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Abstract
The widely used locally adaptive Cartesian grid methods involve a series of abruptly
refined interfaces. The numerical dissipation due to these interfaces is studied here for
three-point difference approximations of a hyperbolic equation. It will be shown that if
the wave moves in the fine-to-coarse direction then the dissipation is positive (stabilizing),
and if the wave moves in the coarse-to-fine direction then the dissipation is negative (de-
stabilizing).
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1. Introduction

In the adaptive Cartesian grid method [1, 2, 3, 4, 5, 9, 10, 11, 13, 18, 20, 25], the entire
grid is composed of divided zones (which will be called subgrids for convenience) each having a
uniform mesh size and with abrupt mesh refinement at the interfaces. The adaptive Cartesian
grid method shares some common feature with the multilevel methods originally proposed by
Brandt and then evolved to the well-known multigrid method for convergence acceleration, see,
e.g., [6, 17, 19].

A particular feature of the abrupt refinement method is the existence of multiple refinement
interfaces which are separated by subgrids of uniform mesh size. Little attention has been paid
to the stability and accuracy of the abrupt method with multiple interfaces, though the single
interface problem was addressed long before, see, e.g., [2, 7]. In this paper we will address the
question of mesh refinement induced dissipation, which is closely related to the stability of the
difference approximation. Some good dissipation analysis can be found in [12, 21, 23]. Normally
the influence of the abrupt interfaces is coupled with the treatment of the exterior boundaries.
But in this paper we will ignore the influence of the treatment of the exterior boundaries. This
simplification will be stated throughout the paper in its suitable form whenever needed.

Here we only consider three-point difference equations with conservative treatment every-
where (inside subgrid and at interface). The difference approximations on both smoothly refined
grid and abruptly refined grid, based on the same discretization procedure, are presented in
Section 2. Section 3 is devoted to the study of mesh refinement induced dissipation under the
framework of semidiscrete scheme. In Section 4 we will consider the fully discrete scheme in
order to analyze how the mesh refinement influences the total dissipation. To this end we first
we use an energy method to study the necessary condition for energy decreasing (or stabil-
ity). Then we perform an eigenvalue analysis (including a von Neumann stability analysis for
a particular case) in order to study sufficient stability conditions for the Lax-Wendroff scheme.

The conclusions of this paper are summrized in the following two Theorems.
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Figure 1: Abrupt refinement grid.

Theorem 1.1. For a general semi-discrete three-point difference approximation with uneven
mesh spacing, if the wave moves in the fine-to-coarse direction then the dissipation is positive
(stabilizing) , and if the wave moves in the coarse-to-fine direction then the dissipation is neg-
ative (de-stabilizing). Moreover, the amount of dissipation is insenstive to the subgrid width if
the total refinement degree is fized.

Theorem 1.2. For the fully discrete Laz-Wendroff scheme, the lower bound of the stability
region is increased by mesh refinement, while the upper bound is reduced.

2. Three-point Difference Approximations on Smooth and Abrupt
Refinement Grids

2.1. Smooth Refinement Grid and Abrupt Refinement Grid
On a smoothly refined grid , let h; be the size of mesh [ with 0 <1 < L. Conventionally, if

r= h?_’ - is constant independent of [, then the refinement is said to be geometric. In practice we
may have r = h?il depending on [, but such irregular situations have rarely been investigated
theoretically.

On an abruptly refined grid, as displayed in Fig.1, the entire grid is composed of a certain
number of subgrids with different mesh sizes. Let h; be the mesh size on subgrid G; with
0 <1< L. We assume h; = hor! with r < 1 and that the number of grid points in each subgrid
is constant and equal to p, which we will call the subgrid width. For convenience, let
us define the total refinement degree by rp = hp/hg. For geometrical refinement, the local
refinement degree r = h;y1/h; is related to rp by

1

r=r (2.1)

In this paper we will only consider geometrical refinement. Note that the smooth refinement
method can be considered as a particular case of the abrupt mesh refinement method with p = 1
and r — 1. In deriving the difference equations we also require that the difference equation on
an abrupt grid reduces to that on the smooth refinement grid when p = 1.

For purpose of studying the numerical dissipation, it is sufficient here to consider the fol-
lowing scalar equation:

us +auy, =0 (2.2)

approximated by a three-point difference scheme. In order for the results to be useful for
nonlinear problems, we require the treatment to be conservative. Also, for the comparison to
be meaningful, the difference approximations should be designed from the same discretization
methodology for both of the smooth and abrupt refinement methods so that they each reduce
to the other when the grid is uniform.
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2.2. Semi-discrete Difference Approximations
On a smoothly refined grid, let the numerical solution at the point [ be v;. Then the most
accurate three-point conservative scheme, in the semidiscrete case, can be written as:

dvl 1

& = R ey, 1=01.L (2:3)

where the numerical flux g, 1 is defined by linear interpolation:

o 1 i
gl+% = ma’vl + H—la’l)prl, r = h—l (24)

On an abruptly refined grid, let the numerical solution at grid j of subgrid G; be u; ;. The
most accurate three-point scheme reads
duy a )
—% = ——(uy 11 — UL j— =12,..,p,1=0,1,..., L 2.5
dt 2hl (ul,]+1 ur,j 1)7 J y Ly s Py sy Ly eeey ( )
For the interface I, +1 separating the subgrids [ and [ + 1, we have two interface unknowns
uj—1,p+1and u; o which are used in but not provided by (2.5). They are here determined by the
following interface condition which represents a linear interpolation and which was originally
proposed in [7]:

U—1p+U—1p+1 U0+ UL W—1,pr1 — W—1,p UL — U0
2 2 ’ hi—1 hy

(2.6)

Proposition 2.1. The difference approzimation (2.5), supplemented by the interface condition
(2.6), is conservative and is equivalent with the scheme (2.3)-(2.4) on the same grid.

Proof. 1t is obvious that (2.6) and (2.3) are equivalent when the grid is uniform. We now
consider the nonuniform case. At the refinement interface I, 1, the numerical flux for the left
subgrid (1) is given by frjer = 2a(ugp + ug py1) which, with the help of (2.5), can be rewritten
as

fipey = r%aul,p + T%aum,l (2.7)
and the numerical flux for the right subgrid (I 4+ 1) is similarly found to be
r 1
Jri = Pl + LU (2.8)

Since fy, 1 = fiyq,1by (2.7) and (2.8), conservation is clearly guaranteed. Also, (2.7) is
equivalent to (2.4) so that the scheme on the abruptly refined grid is totally equivalent with
the scheme on the smooth refinement grid.

Thus, in the following, the smooth refinement method will be considered as a particular
case of abrupt refinement with p = 1.

For nonlinear problems, one can easily ensure conservation by using a nonlinear equivalent
of the interface condition (2.6). Similarly one can do so for the fully discrete case.

2.3. Fully-discrete Difference Approximations
A general three-point conservative difference approximation can be written in the following
viscous form:

d 9
where [ € £ and j € J, with £L=1{0,1,...,L} and J = {1,2,...,p}. Here \; = aoy, with

(num)
l

Wt = up = SN =) AT W = 2ufs ) (29)

o; denoting the ratio of the time step k; and the mesh size h;, and @ is the numerical
viscosity coefficient. The scheme (2.9) represents all multipoint schemes which can be written
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in conservative form, with the influence of points outside those of a three-point scheme factored

l("“m). See for instance [22]. For example, if we take
(num)

to
!

into the numerical viscosity coefficient

Ql("“m) = sgn(a), then we obtain the usual first-order upwind scheme. If we take Q
be a small constant value, then we obtain a usual three-point centered scheme with artificial

dissipation. If we take anum) = ), then we obtain the well-known Lax-Wendroff scheme[15]
which can now be written as:

. 1 1
u; +1_ Ulej — §Al(u;fj+1 — u{fjfl) + 5/\?(u{fj+1 - QUZJ- + u;fjfl) (2.10)

The interface condition (2.6) for the fully discrete case becomes

n n n n n n n n
Uyt Uy pr U T U Uy g Uy, Uy — U

= = = 211
2 2 ? hi_1 h ( )
where [ =1,2,.., L. The interface condition (2.11) can be solved for u; ; ., and u',:
r—1 2 r—1 2r
Ulnfl,p+1 = H_—lulnfl,p + H——luﬁl’ U;fo -5 i 1“?1 + — lu’ln;l,p (2.12)

For steady state computation, one usually uses local time stepping to accelerate convergence.
Since using local time-stepping amounts to using larger time steps in refined regions, a numerical
scheme using local time-stepping is generally less stable than a scheme using a uniform time
step.

3. Positive and Negative Dissipation due to Mesh Refinement for a
Semidiscrete Scheme

3.1. Smooth Refinement
For convenience, we rewrite the semidiscrete scheme (2.3) as

m=1

dv
d_tl - Z Cl,mUl+m (3.1)

m=—1

with

r o a 1 r a 1 a
cy 1 = — — C = — — C = —
R P O L A P
It is quite useful to introduce the parameter h, defined by:

ho— a _ (hi—1 + hi)(hy + hyga)
Y —an hi—1 +2h; + hi

This is an average of the local mesh sizes and reduces to the normal mesh size on an uniform
grid. With this definition, the scheme (3.1) can be greatly simplified and reduces to the form
of a standard difference scheme on a uniform grid:

dv 1la 1
d_tl = _§h_(vl+1 - Ulfl) + 5@; )(le — 2u; + ’Ul,l) (32)
where
(hiy1 —hi-1)a
(hl + hl_l)(hl + hl+1)

In comparison with the case of a uniform grid, a dissipation-like term is created by mesh

Qz@ =¢-1tc¢1= (3.3)

refinement. The coefficient le defined by (3.3) is similar to the numerical viscosity coefficient
in the usual sense. Thus we make
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Definition 3.1. The coefficient le is called the mesh refinement induced numerical viscosity.

As usual, the numerical viscosity coefficient must always be positive in order that the scheme
be stable. However, the coefficient Ql(r) may be positive or negative depending on the sign of
the wave speed a. The situation is more clearly stated in the following proposition:

Proposition 3.2. For the smooth refinement method,
a) the mesh refinement numerical viscosity le is positive if the wave travels in the coarsen-
ing direction (direction from the finer mesh to the coarser mesh ), i.e., if (hi1 — hi—1)a > 0;
b) the mesh refinement numerical viscosity Qgr)is negative if the wave travels in the refining
direction (direction from the coarser mesh to the finer mesh ), i.e., if (hix1 — hj—1)a < 0.

For a system of equations, like the Euler equations in gas dynamics for a subsonic flow, we
have waves traveling in both directions so that we have at least one characteristic component
which contains a negative dissipation due to mesh refinement. When the wave travels in the
refining grid so that there exists negative dissipation, the difference equation will be unstable
unless an artificial dissipation is included. Some difference equations, such as the well-known
Lax-Wendroff scheme and characteristic based upwind schemes, also contain internal dissipation
which may balance the negative dissipation due to mesh refinement.

For geometrically refined grids with h; = rh;j_1, the mesh refinement induced viscosity can
be more conveniently written as:

(ry T — 1 a
@ r+1h,
If the time is scaled by the average mesh size h,, as would occur in local time-stepping for

convergence acceleration of steady state computation, then (3.2) reduces to a scheme on an
uniform mesh with a dissipation coefficient given by (3.4).

(3.4)

3.2. Abrupt Refinement

For abrupt refinement, it makes no sense to define a local mesh refinement induced viscosity
as was done for a smooth refinement, because the grid is uniform in each subgrid level. It is
more convenient to define a global mesh refinement induced viscosity by considering the time
evolution of the ls-energy defined as:

L p
2
lall® =22 i,

1=0 j=1
Multiplying the difference equation (2.5) by hju; ;, and summing the resulting equations
over all j and all [, we obtain the following equation for the l5-energy:
2
d|lull
dt

where Bj is a term due to exterior boundary treatment which we do not consider here, and By,
which is due to mesh refinement, is given by

=B, + B, (3.5)

L
B, = Z By, By = (au o1 — aUi—1 pUi—1,p4+1) (3.6)
=1

Introducing the interface condition (2.6) into (3.6) leads to the following more useful expression
for By:
(hl—l — hl)a

B =
! hi—1 + Ml

(’U,l,Lp — ’Llllyl)2 (37)
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The term B, is a term which dissipates or increases the energy E depending on its sign.
Obviously B, vanishes on a globally uniform grid. Thus we will call B, the mesh refinement in-
duced dissipation. We have the following proposition, which is similar to the smooth refinement
method,

Proposition 3.3. For the abrupt refinement method,

a) the mesh refinement numerical dissipation is positive if the wave travels in the coarsening
direction (direction from the finer mesh to the coarser mesh ), i.e., if (hi — h_1)a > 0;

b) the mesh refinement numerical dissipation is negative if the wave travels in the refining
direction (direction from the coarser mesh to the finer mesh ), i.e., if (h; — hji—1)a < 0.

3.3. Dependence of the Dissipation on the Subgrid Width for the Shortest
Wavelength

Here let us study the influence of the subgrid width on the dissipation just for the shortest
wavelength (wave number equal to 7).

In order for the study of the subgrid width influence to be meaningful, the domain size S,
the starting mesh size hg, and the total refinement degree ro (or hr), should be kept fixed.
Now we want to relate the number of levels L to the subgrid width p when S, hg, and rp are
fixed.

By definition, S = EZL:() phy = Zleo prlhg. Thus

L+1
st
1—r
Noting that r = r%, the above equation can be directly solved to yield the following two
relations:

M — | S
_ m 'Y , L _ nj\;j_—'p , M = h_ (38)
—prr In M—pre 0

r

ST

According to Propositions 3.2-3.3, the dissipation is negative only if (h; — hj—1)a < 0. The
worsest case occurs when the wave number is equal to 7. Let A be the amplitude of the wave
with wave number 7. For such a wave the total dissipation (3.7) can be estimated by

L(1— k)

1+rf

B, = A2  alhiy — ) - _

C, C=A2 3.9
= hi—1 + h; la (3:9)

Introducing the relations in (3.8) into (3.9) leads to the following expression for the total
dissipation:

-1

p(l—rr) M—p

B, =-C 1 1 3.10

" 2M—p(1+rT)<nM—prT nrr ( )

Let r7 = 0.01 and M = 1000, the dependence of the dissipation on the subgrid width p is
given in Table 1:

Table 1: Dependence of the dissipation on the subgrid width p
P 1 2 5 10 102 103
B, -2.303 -2.303 -—2.303 —2.303 -—2.301 —2.216

We have the following important remarks:
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Table 2: Dependence of the dissipation on the subgrid width p
p 1 2 5 10 50
B, -—-1.1513 -—-1.1513 —1.1511 -—1.1504 —1.1133

1) The negative dissipation due to mesh refinement is insensitive to the subgrid width,
provided the total refinement degree r7 and the ratio M be fixed.

2) The absolute value of the negative dissipation is an increasing function of the subgrid
width. Since the smooth refinement method, in the case of geometrical refinement, is a par-
ticular case of the abrupt refinement method with p = 1, we remark that, with rr and M
being fixed, the abrupt method (the interface is more abrupt if the subgrid becomes wider)
contains less negative dissipation than the smooth refinement method and should face less in-
stability trouble than the latter. This is in contrast with what one would imagine normally.
It is commonly believed that, in order a numerical method on an irregular grid to be stable,
one should avoid using abrupt refinement and make the refinement as smooth as possible. The
present analysis clearly shows that abrupt refinement is more favorable for stability, provided
the parameters rr and M be kept fixed.

With other choices of rp and M we obtain similar results. For exmaple, if we take rp = 0.1
and M = 100, the dependence of the dissipation on the subgrid width p is given in Table 2.

Thus we restate this important conclusion in the following theorem:

Proposition 3.4. Let the total refinement degree rr and the ratio M = h% be fized. Then for
the shortest wave length (wave number equal to ),
a) the negative dissipation, in absolute value, is a decreasing function of the subgrid width;
b) the abrupt mesh refinement method produces less negative dissipation than the smooth
refinement.

4. Balance between Numerical Dissipation and Refinement
Dissipation for a Fully Discrete Scheme

In the previous section, it is shown that mesh refinement creates negative or positive dis-
sipation. A fully discrete scheme may contain internal or artificial dissipations with a positive
numerical viscosity coefficient Ql(num). If the numerical viscosity is more important than the
refinement induced negative dissipation, then the difference approximation, stable for a uniform
grid, would remain stable for a mesh refinement problem. We know that (2.11) is stable, in the
sense of GKS [14], for a large class of dissipative and nondissipative schemes if only one inter-
face exists [7, 15]. But a stable single interface problem might become unstable when several
interfaces are put together [24].

4.1. Analysis of Dissipation
Let us begin with the following lemma.

Lemma 4.1. For the fully discrete difference scheme (2.9), the la-norm of the solution satisfies
the following inequality:

L
a7 = ) > S k(D] + T} +B))
=0
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where
p—1
D = - Z urj = ut,j1)?
=1
2o (num)
G (upurs —u,) + Q™ (woury —ufy) 1=0
- S (num)
L= D [r(urguim p — U3 ) + Ui — ) 0<I<L
K0 (num)
QHT [r(ww—1p — “12,1)] + Qz(num) (ut ptit,p+1 — U’l2,p) l=L
B T A=ruf, = 2w puieia] + aug o [=0
B = (1= r)(“’l?,p +ufy) + 2ruu—rp — 2w puigg]  0<I<L
rir (A =r)uf | + 2rug g p] — apugpr =L

Proof. Let us rewrite the scheme(2.9) as:
with
Frj=ujpn —wjo1,  Grj=wj = 2u; +uja
Multiply (4.1) by 2hjug; , sum the resulting equations over all / and all j, and using the obvious

inequality

1
3 huupjup < (T + )

we obtain

| = [l >Zk1 (R + S")

1=0
where

P P
R =3 auf Fjy,  Sp =3 Q"™ uf,Gi;
j=1 j=1
It is quite straightforward (summation by parts) to obtain the following relations
p—1
Ry = a(uppurprr — uroury), Si= annum) [H; — Z(Ul,j —uj41)’]
i=1
where
Hy = wyoupn + upugpr1 — Uz2,1 - “l2,p

Eliminating v, and uj, by using the interface condition (2.12), we obtain for 0 < < L

a
R, 1 [(1 T) (ul2,p ul2,1) ru1Ui-1,p ulﬂ)u‘“rlyl]
r
H = U — — U u, + u, — U u
l r 1 l—1,p 1,1)%,1 r 1 +1,1 L,p)%l,p

The lemma then follows without difficulty.

Lemma 4.2. Let k; = k and Ql(num) = Q™) pe constant independent of 1. Then for the
difference scheme (2.9), ||ul)® satisfies the following inequality:

[ Y|* = lu”|* > k(D" +I" + B™ + E") (4.2)
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where
L p—1
D = =™ (w; —uwj41)’ (4.3)
1=0 j—1
L
I = _Q(num) Z(Ul,Lp — um)z (44)
=1
L
B = U0 S (i, - uft)? - QU (i, - ) (45)
1 +r — —L,p by —L,p s
E = Q™™ +a)ugouf, + Q™™ —a)up juf i — Q"™ (ug, +ui,)  (4.6)

Proof. This follows directly from Lemma 4.1.

Remark 4.3. The four terms in (4.2) result from different sources:

e The term D given by (4.3)comes from internal dissipation inside each block and vanishes
forp=1

e The term I given by (4.4)comes from internal dissipation at the refinement interfaces
e The term B given by (4.5)comes from mesh refinement

e The term E given by (4.6) represents the influence of the ending points (I =0, j =0,1)
and (I = L,j = p,p+ 1), including the boundary conditions.

Using Lemma 4.2, we have

Proposition 4.4. Let L be large enough so that E can be neglected. If the internal dissipation
Q™) of the fully discrete scheme vanishes, then the energy is increasing for (1 —r)a > 0.

For p = 1, we can derive a necessary condition for energy decreasing (or stability).

Proposition 4.5. Let k; = k and Ql(num) = Q™) e constant independent of l. Furhermore,
let L be large enough so that the ending point influence E can be neglected. . Then for the
smooth refinement method with p = 1, a necessary condition for energy decreasing (stability) is

a(l—r
g » AL=T) (@7
Proof. Using Lemma 4.2 and with E being neglected for L very large, we see that for p = 1:
D =0
L
I+B = - <Q<Wn> - %) > ey —wg)?

=1

Thus D + 1+ B > 0if (4.7) is not satisfied.
The situation of p > 1 is more difficult to analyse. An informal analysis is given in Appendix.

4.2, Sufficient Stability Analysis

For the smooth refinement method which can be considered as a special case of the abrupt
method with p = 1, the difference equation on the refined grid can be put into a special form
for which the sufficient stability condition can be found through the classical von Neumann
analysis. For the case p > 1, we have to use an eigenvalue analysis for finding the sufficient
stability condition.
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von Neumann analysis for p=1.
For the special case of p = 1 with local time-stepping (A, = A) and with constant numerical
viscosity (anum) = Q™) we can perform a von Neumann analysis for stability. This, for

a scalar equation, allows us to obtain a necessary and sufficient stability condition.

Lemma 4.6. Forp=1, \; = X and Ql(num) = Q™) the difference equation (2.9) together
with the interface condition (2.11) is equivalent to the following difference equation

. 1 1
o = - DGR~ o) + DB - 20l o) (4.5)
where
A_1+r_1Q(num) B_Q(num)_l_r
N r+1 ’ N 1+7r

and v = uy1.
Proof. For p =1, (2.9) takes the following form:

1 1
ul"fl =up'y — §A(u{f2 —up'p) + EAQ(’“””) (ug'y — 2u'y +ug'p)

Introducing the interface relation (2.12) into the above equation leads to

n n 1 2, 2(r—1) , 2r
“l,fl = U — 5/\(—7" n el + T 1 Uiy~ n 1“171,1)
+§>\Q( )(r E R 2ury + Tl 1“1—1,1)

which, when setting v; = w1, can be rearranged to give (4.8).

Now we can do a direct von Neumann analysis on the difference equation (4.8). The following
proposition follows directly from a classical von Neumann analysis, for which the details are
ommitted:

Theorem 4.7. The difference approzimation (4.8) is stable if and if the following condition is
satisfied:
B>0
{ VS min () -

When the grid is not refined so that » = 1, then the above condition is reduced to

Q™™ >0, X< min(@"™, gy <1 (4.10)
For convenience, let us denote g(r) = %jr: so that
B Qmm_gr) 1 1

For r — 1 and r < 1 we have g(r) > 0 and g(r) — 0 and the following simplifications for £
and %:
(num) _ 149 (num) y(num) (num)
- Q (1+2Q Q )g(r) <@Q
1 1
Q(num) _ g(r) > Q(num)
so that the second condition in (4.9) can be restated as:

%

o = | @

1

B 1
A < min( ) < min(Q ) (num))

A2’ B

This leads to the following two remarks:
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Remark 4.8. The upper bound of the stability range is reduced, compared with (4.10).

Eigenvalue analysis for p > 1. Here by using an eigenvalue analysis suitable for obtaining
sufficient stability condition, we will show that for the Lax-Wendroff scheme, mesh refinement
not only increases the lower bound of the stability range, but also reduces the upper bound
of the stability range. The eigenvalue analysis yields rigorous information once the operator is
normal. Here the operator is not normal, but the information is still useful.

Let uf; = 2"¢;; where z € C. Introduce this solution into the scheme (2.9) and the interface
condition (2.11) for all j and all I, we obtain the following system

where M; and M, are two real matrices, ¥ is a column-vector with components ¢;;, 1 <1 <
L,1 < j < p. System (4.11) is closed by a Dirichlet condition at the inflow boundary and a
first-order extrapolation condition at the outflow boundary.

System (4.11) has in total (p + 1)L eigenvalues z,. The spectral radius p = max(| z, |)
characterises the stability for long time integration. If p < 1, then the solution will be bounded,;
if p > 1, then the solution will be unbounded after long time integration; if p < 1, then the
solution will converge to a steady state.

Here we only display the results for the particular case with r = % and L = 10 and for
the Lax-Wendroff scheme with local time-stepping for which Q("*™) = qo where o is the ratio
between the time step and the mesh size. The results are displayed in Table 3.

Table 3: The spectral radii for 0 = 0.1 and o = 0.2
p 1 2 3 4 5 6 7 8
p(c =0.1) 1.02 1.008 1.008 1.003 1.002 1 0.999 0.997
p(c =0.2) 1.02 0.994 0991 0.984 0.982 0978 0.978 0.978

We see that the stability also depends on the subgrid width p. When ¢ = 0.1, the problem
becomes stable for p > 6. When ¢ = 0.2, the problem becomes stable for p > 1.

It is interesting to compare the sufficient condition with the necessary conditions (A.4)-
(A.6). Let p = 2, then the necessary conditions require ¢ > max(0.16,0.12) for stability. While
the eigenvalue analysis shows that o should ly between 0.1 and 0.2 for stability. Let p = 6,
then the necessary conditions require o > max(0.05128,0.0337) and the sufficient condition is
o = 0.1. In consequence, the necessary conditions (A.4)-(A.6) give results very close to the
sufficient conditions. But they should not be used as a sufficient condition for stability.

Now let us give the spectral radii as a function of o. For p = 2,5,8, the corresponding
spectrial radii are given in Table 4.

Table 4: The spectral radii for p = 2,5,8
o 0.06 0.1 0.2 0.5 0.7 0.8 08 09 1.

p(p=2) 1.009 1.008 0.994 0.825 0.6 0.55 0.74 0.921 1.32
p(p=5) 1.003 1.002 0.982 0.835 0.675 0.55 0.735 0.92 1.31
p(p=8) 0.999 0.997 0978 0.85 0.7 0.62 0.734 091 1.31

From the above table we draw some important conclusions.

Remark 4.9. The lower bound of the stability range is increased (here near o = 0.1 instead
of 0 = 0 for a uniform mesh).
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Table 5: Convergence histories
Iterations ¢ =0.5,p=1 o=05,p=4 o=01,p=1 o=01p=4

100 1.39%x1072 1.54x1072 1.22 1.21

200 4.40x107° 1.23x107° 1.93 2.40

300 2.73x1078 1.94x107° 2.38 2.48

400 1.40x10~1! 2.35x10713 3.75 4.15

500 6.33x10715 5.68 6.43

1000 8.33x 101! 7.75%x10+!
2000 5.19x 104 3.11x10%
5000 8.33x 1011 2.28x 10112
00 00 00

Remark 4.10. The upper bound of the stability range is reduced (here near 0.9 instead of
o =1 for a uniform mesh).

Remark 4.11. The minimal spectral radius, thus maximum convergence rate, occurs near
o = 0.8 for almost all p.

4.3. Numerical Test

Now let us solve the transport equation u; + u, = 0 with 0 < z < 1. At © = 0 we set
u(z) = 0. The initial data are provided by random variables uniformly distributed in (-1, 1).
At steady state the analytical solution is zero everywhere.

The above problem is approximated by the Lax-Wendroff scheme with local time-stepping.
The grid is refined from left to right with a total refinement degree fixed to be rr = 1.66 x 10™%.

For the smooth refinement method the number of levels is L = 40 so that r = r%f = 0.80446.
For the abrupt refinement method the subgrid width is fixed to be p = 4 while the number of
levels (subgrids) is L = 10.

Now we compute the problem with ¢ = 0.1 or ¢ = 0.5, which corresponds to instability
or stability according to the above stability analysis. Now the evolution of the [, energy as a
function of the time (iterations n) is displayed in Table 5.

The above table confirms the previous analysis which shows that the problem becomes
unstable for ¢ as small as 0.1 and stability is recovered for ¢ as high as 0.5.

Appendix A. Analysis of Dissipation by a Statistical Method for p > 1
and for a Fully Discrete Scheme

Since we are considering only necessary conditions just to show that mesh refinement may
induce energy increasing, we will consider two subsets in the solution space. If the energy is
increasing for these subsets, then the energy is increasing in the solution space. This allows us
to derive necessary conditions.

The first subset Z is an oscillating solution (corresponding to a wave number equal to )
defined by:

e 1 ;
2 fuy s = 5 (1" VL5 (A1)

The second subset U is defined in a statistical way. First we introduce the following defini-
tions

- -
Q= (w; —wjr1) , o= (wg —w—1,y) (A.2)
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where the overline defines an average with respect to a short time. The subset U is defined
by solutions which may take random values but for which ®;; and ul2 ; are constant in each
subgrid, that is,

de = - 5 — .
v {w: @y =¢, ui; =o, Vj} (A.3)

and v; does not depend on j.

The main advantage of considering these two subsets is that they allow for the derivation
of useful analytical results. Besides, they represent two extremes:

1) the first subset represents the case of shortest wavelength that can be resolved on a grid,
which is often the most dangerous wavelength for instability.

2) the second subset represents the case of uniform spatial increments of solutions in each
subgrid, in the averaged sense, with sharp discontinuity of such increments only at the interfaces.
When instability due to mesh refinement occurs, the solution variation (in space) takes its largest
value at the interfaces.

But we should keep in mind that we should not use these two subsets to derive sufficient
stability conditions, though the necessary condition derived from these two subsets is very close
to the sufficient condition derived by eigenvalue analysis.

Proposition A.1. (Necessary condition based on subset Z). Let k; = k and Ql("“m) =
Q"™ be constant independent of I. Furthermore, let L be large enough so that the end point
influence F can be neglected. . Then a necessary condition for energy decreasing (stability) is

L a(l—r)
(L+1)p-1)+L 1+r

Qv > (A.4)

1
where L and r = r. are given by (3.8).
Proof. Let w; ; € Z . Then

L p—-1

D = —QU™ YN (ury —wigen)’ = —QU M (L + 1(p—1)
=0 j=1
L

I = _Q(num) Z(ulfl,p _ ul,1)2 — _Q(num)L

~

1

a(l—r)L
147

(1 — T) - n n num
B = 1+r ; (a(’u‘lfl,p - ul,1)2 - Q' )(ul271,p - Ul2,1)) =

Thus D + 1+ B > 0if (A.4) is not satisfied.
Lemma A.2. For subset U, the functions ¢, and ¢, satisfy the following recursive relations:

A S e
b= = T‘?z- (A.5)
Proof. The second equation in the interface condtion (2.11) can be rewritten as
u{fl — u{fo
Wetppr — U1y = -

(upy —ujp)?
= (Wiipp1 — Uln—1,p)2 =

= (W — Ul y)

_ 1_
= ¢ = T_2¢l
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Besides, using the interface condition (2.12) , we have

r—1
Uznq,p - ulnfl,p+1 = (1- H—l)uznq,p - T‘-l-—]_uﬁl
2
= 1 (“ln—Lp - “ln1)
4
= (Wi pp1 — U?—1,p)2 = m(uln—l,p - 74171)2
4 -
= (i — i) = G, — v’
— 4 _
- ¢lfl = (’I"—F 1)2 1/Jl

Thus (A.5) holds.
Proposition A.3. (Necessary condition based on subset U).Let k;, = k and Ql("“m) =

Q"™ he constant independent of I. Furhermore, let L be large enough so that the end point
influence E can be neglected. Then a necessary condition for energy decreasing (stability) is

2 2\ —1
(num) |1_T| (1+T) _ (1+T)
@ > 14+r 4r2 p—1+ 472 (A-6)

1
where 7 = rJ is given by (3.8).
Proof. Note that the linear decomposition D + I + B = D + 7_+_F holds. Now let w;; € U
so that the relations (A.3) and (A.5) can be used in computing D, I, and B. First compute
D by (4.3):

B L p-1 L p1

D = -Q"m Z Z (uy —upjq)? = —Qumm™ Z Z 1,5
1=0 j=1 1=0 j=1
L p—l_ L
1=0 j=1 1=0

where we have used the definition (A.2).
From (4.4) we have

~il
I

L
—QUr ™ N " (up,  —ufy)?

=1

L L
— _Q(num) Z 1/)[ — _Q(num) Z 'le (A8)
=1 =1

where we have used the definition (A.2).
Finally from (4.5) we have

_ & a(l—1)——-——=  a(l—7) L
B=Y % —ury =TS A.
2 Tty (W1 = ugn) Trr 2 i (A.9)

where we have used the definition (A.2).
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Using (A.7)- (A.9) and (A.5), we obtain the following:

L L L
TFLFB = —QU Y (p- 13- Q™ Y u+ W=D 5y,
1= = 1=
LO a(l 7“)1 L 1
—_  _(num) —_1\A — _ (num)
= -Q l;(p 1 + (—HT Q );wl
L L
— _((num) _1\4H a(]‘ _T) _ (num)) (1+T)2 -
= —Q ;(P D¢, + (71+r Q ETCRE ;@
L
= Y Cig
=1

where

_ a(]‘ - T) (1 + T)2 _ (num) _ (1 + T)2
Ci = 147 472 @ p—1+ 472

Thus D + I + B < 0if C; < 0 which, by the above expression for Cj, is equivalent to (A.6).This
completes the proof.

The condition (4.7), (A.4) or (A.6) is only a necessary condition for long time stability.
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