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Abstract

This paper is devoted to analysis of the nonconforming element approximation to the
obstacle problem, and improvement and correction of the results in [11], [12].
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1. Introduction

For the conforming (i.e. C°—) linear finite element approximation to the obstacle problem,
the error bound O(h) has been obtained by Falk [5] in homogeneous boundary data and Brezzi
et.al., [3] in nonhomogeneous data and with lower order term. The author considered noncon-
forming (i.e. nonC°%-) finite element approximation to the obstacle problem in [10] and [11].
Later, [12] presented a rigorous proof of the error bound O(h) and correction of the proof in [11]
for nonconforming linear element approximation to the obstacle problem under the hypothesis
that the free boundary has finite length as in [3].

In general, the length of the free boundary could be not finite, because there exist probably
infinite simply connected coincidence sets, while the length of the boundary of each such coin-
cidence set is finite for the smooth solution of the obstacle problem. In fact, one can constructe
example of infinite simply connected sets in a bounded domain, with property that the total
length of the boundaries of all the sets is infinite. Thus it makes sense to estimate the error
bound of nonconforming linear element approximation to the obstacle problem without the
hypothesis of finite length of the free boundary.

In this paper, by the similar way as [3], we obtaine the error bound O(h) for the noncon-
forming linear element approximation to the obstacle problem without the hypothesis of finite
length of the free boundary. And in [10], [11] the author also analyzed Wilson’s element for the
obstacle problem with an unnatural construction of the discrete convex set K. In this paper
we consider Wilson’s element approximation to the obstacle problem with a natural and simple
construction of the discrete convex set K}, and obtaine the same error bound O(h) as in [10],
[11].

Let Q be a bounded convex domain in R? with smooth boundary ), and f € L?(Q),x €
H?(Q),g be the trace of a function in H?(Q) on 0N and y < g on 9Q. Let us consider the
following obstacle problem:

to find u € K, such that (1.1)
a(u,v —u) > (f,v —u) Y veK, )
where
K={veH"(Q):v>x aein Qu=g on 90}, (1.2)
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a(u,v) = /QVU - Vudz, (f,v) = /Q f-vdz. (1.3)

It is well known that (see [4]) problem (1.1) is equivalent to the following differential problem:

—Au=f in Qt ={zeQ:u(x) > x(z)},
—Au>f in Q" ={z € Q:u(z) =x(z)}, (1.4)
u>x in Q, and u=g on 0.

For the regularity of the solution of the obstacle problem (1.1), we now present a very
impotant result by Brezis:
Lemma 1.1 (see [6], [7]). If f € L°(Q) N BV (Q),(g,x) € C3(Q) with x < g on Q and 9
is sufficiently smooth, then the problem (1.1) has a solution

1
u € WP (Q), 1<p<oo, s<2+1—). (1.5)

We now consider the finite element approximation to problem (1.1). Let 7, be a regular
subdivision on Q, Q = Ure7, T, with T € T, denoting the element, and let V;, C L?(Q)
be the finite element space with norm || - [|», and Kj, C V3 be a closed convex subset as an
approximation of K. Then the finite element approximate problem of (1.1) is the following:

{ to find up € Kp, such that (1.6)
ap(un,vh —up) > (f,vn — up) vV v, € Kp. ’
where
ap(un,vp) = Z / Vup - Vopdz. (1.7)
T

TeTh

2. The Nonconforming Linear Element Approximation

Let Ty, be a regular triangulation of (2, the vertices of the element T be denoted by a},1 <
i < 3, and the midpoints of the edges of the element T be denoted by m},1 < i < 3. And let
X}, denote the nonconforming linear element space with respect to the triangulation 7. Let

(see Fig.2.1)

Vi = {vp € Xp s vop(m) = g(Pp) V nodes m € 004}, (2.1)
Ky ={op € Vo :on(m]) > x(m]) ¥V T €Ty and m ¢ 00}. (2.2)
Let
VY ={vp € Xp :vp(m) =0 V nodes m € 00}, (2.3)
then
lwlln = an(wn, wy)? (2.4)

is a norm in V,?.

In order to estimate the error bound of the approximate problem (1.6), firstly we have the
abstract error estimate:
Lamma 2.1. Assume that u and uy denote the solutions of the problems (1.1) and (1.6)
respectively. Then Yvy, € K}, the following inequalities hold:

llw = unlln < [lu—vnlln + [lvn — unlln, (2.5)
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and

llun — vrlln < C{llu—vill5 + (w, v — up) +Z Oy - (v, — up)ds}, (2.6)
oT

with C = Const. > 0 independent of u and h, where w = —(Au + f).
Proof. Inequality (2.5) is just the triangle inequality. Inequality (2.6) can be proved as
follows: Since uj, being the solution of (1.6), then Vv, € K} we have

lon — unlli = an(vn — wn, vi — up)
= ap(vn — u, v — up) + ap(u, vy — up) — ap(Up, v — Up)
< lu —vnlln - [lvn — wnlln + an(uw, ve —ur) — (f,vn — un),
from which we have
llon — unlly < 2{[lon — ullf + an(u,vn —un) = (f,vn — un)},

and by Green’s formula, we have

ap(w,vp —up) — (f,on —up) = XT:/TVU -V(vp — up)dz — /Q flop —up)dz

= /Q(—AU — f)(vn —up)dzr + XT: /T Oy - (vp, — up)ds,

from which and previous inequality, the estimate (2.6) is proved.

Fig. 2. 1.

For later use, we introduce the following
Lemma 2.2 (see [3]). For all T € Ty, and v € P(T) such that v(zT) = 0,27 € T, the
following inequality holds:
lvllo,r < hrlvli,T. (2.7)

Proof. In fact, we have
Iol3r = / jo(a)|2de = / jo(z) — v(T) 2dz
T T
= /T|VU|2 e — a:T|2d:r < h%«|1}|iT.

The following error estimate using the nonconforming linear element approximation to the
obstacle problem (1.1) holds:
Theorem 2.1. Assume that the solution u of problem (1.1) possesses the regularity: u €

WSP(Q)V1I<p<oo,s<2+ %, and the data are satisfying: f € H*5~¢(Q),x € WH%_E”’(Q)
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for any € > 0 and g € H?(Q),g > x on 09, then for the solution uy of the nonconforming
linear element approximation (1.6), the following error estimate holds:

llu — uplln < Ch, (2.8)
with C' = Const. > 0 independent of h.

3. The Proof of Theorem 2.1

We now prove Theorem 2.1 as follows:
(i) Let My : C%)) — X be the interpolate operator as follows, for any given v €
C°(Q),M,v € Xy, such that

Myo(m!) =v(ml) V T €T, 1<i<3,
and let
HTU = Hh’l}|T.

Since Mpv(m) = v(m) # v(Pp) = g(Pn) VYm € 0Q (see Fig.2.1), then v ¢ K for
v € K. So we should modify the interpolate operator ITj, as follows: Let IT : C'(Qp) — X
be defined as follows, for any given v € C°(2},), v € X}, such that

Opo=Iyv V T € T) — —the set of the interior elements,

and for any T' € 97, — — the set of the boundary elements, m € 9, — the midpoint of one
edge of T € 0T, and mT, m— the midpoints of the other two edges of T € 07y, (see Fig.2.1),

Mro(m!) =v(ml) i=1,2,
and
M7v(m) = g(Pr) = v(Pp).
Then for any v € K, it can be seen that v € K, and for any T' € 97Ty, we have
(Irv — Tlr0) (@) = (v(m) = v(Pn)) - fim(@) ¥ @ € T,

where pn,(z) denotes the basic function of the nonconforming linear interpolant: un,(z) €
Py (T')- the space of linear polynomials defined on T, and

pm(m) =15 pp(m]) =0, i=1,2.
Under the assumption that the boundary 02 is piecewise smooth, then |m| < ChZ., and
|0(m) = v(P)| = [Vo(Qum) - Pamit] < Ch3 - [v]1 000
Thus we have VT € 07,
100 = rollo,r < [v(m) = v(P)| - [|mllor < ChE[v]1,00.0,
and

. ~ 1
ITho = Maollo, ={ D Tzv —Troll3 7}
TedTh

<CR{ Y 13 oo < Ch2[oli s 0. (3.1)
TeoTh

Furthermore, VT € 073,

Hzv —Mzlir < [o(m) = v(Pa)| - lmlr < Ch* ol 0.0,
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and

. ~ 1
1Mo =Tl ={ D Mo —Trolf 7 °}2
TeoTh

<CR{ > 11 ulisen < Ch' o)1 s 0. (3.2)
TEOT,

Now we let vy, = I,u in (2.5) and (2.6), with u being the solution of problem (1.1). Then
by the interpolation error estimate and (3.2) we have

llu — Mpullp < |lu— pulls + [[Mhw — Dyull
< Ch(lulz,e + h*?|ul1,00,9)- (3.3)

And by the standard error estimate for nonconforming linear finite element (see [9]), we
have

Z Oy - (fIhu —up)ds < Ch|u|27Q . ||ﬁhu — up||n- (3.4)
TeT;, 79T

Thus by Lemma 2.1, in order to estimate the error of the nonconforming linear element
approximation to the obstacle problem, it is sufficient to estimate:

(w, Mpu — up)
= (w, I (u = x) = (= x)) + (w,u = x) + (0, Tnx = un). (3.5)
Since (w,u — x) = 0 (see (1.4)), by using the interpolation error estimate and (3.1):
(w, Iy (u = x) = (u = x)) < llwllo,g - [1Ta(u = x) = (u =)o,
< OW?|lwlloo llu - xllsa + h[u - |1 o0}, (3.6)
we have
(w, Mpu —up) < CR?(|lu = Xll2,0 + A% |u — X|1,00,0) + (w, Tpx — up). (3.7)
(ii) By (3.1), we have
(w, Mpx — un) = (w, Mpx — up) + (w, Iy — Mpy)
< (w, Mpx = un) + CR*?|lwllo, - [x]1,00,0- (3.8)
In order to estimate the first term on the right hand side of (3.8), let

Qf ={TeT,:Tcat},
Q0 ={TeT,:TcQ, (3.9)
Q, ={TeTp: TN #0,TNQ° #0}.

Since w(z) =0 V z € QF, then
(w,Mpx —up) = Z / w(Mpx — up)de + Z / w(Mpx — up)de. (3.10)
TeQ? T TeQ; T
We now firstly estimate the first term on the right hand side of (3.10). Since on T' € Q9 ,w >
0and x =wu, if Iyx —up <0on T € QY then
/ w(Ilpx — up)dzx < 0. (3.11)
T

Otherwise, there exists ° € T, such that (IT,x — uz)(z®) = 0, in this case, we have, by
Lemma 2.2,

/ w(Ilpx — up)dx < Chl|lwl|o,r|Irx — unl1,T
T

< Chllwllo, 7 {Trx — x|1,7 + IX — unl1,T}
< Chllwllo,r{h|x|2,r + | — un|1,r}, (3.12)
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since x =u on T € Q9. Then

> / w(llpx — un)de < Chllwljoo{hix|2.0 + llu —unlln}- (3.13)
rea9 /T

(iii) Next we estimate the second term on the right hand side of (3.10). On T' € Q" ,w > 0,
but x # u. If llrx —up <0on T € Q,, then

/ w(Ilrx — up)dz < 0. (3.14)
T

Thus we consider only the case where there exists 7 € T' € Q,, such that (IIrx—u)(z7) =
0. By the Lemma 2.2 and (Il7x —up)(m7) < 0, mT—the midpoints of the edges of T, 1 < i < 3,
we have

/ w(Ilrx — up)dz < / (w — Py w)(Irx — up)de
T T

< |lw = P wllo,7|Mrx — unllo,r
< Chllw — By wllo,r[Mrx — upliz. (3.15)
By the interpolation error estimate (see [4], [2]), we have
llw = P wllo.r < Ch**~|wllos—e, 1,

then

/Tw(HTX —up)dr < Ch " wllos—c,.7 - TIrx — un|1,7 (3.16)
for any €; > 0. By the triangle inequality as in [3], we have that

Mrx —upli,r < Mrx — xh,7+ X —uli,r + |u—up|i,7, (3.17)
thus

Z /Tw(HTx—uh)da:

TeQ;
<O Y fwllos—e,r{Trx = xlur + X = ulur + | —ualir}. (3.18)
TEQ;

The first term on the right hand side of (3.18) can be estimated as follows: By the interpo-
lation error estimate (see [4]),

Cht? e Z lwllo.s—ey, 7| HrXx — X|1,7
TEQ;,
<O 37 ullos—erixbr < CR**wllos—cn - Ixloo.  (319)
TEQ,
The third term on the right hand side of (3.18) can be estimated as follows:
Ch'5 = " wllos—er,7 - |t — uply,7
TEQ,
< ChPP = |wllo.s—er0  llu = unln- (3.20)

Finally we estimate the second term on the right hand side of (3.18). By the assumptions
of Theorem 3.1, we have that

(x,u) € W2H5=2P(Q), 1< p<oo, e >0, (3.21)
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then (see [1], [7, §3.5, Theorem 5.1])
1
Vix —u) € WHs=2P(Q) o €090, a=1-=—e, (3.22)
p

from which, and for such T' € €2, , that there exists 2T eT:
Vix —u)@") =0,
we haveV z €T,
IV(x = u)(z)| = [V(x = u)(z) = V(x —u)(z")]
< Cle =2 Pl ~ulloy sy o
< Ch®[Ix — ullyy

1 .
;—627P79

Then
=uhir = { [ V0= wPde}t < ORI =l o (3.23)

Thus taking into account that « =1 — % — €2, the second term on the right hand side of
(3.18) can be estimated as follows:

Cht5— Z llwllo.s—ey,7 - X —ul1,T

TEQ;,
< Ch2'5+a_61{ Z ||w||0-5—617T}||X - u||2+%—627p79
TeQ;
o 1
<Rt (3T )T wllos—ae X~ im0
TEQ,

< CR*FE=Grate)|ylo s oo [Ix — ullhs (3.24)

1
;*624’79’

from which it can be seen that the second term on the right hand side of (3.18) is bounded by

Ch'?»= Z [wllo.s5—er,7 - [x — ulr,r = O(R?), (3.25)
TeQ,

if%+€1+€2 <i
Thus the proof is completed.

4. Wilson’s Element Approximation

In this section, we consider Wilson’s element approximation to problem (1.1). Let € be a
rectangular domain in R2, T, a regular subdivision of Q, and T € 7 be the rectangle element,
whose vertices are denoted by a;,1 < i < 4 (see Fig.4.1). Let X} denote Wilson’s finite element
space, i.e., for any vy, € Xy, vp|r € P2(T)— the space of polynomials, whose degree < 2, with
the expression:

2

4
vp ()T = th(ai) i) + Y bivn) - g;(x), (4.1)

j=1
where
pa(e) = (L4 SHE) (L4 5552),
...... (4.2)
pal@) = (1 4+ 22 (1 - 52);
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and

Rz . (4.3)
¢j(vn) = o J7 Ojjondz, 1< <2,

{ gj(z) = 5[(554)* = 1],

1
c=7 Zai (4.4)
i=1
Xz
a, 2h, a
T
b — 4 — — —+c oh,
|
|
!
as | Ay
|
0 c, X
Fig. 4. 1.

In [10] and [11], the following Wilson’s element approximation to the obstacle problem (1.1)
has been considered:

{ to find up € Ky, such that (4.5)
an(up,vn —up) > (fyon —un)  V vy € Kp, '
where
Kn= {vn € Xp :vnlr(a:) > x|r(a:),1 <i <4 and ¢j(va) < ¢5(x),1<j <2
V T € Th;vn(Q) = g(Q) V boundary nodes @ € 00}. (4.6)

The reason of including the restrictions: ¢;(vn) < ¢;(x),1 < j < 2,1in K, is that if
vy € Ky then vy > Iy, where IIj, : H2(Q) — X}, denotes the interpolation operator defined
later (see (4.10)). But these restrictions are such that the construction of K}, is unnatural,
and the computation of problem (4.5) is uncoveniunt. We now consider a natural and simple
formula of Wilson’s element approximation to the obstacle problem (1.1) without the previous
restrictions: @;(vy) < ¢j(x),1 <j <2,in Kj. Let

Ky, = {vn € X roplr(a;) > x|r(a;),1 <i<4 ¥V T €Ty,
vp(Q) = g(Q) V boundary nodes @ € N}, (4.7)
and Wilson’s element approximation to the obstacle problem (1.1) is as follows:

{ to find up € Kp, such that (4.8)

ap(up, v —up) > (f,vn — up) V vy € K. ’
We have the following error estimate

Theorem 4.1. Assume that u and uy, are the solutions of the problems (1.1) and (4.8) respec-

tively, and that u € H?(Q),x € H?(Q),g9 € H%(Q),g > x on 0Q and the inverse hypothesis of

the subdivision Ty, is satisfied. Then the error estimate holds:

lu = unlln < Ch{|ul2,0 + [x|2.0 + [lwllo}, (4.9)
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where w = —(Au + f), and C = Const. > 0 independent of u and h.
Proof. (i) Let I, : H?(Q) — X}, denote the interpolation operator defined as follows: for
any given v € H2(Q),

4 2
Oro(z) =Y v(api(e) + ) ¢(0)e(2), YV T €T, (4.10)
i=1 i

and
HhU|T = IIrv V T €T (411)

Then we have IIpu € K. Thus by taking v, = IIv in (2.5) and (2.6) in the abstract error
estimate Lemma 2.1., and the standard error estimate for Wilson’s element (see [9]):

> - (Mpu — up)ds < Chluly.q - [Thu — wp|s, (4.12)
TeT, BT

in order to obtain the error estimate (4.9), it is sufficient to estimate (w, pu — up).
(ii) by formula (1.4), then (w,u — x) = 0, thus we have

(w, Mpu —up) = (w,p(u = x) = (v —x)) + (0, dpx — us). (4.13)
By the interpolation error estimate (see [4]), we have
(w, I (u = x) = (u = x)) < Ch[Jwllo.elu — xl20 (4.14)

Thus the remainder to be estimated is the term (w, Il x — us). We now introduce another
interpolation operator IIj, : H2(Q) — X}, defined as follows: for any given v € H?(Q),

2
Mro(z) = Zv (a;)pi(z) + Z(i;j(v,x)qj(a:) VTeTh, (4.15)

and - -
Myvlr = o, (4.16)

where
$;(v,x) = min(¢;(v), 6;(x)). (4.17)
Since

¢;(Irv) = ¢ (v, x) < &5 (x), Hro(a;) = v(aq), (4.18)

it is easily seen that
(Ipx — Mpup)(z) <0V z€Q, (4.19)
from which we have, since w > 0 in Q (see (1.4)),

(w,Tpx —un) = (w, Ty — Mpup) + (w, Tpup — up)
S (w,f[huh — Hhuh) = Z/ ’LU(f[T’LLh — HTuh)dm
T

=2 [ Z{@ (un ) = &5 (un)} - 4 (@)

< Z||w”0TZ|¢] = ¢j(un)l - llgjllo,r

<Ch Y Il | 1035 - Dyjunlds
T T

< Ch*Y wllor - [x = w27 (4.20)
T
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By the triangle inequality and the inverse inequality (see [4]), we have

IX = unle,r <X —ulo,r + |u—Truly 7 + [dru — uplz, 7

< C{xla,r + |ulo,r + R ru — up |7}

< C{xla,r + |ulo,r + R ru — uli7 + B Hu — upli 7}

< C{lxla.r + |ul2.7} + Ch ™ u — up|y 7 (4.21)
From (4.20) and (4.21), we have

(w, TTnx — up) < Ch D wllo.r(Ixlor + lul2.r) + Ch Y wllo.ru — unlyz
T T

< Ch?[lwllo.e(lxlz.0 + lul20) + Chlwllogllu — unlls. (4.22)
Thus the proof is completed.
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