Journal of Computational Mathematics, Vol.21, No.3, 2002, 305-310.

A NUMERICAL METHOD FOR DETERMINING THE OPTIMAL
EXERCISE PRICE TO AMERICAN OPTIONS*!

Xiong-hua Wu  Xiu-juan Feng
(Department of Applied Mathematics, Tongji University, Shanghai 200092, China )

Abstract
American options can be exercised prior to the date of expiration, the valuation of
American options then constitutes a free boundary value problem. How to determine the
free boundary, i.e. the optimal exercise price, is a key problem. In this paper, a nonlinear
equation is given. The free boundary can be obtained by solving the nonlinear equation
and the numerical results are better.
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1. Introduction

In the early 1970s, Fischer Black and Myron Scholes made a major differential equation
that must be satisfied by the price of any derivative dependent on a non-dividend-paying stock
under some assumptions. The Black-Scholes analysis is of great importance in today’s derivative
pricing. How to solve the partial differential equation faster and more accurately is one of the
important contents in today’s computational financial field.

For an American option, the holder can exercise it prior to the date of expiration, the valua-
tion of it then constitutes a free-boundary problem. To solve the free-boundary problem, there
are several methods for the equation developed in the past two decades. For example, Jail-
let, Lamberton and Lapeyre ([1]) turn the free-boundary problem into variational inequalities,
then construct a numerical scheme to obtain the solution. A numerical method of the integral
equation that is based on an analytic approximation is described in [2].

A new method for determining the optimal exercise price is provided in this paper. The
numerical results from our method agree with those from the numerical method of the integral
equation.

This paper is organized as follows. In section 2, we describe the model of American options
on a continuous dividend yield. In section 3, we describe our method. In section 4, an example
and its numerical results are given.

2. The American Option Pricing Model

The Black-Scholes model for American call options with continuous dividend yield is the
following;:

%—YJF%ZSZZ; + (r- )saa—s-rv—o 0<t<T,0< 8 < Sp(t);
V(S,T) = max(S — E, 0) 0< S < S¢(T) = max (ESE)
V(S:(0),1) = Selt) - B 0<t<T; (1)
(Sf(t) t)=1 0<¢<T;
. V(O t)=0 0<t<T;
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where V— the value of the option; S— the price of the underlying asset;

o— the volatility of the underlying asset; E— the exercise price;

r— the risk-free interest rate; g— the dividend yield; T— the expiry;

S¢(t)- the optimal exercise price at a given time ¢.

This equation is based on these assumptions:

There are no transaction costs and taxes.

The risk-free interest rate r and the asset volatility o are constants.

There are no arbitrage possibilities.

According to the no-arbitrage principle, the price of American call options should satisfies
the inequality V(S,t) > (S — E)*, the details can be found in [2], [3].

If V,S and Sy(t) are divided by E, and for the dimensionless quantities we use the same
notation, then the dimensionless V' still satisfies (1), butEshould be replaced by 1. Problem
(1) with E = 1 will be referred to as the standardized American call option problem. For
different E’s, we need just to solve the standardized problem and get the final answer by mul-
tiplying the results of the standardized problem by FE.

3. Numerical Methods

For the standardized problem, let 7 = T — ¢, then (1) becomes

?9_:'/_%02 2%—(r—q)83—g+rV:0 0<7<T,0<8 < S¢(r);
V(S,0) = max(S — 1,0) 0 < 8§ < S¢(0) = max (1, g)
V(Si(r),7) = Se(1) — 1 0<7<T: (2)
O (st =1 0<reT;

( V(0,7)=0 0<7<T;

For (2), let & = S/S;(7), this transformation turns S € [0,S(7)] into & € [0,1], then
S =¢&5¢(n),
v(&,7) =0v(5/S¢(r),7) =V(S,7) = V({ Sp(7),7).

Since
ov_ 1o
dS — Sy(r) 9¢’
92V 1 0%

or  dr Sf(T)6_§+6T’
from (2), we have
ov 1 ,,0% dSy(r) 1 dv .
5_5058—52_(7”_ dr Sf(T))€6_§+rV_0' 3)

dsé‘T(T), v can be discretized by %T(T) =

k
B 50 oy — vt where v = o(7),0F = v(r — A7), S5 = S5(7), 85 = S;(r — A7).
Therefore, (3) can be written as

Suppose AT = T/K, where Ki s a given integer,

92 9
528—€Z+(2b+1)§8—2+cv:g, (4)
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where

=G ) o= ) e

Let  =In¢, (4) can be written as

0%v Oov
W—}-Qb%—kcv:g, (5)

The boundary and initial conditions of (2) can be written as

v(z,0) = (§ S¢(0) = )" = (e"5,(0) = )T,

U(O,T) = Sf — 1,
Ux(O,T) = 'Uﬁgm = vas§ |£:1 = Sfa
v(—00) = 0.
Let y; = %, y2=v, Y = [ zl ], for (5), we have
2
dZ/1 dyQ
—_— = —2 — =
dr byl CY2 + 9, dr Yi,
then (5) can be written as
dy _ AY + F (6)
dr ’

| =26 —c g
whereA—[ 1 0 ],F—[O],

z € (=00,0),41(0) = Sf,42(0) = Sy — 1, y2(—00) = 0.

We know, the two characteristic values of A are

)\1:—b+vb2—c, )\2:_b_ bQ—C,

the two characteristic vectors of A are p;, ps, let P = [p1,p2] = 2\/% { >\11 >\12 }, then
Pl = 1A . Let A = A0 , then we have e4* = PeA* P~!. The solution of
-1 )\1 0 >\2

the system (6) can be written as

Y (z) = A2y (z0) + eA’”/ e~ Fdw,

o
or .
P7Y (z) = M=) Py (g4) 4 €M / e M P Fdw,
o

or

]

e [ ] A e
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If we take the second term of (7), we have

—vp () + Mo(z) = e 2@70) (—y, (20) + Av(zo)) — e>‘2””/ ge 2" dw. (8)

0
Let g = —o00,x = 0, becauseAs < 0, (8) can be written as

—v5(0) + A1v(0) + /0 ge 2Vdw = 0, (9)

—00

In the integration, let w = In &, then (9) becomes

1
—Sp+ A (S —1) +/0 gE 2271 = 0. (10)

For (10), we use numerical integration,Sy satisfies the following nonlinear equation

N—1
_ 2 ke—do—1 , 1 gy
f(y)——y+>\1(y—1)—m(;vifi T+ gun) =0 (11)
ok
where A1, A, are the functions of band ¢, and b= 25 (r - q - "72 + % i)is a nonlinear function
of y. when y € [1,4+00), the solution of the equation (11) exists, because when y = 1, f(1) =
N—1

“1— 2% ke 4 Lok) < 0, when y — 4000 & (r — g+ ) - 4,

i=1
A —1=-b-1+Vb~c

SR RV EY PR S

a

1 1 1 1 1 2¢q
— [ _ _ _ _ _ _ —12
= [02(7“ q+ T)+ ]+\/[02(r q+m)+2] +— >0,

N-1
: 2 ke—Xe—1 , 1 kN
then ykinoo(Al —1)y = 400, when y — +00, =A\; — 2y ( Z viE T + 505 is a constant,

i=1
then lim f(y) — +oo.
y—r+o00

Because f(y) is a continuous function of y the solution of the equation (11) exists in [1, +00).

Because St is close to S}“ and S’Jiis a good initial value of S¢, the equation (11) can be
solved by the iteration method. Once Syis known, the equation (4) can be easily solved by a
difference method in & € [0,1], then v can be obtained. This means we can obtain S¢(7), v(T)
from S¢(T — A7), v(T — AT).

A numerical method of the integral equation that is based on an analytic approximation for
American put options is shown in [2]. We describe it briefly in the following:

The American put value P(S,7) satisfies

P(S,7) = Ee"""N(—dy) — Se 7" N(—d,) + / [rEe " N(—dg») — qSe N (—dg 1)]d¢,
0

where )
dy = ln(S/E)+gr\/—Fq+a /2)7', dy = dy — o7,
_ _ 2
PR YT R G R Sy

/€
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N() = —— /m 12
Tr) = e .
V2T ) o
The boundary condition is P(S¢(7),7) = E — S;(7), then

E-S;(1) = Ee—”N(—dz)—sf(T)e—QTN(—Jl)+/0T[rEe—’“€N(—J§,2)—qsf(T)e—qﬁN(—Jg,l)]dg

where )
g, = S (N)/E) j\(/;—quU R N
n — — 2 A A
fop = SOUSL =D HO 0P g

The integral equation for a given value of 7 can be solved by the following numerical algorithm.
We divided rinto n equally spaced subintervals with end points 74(k = 0,1---n), where

70 =0,7 =T AT = % For convenience, we denote the integrand function by

F(S4(7),S¢(r = €),7,6) =rEe "N(—de ») — qSp(r)e N (—dg,1),

Let S; denote the numerical approximation to S¢(7i),(k = 0,1---n). The solution S can be
obtained by solving the following equation
k—1
* * AT * * * * * *
E - Sk = p(skaTk) + T[f(skaskaTkaTO) + f(SkaS(NTk:Tk) + QZf(SkaskfiarkaTi)]
i=1
(k=2,3-n),
where p(S,7) = Ee™""N(—d>) — Se~ 7" N(—d;) denotes the European put value.

The American call value and the optimal exercise prices can be easily obtained after knowing
the corresponding put values.

4. Numerical Results

Some numerical experiments have been made both using our method and the method of the
integral equation. Here, we give an example with the following parameters:

r=012, ¢=008, 0c=02 T=1FE=1.
The free boundaries obtained by using our method are shown in Table 1.

Table 1

Sy Ar 0.25 0.125 | 0.0625 | 0.03125
S7(0.25) | 1.5741 | 1.5834 | 1.5901 | 1.5957
Sr(0.50) | 1.6178 | 1.6254 | 1.6303 | 1.6343
S7(0.75) | 1.6519 | 1.6586 | 1.6627 | 1.6662
S7(1.00) | 1.6813 | 1.6877 | 1.6915 | 1.6947

The free boundaries obtained by using the method of the integral equation are shown in
Table 2.

Table 2

S; Ar | 025 | 0.125 | 0.0625 | 0.03125
(0.25) | 1.6186 | 1.6062 | 1.6012 | 1.5980
(0.50) | 1.6502 | 1.6432 | 1.6384 | 1.6355

S;(0.75) | 1.6827 | 1.6742 | 1.6696 | 1.6670
(1.00) | 1.7099 | 1.7023 | 1.6979 | 1.6954
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When we take AT = 0.03125, the difference between two methods at 7 = 1.00 is less then
1073,

Our method is very simple. The free boundaries can be easily obtained step by step and
only a few time steps are enough. The numerical results are better.
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