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Abstract
This paper deals with a delay-dependent treatment of linear multistep methods for
neutral delay differential equations y'(t) = ay(t) + by(t — 7) +cy'(t — 1), t > 0, y(t) =
g(t), -7 <t <0, a,bandc € R. The necessary condition for linear multistep methods
to be N7(0)-stable is given. It is shown that the trapezoidal rule is N7(0)-compatible.
Figures of stability region for some linear multistep methods are depicted.
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1. Introduction

The stability analysis for delay differential equations can be classified into two different
categories, i.e. delay-independent and delay-dependent. In the former criterion the stability
analysis is carried out for all delay, but in the delay-dependent criterion stability analysis is
carried out for arbitrary but fixed delay. The delay-independent analysis was studied by many
researches (see e.g. [2, 3, 5]).

Counsider the following neutral delay differential equations (NDDEs).

y'(t) = ay(t) + by(t —7) +cy'(t —7), t>0,
y(t) = g(t)at € [_Ta 0]
For a, b and ¢ € C, Bellen et al. [2] proved that if:
|ac — b| + |ac + b|] < —2R]a]. (1.2)
Then every solution of (1.1) tends to zero as t — oo for all delay. If a, b and ¢ € R then the
condition (1.2) is equivalent to the following condition:
|b] < —a and |¢| < 1, (1.3)
which is given by Brayton et.al. [5] and is shown in Fig.1.

In the delay-dependent case the delay term also plays a role in the stability analysis. The
delay-dependent analysis was first carried out by Al-Mutib [1], but his analysis was based on
some numerical experiments only. Recently Guglielmi and Hairer [9, 10, 11] did some work on
the delay dependent stability analysis of ®— and Runge-Kutta methods for DDEs. In [10] it
was proved that linear ©-methods are 7(0)-stable if and only if they are A-stable. In [13] it
was proved that BDF method of second order is 7(0)-stable. Sidibe and Liu [15] proved that
all Gauss methods are N7(0)-stable. In this work we address the delay-dependent stability
analysis of linear multistep methods when they are applied to the neutral delay differential
equation with real coefficients.

For the sake of simplicity and without losing generality, we consider (1.1) with 7 =1,

y'(t)=ay(t) + byt —1)+cy'(t —1), t >0,
y(t) = g(t)) te [—1,0],

* Received May 22, 2001; final revised May 17, 2002.
1) This work was supported by the NSF of P.R. of China (10271036).

(1.1)

(1.4)




536 S.K. JAFFER AND M.Z. LIU

where a, b and ¢ € R.

In this paper we study the stability region of linear multistep methods applied to (1.4) with
an arbitrary but fixed value of 7.

The organization of this paper is as follows. In the section 2, the analytical stability region
is studied. In section 3, an introduction of linear multistep methods is given and then they are
applied to linear test equation (1.4). In section 4, a necessary condition for N7(0) -stability is
provided and applied to some well-known implicit linear multistep methods for N7(0)-stability.
The results are presented in tabular form (See Table 1). In the section 4, conclusions are
presented.

2. Analytical Stability Region

Classically the analytic solution of (1.4) can be expressed by a power series.
y(t) = Z (A exp(Axt) + Bit exp(Axt)),
k
where the coefficients Ay, By, € C are determined by the provided initial function and {A;}72,
are the roots of the quasi-polynomial characteristic equation:

A=a+be 4 che (2.1)

It is well known that the sufficient condition for the asymptotic stability of y(t), independent
of the initial function g(¥) is,

R[Ax] <0, (2.2)
for all k.

15 b=a b=a

(05-0.5

Figure 1: Analytical stability region of (1.4) for ¢ = 0.5.

For the case a, b and ¢ € R, the stability region X, of (1.4) is given by the connected
domain included in the half-plane a < 1 — ¢, and bounded by the planes |¢| = 1, the straight
half-plane [, and the transcendental surface .. Denoting 0%, as the boundary of the region
Y4, then

0%, =l U, (2.3)
where
= {(a,b,c) e R*| a= —b,a € (00,1 —¢] and || <1},

02
(a,b,) € BE| 267 + 52 = a? +6%,60 = arccot 2= gerl
0 (b+ ac)
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We define the intersection of the plane [, and the surface v, is the segment P = {(1 —¢,c—
1,¢), || < 1}, and all points P = (a,b,c) = (1 — ¢,c — 1,¢) of the segment P, are the double
points of the boundary 0%, which is shown in the Fig.1.

3. Linear Multistep Methods for NDDEs
Linear k-step methods [12, 14] for ODEs of the form y'(t) = f(t,y), t > 0, y(0) = yo is
defined as
k k
> aynti =hY_ Bifats; (3.1)
Jj=0 j=0

for some fixed numbers «;, 3;, j = 0,1,2,... ,k subject to the condition ay = 1, |ag|+ |Bo| # 0.
Methods (3.1) is called explicit if 8 = 0, otherwise implicit. In this paper, we shall consider
constant stepsize,

1
h=— meZ". (3.2)
m
Applying method (3.1) to (1.4), we get
k k k
D yni; =hY | Bi(aynis +byn-mii) ¥ ¢ QYn-mi-
=0 =0 =0
or
k k
Z AjYn+j = Z bjYntji—m, (3.3)
j=0 7j=0
where

aj =oa; —haB; and b; =hbB;+ca;, j=0,1,.. k.
Characteristic polynomial for (3.3) is given by

O (@,5,6:0) = (1= ¢ ™)o(Q) = —-(a+ B¢ ™)o (C), (3.4

where o(() = Z?:o a;j¢! and o(¢) = Z?:o B;¢7 are the usual generating polynomials of the
multistep methods (3.1) [12].

It is well known that the numerical solution of (3.3) is asymptotically stable if and only if
all zeros of characteristic polynomial (3.4) lie within the open unit disk in the complex plane
for all m. Let

Ym = {(a,b,c) ; all zeros ¢ of (3.4) satisfy |¢| < 1}, (3.5)

then the numerical stability region is ¥ = [] Z,,.
m=1
o0
Definition 3.1. A numerical method for NDDEs is N7(0)-stable if ¥, C [\ Zp.
m=1

3.1. Taking c as the Fixed Parameter

In order to study N7(0)-stability of numerical methods, we use the Boundary Locus Tech-
nique (BLT)[4] which means to determine whether ¥, C £,, for all m € Z* and any, but fixed
¢, where

e ={(a,b) | all roots of (2.1) satisfying R(A) < 0}. (3.6)
Em,e = {(a,b) | all roots ¢ of (3.4)satisfying |(| < 1}. (3.7)
Let
=L@ o= oeost—e)b= < (ecosh —1),0 € (0,7) 3.
Ye,e = 3 (@, a_sine cos c), = 5nd € COS , , T .

and I'x .(a) is a smooth function for a € (—o0,1 — ¢), which is implicitly defined by the curve
RENE
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We denote the intersection of the line @ = —b and the transcendental curve 7, . by P° =
(1 —¢,c—1). Using L’Hospital’s rule, we get the first and second derivative of ' .(a) at P€,
1+ 2c
Fi,c(l —C) |0:0: 2+ .
¢ (3.9)

1—¢2
3 4+6c2+12c+ 8"

L (1=0)p=o = 5"

7 (05,:05)

-2 15 -1 05 0 05 1t 15 2 25
a

Figure 2: Stability region for trapezoidal rule for ¢=0.5
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Figure 3: Stability region for trapezoidal rule for c=-0.5



Delay-dependent Treatment of Linear Multistep Methods for Neutral Delay Differential Equations

Figure 4: Stability region for BDF of first order for ¢=0.5

Figure 5: Stability region for BDF of first order for ¢=-0.5

4. A Necessary Condition for N7(0)-Stability
Let

k k
Ap=> j"aj, Ba =Y j"Bj, n=0,1,2,... .1, = Ay — qB,1, Vg € Z*.
j=0 j=0

539

From the order condition we know that for linear multistep methods of order p > 1, we have

Ay=0,4,=¢B;1,9=1,2,...,p.
We define the set
US, = {(a,b) € B[ 3¢ = exp(i6) 0 € (—m,m) : Cila,b,c;¢) = 0},

(4.1)

Obviously 0%,, . C Uj;,. For the determination of the stability region of a numerical method,

the set Uf, plays a fundamental role.
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Figure 6: Stability region for BDF of second order for ¢=0.5
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Figure 7: Stability region for BDF of second order for ¢=-0.5

Lemma 4.1. For any linear multistep method for NDDEs applied to the test equation (1.4)
the following relation holds

U® = {(a,b) € R?| b= —a, |c| <1} CUS,. (4.2)

Proof. Substituting a = —b in the characteristic equation (3.4), yields
—m a —m
Cm(aab)c;C) = (l—CC )Q(C) - E(I_C )U(C)
For ( = 1.
Cm(a> —a,c; C) = (1 - C)Q(]') =0.
Which is identically fulfilled for ( = 1, independent of a.

As we shall observe that P€ is the only point of U° to which a multiple zero corresponds.
The following theorem provides the information that P¢ is still a double point in the numerical



Delay-dependent Treatment of Linear Multistep Methods for Neutral Delay Differential Equations 541

case, that is it belongs to two different branches of the locus Uy,.

Theorem 4.2. For any linear multistep method for NDDEs applied to the test equation
(1.4), the point P¢ = (1 — ¢,c — 1) is a double point of US,.

Proof. Let us define a function F : R?> x (-, 7] x Z* — C as:

F(a,b,6;m) = Cy,(a,b,c;exp(if)).

Since P°¢ € U°, we now apply Dini’s implicit function theorem to the equation F'(a,b,0;m) =0
at the point (a,b,0) = (1 —¢c,c—1,0).

Define

F,=0 and F =0, (4.3)
where
F,=R[F] F =S[F].

Consider the Jacobian of F' at (a,b,0) = (1 —¢,c —1,0)

—h —h 0}

JF(l—c,c—l,O):Bg{ 0 0 0 (4.4)

It can be observed that at the point P¢ = (1 — ¢,¢ — 1), there do not exist full rank principal
minors of Jp. So implicit function theorem cannot be applied, consequently P¢ is a potential

bifurcation point of the boundary locus US, . Now we study the structure of US,, in the
neighborhood of the point (a,b) = (1 —¢,c —1).
Let us consider the following equivalent form of the system of algebraic equation (4.3).
F,(a,b,6;m) =0,
Fi(a,b,0;m) _ (4.5)
0. M -0
The system (4.5) is equivalent to the following couple of algebraic system:
. F,(a,b,6;m) =0
F - { 5/):(“db’9’m) =0 and Fy: { Fila,b,8im) _ (4.6)
— =
The solution of the system F} leads to the set U°. Let us consider
G(a,b,0;m) = Gp(a,b,0;m) +iG;i(a,b,0;m),
where
Gp(aa b7 07 m) = Fp(a’ b7 07 m)7
FEi(a,b,0;m) (4.7)

Gi(a’abae;m) = 9
Since F'(a,b,6;m) is C* in its arguments, the considered function G is also C*. Applying the
implicit function theorem to the system (4.7). Let Jg denotes the Jacobian of the function G
at (1 — ¢, ¢ — 1), then we obtain

Ja(l1—c,c—1,0) = —

! { Bo B0 } . (4.8)

E Bl Bl—mBO 0

The first principal minor of the matrix Jg

_ 11 B By
B . o

is nonsingular, which is independent of B;. It means there exist an open neighborhood ® C R
containing zero and a neighborhood Q C R? including the double point P¢ = (1 —¢,c— 1) such
that for all 8 € © there is an unique curve v, ((0)(© — ), parameterizing a smooth function
[ c(a) defined as follows:

Ym,e(0) = {(@m (), bm(0)) | G(am(6),bm(0),0) =0V 6 € OF. (4.10)

Since G is of class C* S0 as Yy, The characteristic polynomial (3.4) is an algebraic poly-
nomial of real coefficients in the complex variable (, so every complex zero has its complex
conjugate too, which makes the smooth function 7, () an even function. Therefore all the
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odd entries of Taylor’s expansion of a,,(6), by, (6) in the neighborhood of = 0 are zero. Hence
we obtain

am(t‘)) 1—C+N1%+N24,+N36v+0( )

(4.11)
bm(0) =c— 1+ D1 % + Dyr +D36, + 0(6%),
where
d2iam d2lbm .
Ni:W and Di:W, 1=1,2,3,....

By applying the second step of the implicit function theorem to (G, we obtain following matrix
equation

d?an, 0*G,
a2 =0 06>
=—Jt ) (4.12)
d?b,, Iy 0%G;
gz =" 06°
A straightforward manipulation in (4.12), yields
da,,
02 = 332 [N12m +N11m+N10]

b, |0 (4.13)

a2 = 3Bz [D12m? 4+ Dyym + Dy,
6=0
where
N12 = —2(1 + QC)Bg + ?)CB()Bl,
Ni1 = =312 By,
N10 = (1 — C)Kl,
D12 = (1 - C)BO - 3CB()Bl,
Dy, = 30l230,
D19 = —Nip

K, = 3l2B1 —I3By.
Using (4.11), we obtain the first derivative of 'y,(a) at a =1 —¢
& _ D12m2 + D11m + D10
N1 Nigm? + Niym + Ny’
which implies that slope is not equal to -1 at (1 — ¢,c — 1). So it necessarily corresponds to a
second branch, different from U°, crossing the point P°. Hence P¢ is a double point of U, in
the numerical case too. This proves the theorem.

Now we investigate the local behavior of the algebraic approximation v, . to the transcen-
dental curve 7, ., and also the stability properties of the numerical methods.

Let Fg,’f,)c(l —c¢) and Fikz(l —c¢) denote the kth derivative of I'y, .(a) and I'y .(a) at a = 1 —¢

respectively. Obviously Fgg?c(l —¢)=Tpe(l—c)=c—1and F£?2(1 —c)=T,(l—¢c)=c—-1.
Now we give the necessary condition for N7(0)-stability.

Lemma 4.3.['3] Assume Fg,’f,)c(l —c) = ngg(l —¢), k=0,1,2,...,5—1 and F%?c(l —c) #
Fﬁjg(l —c¢). Then, a necessary condition for N7(0)-stability is given by

TWe(l—¢) >TV)(1—¢) ifjis odd

)

Dine(l =€) STE(1—c) if j is even Ym € Z*

' (1-c) = (4.14)

(4.15)

for all ¢ with |¢| < 1 and all m € Z+.
Definition 4.4. A numerical method for NDDEs is N7(0)-compatible if it satisfies the condi-
tions of Lemma 4.3.

By applying implicit function theorem to G(a,b,0;m) = 0, it is possible to calculate deriva-
tives of any order. To calculate the higher derivatives of a and b w.r.t. 6, we proceed as
follows.
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By applying the implicit function theorem to G, we get the following matrix equation

d*a,, da,, ‘G,
do4 . df? = 064
= —6J1 J3 - ‘]1 Y (416)
d*b,, d>b,, 9'G;
de*t 1y—o df?> J1y=o 00* lp—o
where
G, G,
00%0a,, 0020b,,
Jz =
0%G; 0%G;

060%20a,, 0020b,, Jy—g
After a lengthy but straightforward calculation we obtain the fourth order derivative of @ and b
w.r.t. 0

d*a,
gt -1 N24m4+N23m3+N22m2+N21m+N20
= Py R
d*bp, 158, Doym®* + Daam? + Daym + Doy
dg* lg—o

where
N24 = (8 — 530)33 + 6OCB1B3,
N23 = 1800(30 - Bl)BgBl,
N22 = 10(96(30 - Bl)C’l + (2 + C)BgKl)Bo,
Ny = 15(612Cy + K2 Bg) B,
N20 = —3(1 - C)(lOchl + 10l2LB() - K3B§),
D24 = (7 - QQC)Bg + 3OCB1B§,
D22 = 10((2C+ 1)K1B0 — QCCl(Bg — Bl))Bg,
Dgl = —156(61201 + K2Bo)Bo,
D29 = —Nay,
Ky =4l3By — 4By,
K3 =51,B1 — 5By,
Cl - BOB2 - QB%,
L =3B1Bs — ByBs.
Using the parametric equations (4.11), we calculate the second derivative of Iy, . at the double
point, P€.
N1Dy — NoDy

(11— = 4.1
(1= =0 = 50 (4.17)

Table 1: Analysis of N7(0)-compatibility of some well known implicit LM methods

Methods Order | N7(0)—compatible
Trapezoidal rule 2 Yes
Implicit Adams 3 No
Implicit Adams 4 No

BDF 1 No
BDF 2 No
Milne-Simpson 4 No
Milne-Simpson 5 No

5. Conclusions

It is well-known that an explicit method cannot be A-stable, so we restrict our analysis
to implicit linear multistep methods. We have already seen in [13] that trapezoidal rule and
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BDF of first and second order methods are 7(0)—stable, when they are applied to delay dif-
ferential equations of the form y'(t) = ay(t) + by(t — 1), ¢ > 0, y(t) = g(t), t € [-1,0]. We
know that if a numerical method is not 7(0)—stable then it is also not N7(0)—stable. So one
only need to explore those linear multistep methods which are 7(0)—stable. By applying the
necessary condition (4.15), on 7(0)—stable methods we find that trapezoidal rule is the only
method which is N7(0)—compatible and BDF methods of first and second order methods are
not N7(0)—compatible. Finally, the comparison of different methods with regard to compat-
ibility are presented in Table 1. Figures 2-7 depict the stability regions for different implicit
multistep methods with ¢ = 0.5 and ¢ = —0.5.
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