E and r. When E is given we can compute x and r by
solving a LS problem with the matrix A + E, and the right hand side b. Based on these notes
we propose the following TLS method:

Algorithm 1.
Solve the LS problem Az =b to get (9, and (9 = —5(0) = 420 —p
for £k =1,2,... until convergence

(k)
Solve the LS problem (—I X (1)) < Z(k) = g(k—1) (*)
Define E® such that X(*—Dqk) = gk)z(k-1)
Solve the LS problem (A + E(k))x =b to get (k) (¥%)

sB) —p— Agk)
r(k) = pk) p(k) _ g(k)
end

The first important issue is whether we compute satisfactory E and r. The following theorem
shows that the iterations reduce ||(r” a™)T)||» at each step.

Theorem 1 If a®) +®) gnd o* =V +*=1) gre the errors from two successive iterations, we

have
| oo <

o®)
Equality holds if and only if o'*) = o*~1) gnd r*) = p(k=1),

P (k=1)
ok=1)
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Proof. From the way we compute E*) and Algorithm 1 we have

(A4 EM)gk-D = ggl=1) 4 pk)p(k=1)
h— gk 4 x(k=1), (k)
h—sk=1) 4 X(k—l)(X(k—l))Ty(k)

Then we have
RO )
a® || = I3 + a3 < ly® )13 + [[(XB=D)Ty R 3, (7)
2

as far as r®) and y(*) are residuals for the system (A + E®))z = b but r(*) is the residual from
the LS solution, and a® = (X =D)Ty(*) From (7) we get

NONE
k)

IN

o (y(k))Ty(k) + (y(k))TX(k—l)(X(k—l))Ty(k)

— (y*HT [HX(k—l)(X(k—l))T} y(®)
= (stk=0)T [I+X(k—1)(X(k—1))T}’1 (k=1)

= (X1 _ pk-yT |:I+X(k71)(X(k71))T -1
(XD (=1) _ k-1

r(k_l)
= [ @z (s ) ®
where )
Z= < (X(k_—Il))T > [I*‘X(kfl)(X(kfl))T]_ (—I x*0),

Let us assume that the SVD of (—I X*~1) is given as
(-I X~y =puzvT,
where U € R™*™, 5 ¢ Rm*(2mtn—1) )y ¢ R2min—1)x2min—1) and 7 and V are orthogonal.
Then after some standard manipulation we get
Z=VaV,I, (9)

where V,,, consists of the first m columns of V. Hence, from (8) and (9) we obtain
2

(k) (k=1) \ |7 (k=1) |7
r (T r
‘ o | = Vin ( o (k=1) ) ) < gt-1) ) (10)
For the second part of the proof we will prove only that
(k) (k—1) (k) (k—1)
r r . r r
< o ) = < Q(k—1) > ik ‘ Q(k—1) H (11)
2

The statement in the opposite direction is evident.

From (11) it follows that everywhere in (7) and (10) we have equalities instead of inequalities.
First, from the equality in (7) we have that (k) = —y(¥) because the LS problem has a unique
solution and [|r® || = ||y*)||>. Second, from the equality in (10) we have that

r(k_l)
alk=1)
is the right singular vector of V,I' corresponding to its largest singular value which is clearly 1

(because V,I is a block from an orthogonal matrix). Evidently, the SVD of V,I is
VE=(ov,
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so, its first right singular vector is v*), the first column of V. Thus,

(10 )=, o= 7y |
alk— 9

k—1) (12)

al

Now let us note that

is a minimum norm solution of the underdetermined system in Algorithm 4. Then we get

B () I ) e (e DT
< aZ{k) ) = (a(k) ): ( (X (k=17 )(I+X(k 1)(X(k 1))T) 1
- (k1) (k1)
(=1 X1y < k=) ) = Z( k=) > : (13)

Here we used the expression for
sb=1) — x(k=1),(k=1) _ (k=1) _ p(k=1),(k=1) _ .(k—1)

Then from (9), (12) and (13) we get

(k) (k—1)
( g(k) )chng(l) =M = ( 2(14:—1) > .0

Remark. Let us note that when E and r are not structured then

r

P =1E s,

2
and we minimize the errors in the classical sense. Also note that the algorithm will give the
least squares solution for no TLS solution problem (1).

This theorem shows that the sequence {(r(*), a(*))} converges and the iteration reduces the
norm of the error at each step until the errors of two successive steps become very close. This
suggests stopping criteria of the form

r(k) — r(kfl)
( k) _ qk=1) ) , <&,

or,

(k1) (*)
Jo szl < w0

a(kfl)

where ¢ is a given tolerance.
Now let us discuss in more detail the expression ||[E®)|r(*)|| for general matrices A which
we minimize. At the point of minimum (E | r) we have
1B | 7% = llyz™ = yllE = lBQ + [|2]13) = [Isl3/(1 + llz3), (15)
where (A + E)z = b+ r. But the right hand side in (15) is exactly the Rayleigh Quotient (RQ)
_osTs (T —a2TAT) (b — Ax)
Py aTs ~ 1+ 2Tz ’
which is well-known to be the solution of the eigenvalue problem

Cord ) (5)=2(5) X

But the solution z of (16) is the TLS solution when A = o2, (for example, see [17, p. 37]),
and op41 is the smallest singular value of (A4 | b). So, Algorithm 1 is similar to the RQ iteration
for the solution of the TLS problem proposed in [3] in that both start the iteration with the
LS solution and try to minimize a RQ. Thus the same remarks about the convergence as in [3]
are valid. More precisely, we cannot say to which eigenvalue of (16) Algorithm 1 will converge.
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However, it can be shown (see also [16]) that starting from the LS solution 2(°) convergence to
o2, is guaranteed if

Ho < (‘772; - ‘772;+1):

|

where
172

Ho = @2y 72

and o, is the smallest singular value of (A | b) greater than or equal to oy,41.

Unfortunately, for structured matrices we get a RQ which is a solution to a nonlinear problem
of the type (16). The solution of this problem is much more complicated than Algorithm 1
proposed in this paper, and we will not discuss it.

We did some experiments with Toeplitz matrices in which our algorithm finds the correct
solution within 1-2 iterations to a satisfactory accuracy. These experiments are presented in
the last section.

3. Toeplitz Matrices

We would like to show that each iteration step can be computed relatively fast for Toeplitz
matrices E. Let us discuss the algorithms that can be applied to each step.
For the underdetermined system (*) we do the following steps:

Step 1. M =T + X (k=1 (X (k=I)T
Step 2. Solve My(k) = s(k=1)
Step 3. alF) = (X (k=1))Ty (k)

Matrix M € R™*™ in Step 1 is banded (2n — 1)-diagonal symmetric positive definite and
Toeplitz. For example, for m = 5,n = 3 we have

M =
1+ E?:l 2 riT2 + 1273 123 0 0
T1%2 + xoms 1+ E?Zl T? T2 + T273 13 0
123 T1Ty +Toxy 1+ E?:l r? T2 + 1273 123 ,
0 13 T1To + 2oz 1+ E?Zl T?  T1T2 + 1273
0 0 123 T1Ty + xoxg 1+ 2?21 z?

for some vector € R®. So, M is fully defined by its first row m). By direct calculation it

can be checked that
m =

n n—1 n—2
(1+ Z(mﬁkil))z, Z wgkfl)wgﬁl), Z mﬁ’“”xﬁﬁ;”, o ,x%kfl)m%kfl), 0,...,0).
i=1 i=1 i=1

The entries of m(!) are defined by the following matrix-vector product:

I G 2=
0 2D 2t

in which the matrix is Toeplitz. So, this multiplication can be done with O(nlog, n) flops by
the FFT. If n is small then direct multiplication should be preferred because it would be faster.
In fact, we do not need to form the matrix M explicitly when we use an iterative method to
solve the symmetric positive definite Toeplitz system at Step 2.

At Step 2 we have to solve a linear system with the matrix M. As we noticed, M is s.p.d.,
and its smallest eigenvalue is no less than 1. Here we have several possibilities:
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e direct solution by some banded solver: (1/3)mn? + O(mn) flops;

e iterative solution: O(mlog, m)N;; flops regardless of the preconditionning, where N;; is
the number of iterative steps;

e direct solution by a super-fast Toeplitz solver (e. g. [1]): 8m logsm 4+ O(m) flops.

As far as M has very nice properties we would recommend the iterative solution, where an
appropriate preconditioner (e. g. circulant [8]) can be applied as well.

Finally, Step 3 is a matrix-vector multiplication with the Toeplitz matrix (X *~1)T and
can be done with O((m + n)log,(m + n)) flops.

Unfortunately, the overdetermined system (**) can not be solved efficiently as for general
error matrices E. The reason is that matrix E*) is not of low rank, in general. So, we have to
solve it by some fast method. It can be done by the method proposed in [11] with 4mn + O(n?)
flops.

The computation of s*) and r(*) involves products with Toeplitz matrices, so, we need
O((m + n)logy(m + n)) flops. Summarizing, the total number of flops per iteration step is

dmn + O((m + n) log, (m + n)). (17)

Let us also note that the memory we need is just for a few vectors of length not greater than
m+n.

We can propose also another version of the algorithm which is about twice as fast but needs
more memory. The only difference in this version is the solution of the LS problem (**). Let
us suppose that at the initial step of Algorithm 4 we compute the QR factorization of matrix
A,i.e. A=QR. Then we use the pseudo-inverse A1 as a preconditioner. The preconditioned
system looks as follows:

(I+R'QTEWM)z =2,
Now the following iteration can be applied:
20 = 20 _ Rm1QT (k) ,(i=1) = ,(0) = z(k=1), (18)
The most time consuming operation in (18) is the matrix vector multiplication with the matrix
QT. Tt needs 2mn + O(n) flops. Then the total flop count per iteration step of Algorithm 4

becomes
2mn + O((m + n) log,(m + n)). (19)

This is asymptotically twice less but needs storage for the matrices  and R.

For comparison we will mention the flop count of one iteration step for the STLS method
in [15]. The flop count is not given in that reference but in the preceding technical report [14].
Asymptotically it is O(mn? +m?) which is clearly more than in our method (see (17) and (19)).

4. Numerical Experiments

All the examples are with Toeplitz matrices done in MATLAB. The first two are taken from
[15], and the second two from [12]. The stopping criterion in all the examples is

r(kil) r(k) r(k)
/
2 2

a(k_l) a(k) a(k)
i. e. we find the norm of the error with one correct digit approximately. This is enough because
the next iterations will not improve the error essentially. In all the examples we give the norm
of the error
r(k) H

<0.1,
2

ERRNORM =
k)

from the last iteration.
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Example 1. Here m = 6,n = 4. The first column and row of the Toeplitz matrix A are:
col=[-3710 —100], row=[-3000].
The right hand side is:
b=[-122562 — 59 16 100]”.
For this example we have ERRNORM = 6.58E-2, and
x = [4.0290 0.9056 — 5.0122 9.5310]%.

Example 2. The matrix is the same as in the previous example. The only change is in the
right hand side:
b=[-122562 —599122]".

We have ERRNORM = 6.62E-1, and
x = [3.4755 1.7893 — 6.3365 11.1582]%.

Let us note that in both examples the solution is slightly different from the one presented
in [15] but the error norm computed here is less than the corresponding error in [15].
Example 3. The matrix A and the right hand side b are as follows:

2 -1 0 O 0 -0 0 O

-1 2 -1 0 0 --- 0 O 0
o -1 2 —-10 --- 0 O 0
A= ) - ERnX(nfl)’

0 0 0 0 O 0 -1 2
0 0 0 0 O 0O 0 -1

0

1

b= ) +ee R,
n—1

where e is randomly generated and scaled so that ||e||2 = 0.01]|b||2. The results are presented
in Table 1.

Table 1: The error norms for Example 3 for different n.
n 10 100 200 300
ERRNORM | 7.18E-1 | 6.08E-2 | 1.46E-2 | 7.40E-3

Example 4. The first column and row of the Toeplitz matrix A are given as follows:

(w—it1)2 .
col: a;1 = \/Qirazexp( (wQDjjl) ) , 1= 1,2,...,2w+1,
7 0, otherwise,

row = [a1; 0...0],
where a = 1.25, and w = 8. The right hand side is:
b=[1...1]T +e,
where e is randomly generated and scaled so that ||e]l2 = 0.01||b||2. The results are presented

in Table 2.

Table 2: The error norms for Example 4 for different n.
n 64 100 200 500
ERRNORM | 4.03E-1 | 3.94E-1 | 3.87E-1 | 3.84E-1
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In all the examples the number of iterations was 2. This shows that the algorithm can be
fast enough (especially if some fast, or super-fast, methods are applied for the basic iteration
step).
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