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JACOBI SPECTRAL METHODS FOR MULTIPLE-
DIMENSIONAL SINGULAR DIFFERENTIAL EQUATIONS*!
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Abstract
Jacobi polynomial approximations in multiple dimensions are investigated. They are
applied to numerical solutions of singular differential equations. The convergence analysis
and numerical results show their advantages.
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1. Introduction

The spectral method has high accuracy. However, it might be destroyed by the singularity
of genuine solutions. Guo [1], and Guo and Wang [2] developed Jacobi approximations to
singular differential equations. But so far, there is no work in multiple dimensions. This paper
is devoted to Jacobi spectral method for multiple-dimensional singular differential equations.
We first recall some basic results on Jacobi approximation, and then give the main results
of this paper. They are used for numerical solutions of singular differential equations. The
convergence analysis and numerical results show the efficiency of this approach.

2. Some Basic Results on Jacobi Approximations

Let © C R? be an open bounded domain, z € R? and x(z) be certain weight function. We
define the weighted space L% (?) and its norm |[v|[z» in the usual way. Denote the inner product
and the norm of the space L2 () by (u,v)y and [|v||y. We define the weighted Sobolev space
H(Q) as usual with the inner product (u,v);y, the semi-norm |v|,. , and the norm |[v]|, .

We recall some basic results on the Jacobi approximations. Let d = 1,2 = A = (—1,1) and
X (z) = (1 —2)*(1+2)°. For o, 3 > —1,

(T D) =Py, AP = 2001 + o+ DI(L + B+ 1) _

(21+a+ﬂ+1)F(l+1)F(l+a+ﬁ+1)( )

2.1

Let N be the set of all non-negative integers. For any N € N, Py stands for the set of all

algebraic polynomials of degree at most N. Further let Py = {v|v € Pn,v(—1) = 0} and

PY = {v|v € Py,v(—1) = v(1) = 0}. Denote by ¢ a generic positive constant independent of
any function and N.

Lemma 2.1. (Lemma 3.7 of [2] and Lemma 2.4 of [1] ). If -1 < «,8 < 1, then for any
vE Héyx(&,ﬁ) (A)v

V][ (a-2.8-2) < clv]y s (2.2)
Moreover, ifa > —1,4=0 or a =0, > —1, then
[0l x(emr < clvly yiem - (2.3)
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Lemma 2.2. (Theorem 2.2 of [1]). For any ¢ € Py and r > 0,
18]l xt200 < N[l (2.4)
If, in addition, o, 3 > r — 1, then
ol xS eN[|@]]y(a=rs—r)- (2.5)

We now turn to some orthogonal projections. For any r € N, let (see [1])

H o5 4(A) ={v | vis measurable and |[v]], \(a.5) 4 < 00}

X
where
[Z54]
r_ —k 1
V]] x4 = (kz 11 = 2*) 27 0 0|3 sy + 10115 o) 2
=0

For any real » > 0, the space H;(Q‘B)7A(A) is defined by space interpolation. Next, for any
peN,

Hip ,,(A) ={v]0fve H s (M)} Hiws on(A) ={v]v € Hlwp , ((A),0< k< p}

with the following norms

"
1
O 175 RN NN o o 1 LIPRPI 3
k=0

For any real pu > 0, the spaces H;(Q,B)’*’M(A) and H" (A) are defined by space interpo-

X (@B ok
lation. In particular, ||v]], \@.) « = [[V]]; 08 41

Let Pn,a,6 1 L2 5 (A) = Pn be the L2, 5 (A)—orthogonal projection.

Lemma 2.3. (Theorem 2.3 of [1]). For any v € H;(aﬁ)’A(A) and r >0,

1PN, = 0ll (@) < eN7T[v]], (2 - (2.6)
Lemma 2.4. (Theorem 2.4 of [1]). Ifa+r > 1or B+r > 1, then for anyv € H' , 5 .. H(A),r >

X
land0<pu<r,
1PN 80 = 0l yetr < NPT [0]] 3 (0080 e (2.7)

In particular, for any o = 8 > —1,

||PNyOKﬂ’U - U||u,x(’—“ﬁ) S CNJ(M’T)||v||r,x(’—“ﬁ),**,u (28)
where o(u,r) =21 — 1 — % for u>1, and o(u,r) = %,u—r for0<pu<1.

Now let o, 8,7v,6 > —1. We define Hg,g,y,a

(A) = Li(%s) (A), and
Héﬂm&(A) = {v | v is measurable and ||v||1,a,3,y,s < 00}
where
ol ,a,8,7.6 = (1017 yamr + ||U||i(7.5))%'

For 0 < p < 1, the space H(f:,ﬁ,'y,d(A) is defined by space interpolation.
Let

Aa,B,7,6(Uy V) = (O, 0x0), (0) + (Uy V) 0v.8) -
The orthogonal projection Py , 5 5 H) 5. 5(A) = Py is a mapping such that

aaﬂy%fs(PI{T,a,B,'y,dU -0, ¢) = 0; V¢ € 7DN-
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Lemma 2.5. (Theorem 2.5 of [1]). If @ < v+ 2 and 8 < § + 2, then for any v € H o) L(A)
andr > 1,

1PN 08750 = Vlla,8.0.8 < N0l com o (2.9)
If, in addition,
a<y+1l, p<di+1, (2.10)
then for all 0 < p <1,
1PN 0,.7,60 = Vlluaps < NP0l yiaus - (2.11)

Next, let
OH;(,B,’y,J(A) ={v|ve Hé757775(A) and v(—1) = 0}.

The orthogonal projection 0Py, 5. 5: oH} 3. 5(A) = oPn is a mapping such that
aaﬂﬂ’ﬁ( OPI{T,a,B,'y,JU -0, ¢) =0, Vo€ oPn.
Lemma 2.6. (Theorem 2.6 of [1] and Lemma 3.11 of [2]). If
a<y+1, <i+2, 0<a<l, (<1, (2.12)

or
a<y+2, B<0, §>0, (2.13)

then for any v € oH) 5., 5(A)N H;(a_ﬁ)’*(A) andr > 1,

1 0PN ,0,8.7.50 = Vllia8.8 < N[0l ycem e (2.14)
If, in addition, (2.10) holds, then for all 0 < u <1,

I UPI{T,a,B,'y,JU = |pa,8,7,06 < NP0l (o) s (2.15)

Finally, let
H&’aﬂmd(A) = {v|v € Hq8,,6(A) and v(—-1) =v(1) = 0}.
The orthogonal projection Plif’,[iv,ﬁ,v,é : H&,a,ﬁ,’y,d(A) — PY; is a mapping such that
(a3y6 (PN 560 —0,8) =0, ¢ €PY.

Lemma 2.7. (Theorem 2.7 of [1)). If y<a<v+1,0 <8< d+1 and v,§ < 1, then for any
v E H&’aﬂmé(A) N H;(a,ﬁ)’*’2(A) with r > 2,

||P]1f7,0a,ﬁ,w,6v - U”l,a,ﬁmé < CNI_THUHT,X(O"K’),*,T
If, in addition, « =y >0 and 3 =0 > 0, then for all 0 < p <1,

1,0 _
||PN’,a,B,'y,6U - U”M@yﬁﬂ’ﬁ < cN*# T||v||r,x(“‘v3),*,2-

The orthogonal projection 13#31’5 tHy o (A) = PR is a mapping such that

(O (ﬁ]{,”oaﬂv —0),0:0) @0 =0, Vo€ PR
Lemma 2.8. (Lemma 3.16 of [2]). If =1 < o, 8 < 1, then for any v € H, y(e:8) (A)OH;(Q-W L(A)

and r > 1, _
1PN, 50 = 0ll1 s < N[0 e (2.16)

If, in addition, a,3 <0 or 0 < a, 3 < 1, then for all 0 < p <1,

1A 50 = 0l ey < NPT 0]l ot o (2.17)
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3. Jacobi Approximation in Two Dimensions

Let d = 2, Ay = {z; | —1 < z; <1}, @ = Ay X Ay and z = (z1,x2). Further, let
a = (Oél,ag),ﬂ = (ﬂl,ﬂg) and [ = (ll,l2), ai,Bi > —1,1; € Nyi = 1,2. The two-dimensional
Jacobi polynomial of degree [ is

T (@) = T (1) J 020 ().
Let (@9 (z) = x(@1:81) (1) x(*2:02) (z,). Then
(J(a’ﬁ) J ’B)) (a,8) = 7(a1’Bl)%(;z’ﬁ2)511,m1512,m2. (3.1)

Let N = (N1, N2) € N> and Py be the set of all algebraic polynomials of degree at most NN; for
ZLi-
We first establish some inverse inequalities. Let £ be a linear operator defined on Py.
L is said to be of (p,q) type, if there exists a positive constant d depending only on p,q, Ny
and N> such that ||L¢l[s < d[|¢||r» for any ¢ € Py. According to Riesz-Thorin Theorem
(see Bergh and Lofstrom [3]), we know that if £ is of both (p1,q1) type and (p2,g2) type for
1 S P1,p2 S o0, 1 S q1,492 S 00, then for
1 1-6 6 1 1-6 ¢
- = +_7 - = +_7 OSGSI, (32)
p bh P2 q 41 q2
the operator £ is also of (p,q) type. If in addition ||[Le|| 4 < d;[|¢ll,»i,5 = 1,2, then

1£l12g < e(pr,p2)dy "3l (33)
where ¢(p1,p2) is a positive constant depending only on p; and ps.

Lemma 3.1. Let ¢; be certain algebraic polynomials of degree at most l; with respect to variable
zi,t = 1,2, and the set of ¢; be an orthogonal system in the space Li(ﬂ) If for certain positive
constant co and real numbers ny,n2,

lgollso < co, lulloo < coli* L[| ullx,  ll2 > 1, (3.4)
then for any ¢ € Py and all 1 <p < q < oo,
18llze < eos ™5 (N)[[g]lLs, (3:5)
where
N12771+1N22772+1, m,me > —1,
lanlIlNQ, 7]1:772:——,
O'(N): Né:liilnNﬁ 77i>—%;77j— 2> ).7_]- 2275.77
Ni ) ’ 77i>_—:77j >Z>.7 12275.77
lnNi) ni:_ivnj —a? ).7_12275.77
1, MmN < =3

Proof. Let us consider, for example, the case with 1,15 > —%. For any ¢ € Py,

5= 3" S = ZZ||¢||2/¢ 2)éu(@)x()ds
11=01>=0 11=01>
Thus by (3.4),
N1

6llso < llz S 5 '|'|‘f;j'|'|<;° < co ()]l (3.6)
[1=01>2=0

Hence the identity operator £ is of (1,00) type with di = co(N). Clearly, for any r =
W,l <p<gq<oo Lisof (r,r) type with do = 1. For 1 < p < oo, we set p; =
r

1,q1 =00,p2 =qo =r and 6 = ~in (3.2), then (3.3) implies the desired result. Moreover, £ is
also of (1,1) type and (0o, 00) type. The proof is complete.
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Theorem 3.1. For any ¢ € Py and 1 < p < q < oo,
ay, as, 1 1
19llze < e(NP P NGO g

— )
() ()

where p(a;, B;) = max(2c; +1,28; + 1,0) + 1,i = 1,2.

Proof. We deduce from (2.1), (3.1) and the Stirling formula that || J{|| s = O(; 215 ?).
By Abramowitz and Stegun [4],

1 _1
||Jl(a,5)||oo — ||Jl(1oz1,51)||oo||Jl(2oz2,52)||oo < cl;nax(oqﬂh z)l;nax(az,ﬁz, 2)-

Therefore . " . .
||Jl(a,6)||oo < Cl;nax(a1+§751+§, )lmax(a2+§ﬂz+§, )||Jl(a,[3

5 Ny -

Taking ¢i(x) = J\*”(2),x(2) = XD (@),c0 = e;m = max( + §,6 + 3,0) and 1 =
max(as + %, B2 + %, 0) in Lemma 3.1, we obtain the desired result.

Theorem 3.2. For any ¢ € Py,

18]]1 e < e(NF + N3)|[6]] o0 - (3.8)
If, in addition, a;,B; > 0,i = 1,2, then
[@[l1 yem < (N1 + N2)||@]| o181 (3.9)

Proof. (3.8) comes from (2.4) immediately. If «;, 3; > 0,7 = 1,2, then by (2.5),

[Pl em < eWalldllez oz g H Nl e )
< (N1 + No) [l |y a-1.5-1) -
For mixed Jacobi approximation, we need some non-isotropic spaces. Now, for r,s > 0, set
H;’(sa,a) () = Li(azﬁﬂ(A?; H;(leﬁl)(Al)) N H;(azﬁ2)(A2; Li(alvﬁl)(Al)) (3.10)
with the norm
||’U||H;’(Saﬁ) = (||U||%i(a2ﬁ2)(AQ;H;(alﬁl)(Al)) + ||U|ﬁz:{(%ﬁy(A2;Li(a1ﬁ1)(/\1)))%- (3.11)
For simplicity, we drop the scripts A, and Az. Note that HY (. 5 (Q2) C H;’(Zﬁ) (Q) and H}((Q‘B) Q) =
H (o o) ().

Remark 3.1. We can verify that for any ¢ € Py and r,s > 0,
Iollms ) < N+ N3*) e
Next, like (3.10) and (3.11), we define the non-isotropic spaces.
H o 4() = L2 (wym0) (A2 HY ey o) g (A1) NV H (e 5y 4 (A25 LY ey 0y (A1),

H;}i.ﬁ)7*’u(g) = Li(azﬁz) (A27 H;(a1ﬁ1)7*’u(A1)) N H;(azﬁﬂ’*’u(AQ; Li(alﬁﬂ (Al))7

HT,S (Q) = Li(azﬁz) (A2) H;(alﬁl),**,u(Al)) N H;(azﬁz),**,u(Az; Li(f—‘qﬁl) (Al)))

X (@B e,
with the corresponding norms ||v|],. sy a8) 4, |V]]1 5.y (@5« AN [|0]],. 5.3 (08) sx - In particular,
||v||r,s;x(”"3),* = ||v||r78;x(“"ﬁ),*,1 and ||U||T,S;X(a’ﬁ)7** = ||v||T73§X(”“B)7**71'
Finally, for any r,s > 1, set

) —_ 5 —1 -1
M5y () = HE gy () NV H o (T o ) OVHT, 4 (Y o)

with the norm ||v||pms .
(@8

The Li(a.a) (€2)—orthogonal projection Py q 3 : Li(a,g) () — P is a mapping such that
(PNa,g0 — 0,0) e =0, Vo€ Py.
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Theorem 3.3. For any v € H;’(:BLA

||PN7047B’U - U”X(’—“ﬁ) S C(Nl_r + N2_S)||U||r,s;x("vﬁ),.4' (312)

(Q) and r,s >0,

Proof. Let Pn;, q;,; be the Li(aiﬁi) (A;)—orthogonal projections, i=1,2. By Lemma 2.3,

||PN704757} - U”X(avﬁ) < ||PN17011751U - v”x(a’ﬁ) + ||PN17011751 (PN27012752U - 'U)Hx(a’f’)

<c(N;" ” N, ?# s
< (Vg ||U||L2(a2.62)(Hx(al.ﬁl),A)+ 2 ||U||Hx(azﬁz),A(Li(a1,B1))

< (N7 4+ Ny )| ol i,
Theorem 3.4. If for real r,s > 1, there hold the conditions
i) ar+r>1 or fr+r>1, (i) ax+s>1 or fa+s>1,
then for any v € M;’(SQ‘B)(Q) and all 0 < p <1,

1PN 50 = 0llotr < (N7 4+ Ny*) B (NE 4 NyN3™ 4 NN o+ N30 ol s
.

(3.13)
If, in addition, a; = B;,t = 1,2, then

3_ 1 1 3_
1PN 0,0 = vllyyiomr < e(NTT + Ny ) T (VE T 4 NENES 4 NI NG 4 NGV ol
.

(3.14)
Proof. Theorem 3.3 gives the desired result (3.13) for u = 0. Next, for u =1,

|PN70175U - 'U|1,X("’5) < C(||8m1 (PN17011751 0 PNy 0,8,V — 'U)HX("J*)

+ ||8w2 (Pleoél:Bl © PNy s, 20 — U)”X(aﬁ))-
Denote by GG and G5 the first term and the second term at the right side of the above inequality,
respectively. By taking u=r =1 in (2.7) and using condition (i),

||6I1PN1,a1ﬂ1v||X(a’f3) < CN1||U||L2( (315)
X

az.ﬁz)(Hi(abBﬂ)-
By virtue of Lemma 2.4 and (3.15),

G1 < (N7 "follze, + NN o]l ge-
X

H" 1 .
age) 2 ay 0p) ) we2.82) 4 (a1.61))

A similar estimate is valid for G2. The previous statements with space interpolation lead to
(3.13). By (2.8), we can prove (3.14) similarly.

In many cases, the coefficients of derivatives of different orders degenerate in different ways.
So we need the approximation in non-isotropic Hilbert spaces. Let v = (71,72),d = (d1,d2) and
Yi,0; > —1,i =1,2. Further, H) 5 5(9) = Li(w)(ﬂ), and

Holéﬂma(ﬂ) = {v|v is measurable and ||v||1,a,3,7,5 < 00}
where )
19ll1,0,8,7.6 = (VIR @s + [0]E60) 2
X X

For 0 < pu < 1, the space Hf, 5  5(2) and its norm ||v]|,,q,5,~,5 are defined by space interpolation.
Next, let

Qo876 0) = (Vu, Vo) ap + (u,0) 0,  Yu,v € Hclhﬁ’w;(ﬂ).
In particular, aq,5(u,v) = @a,p,a,6(u,v). The orthogonal projection Py, 5 5: H) 5 5(Q) —
Pn is a mapping such that

a’aﬂy%(s(P]{f,a,ﬁ,v,JU -0, ¢) = 07 vd) € PN

For simplicity, we introduce the space Y5  5(Q) with r,s > 1. For r,s = 1, Y;é L) =
Hé,ﬁ,w,é(ﬂ)‘ For r,s Z 2; we define

s _ s 1 —1 —1 1
Y;,Z’,A/,é(ﬂ) - H;(s&ﬁ),*(ﬂ) n HOZZUBZy’Y2762 (H;(‘llvﬁl)’*) n H;(azﬁz)’*(Hahﬁh%,ﬁl)’
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with the corresponding norm ||U||Yr5 . For any r,s > 1, the space Y5 _ 5(Q) is defined by

"
space interpolation. In particular, ||'U||Y7‘S . =||v ||Y”; "

Theorem 3.5. If
vi<a <vi+l, 6<pBi<di+1l, i=1,2,
then for any v € Y5 5(Q) and r,s > 1,

1P 5,750 = Vllios < eNE 4+ NE )l follyrs -

Proof. We first consider the cases r,s > 2. By the projection theorem,

1PN 0,560 = Vll1a87.6 < c(Wh + Wa + Ws)

where
W = ||az1 (PNl ,a1,01,71,01 PN27a2,B2,’Yz,52 )||X(”“B)’
W2 = ||812( Ni,a1,81,71,01 PNz az,B2,72,02 7 )||X(a‘ﬁ)’
W3 = || Ni,a1,61,71,01 PNZya27B27’Y2y62 ’UHX(AY 8-

We get from (3.16) and Lemma, 2.5 that

||8-T1P1{71,a1,51,’}/1,(51v||X(""B) S C||8m1'U||X(a,ﬁ),

)-

||PJ{H,mﬂh%,ﬁlU”X("J) S C(HU”X(%J) + N1_1||8m1}||L 62)( MCn 61))

Therefore by (3.16), (3.19) and Lemma 2.5,

Wi <100 (Pl o, 5,00 = 0V + 106 (Pl 5,30 = 0y
< c(N1 ||'U||L etz H () ) )+ |IPa 1N2,a2,52,w2,62 v||LX(72’52)(H;Lﬁl%al)
<e(Ny™ ” N, ? . .
< ¢( ||'U||Li(a2 62)(Hx(a1.61),*) + Ny ||v||Hx(i2,ﬁ2)‘*(H;Lﬁlm’sl)

Similarly, we have from (3.16), (3.19), (3.20) and Lemma 2.5 that
Wa < e(Ny T[]l

. Nl s
azﬁ2,72,52(H (;1,61),*) ||'U||H @2,82) . (r?

X(a1,f31)) ’

Wa < (N7 + Ny * 4+ N7 N, ™) oy s

R
The above estimates lead to the desired result for r,s > 2. Obviously, for r =s =1,
||P1{f,a,ﬁ,w,6v = 0[l1,0,8,7,6 < cl|vll1,0,67,6 = CHUHY;:;’%S
On the other hand,
1PN 0,5,7.50 = Vll108,7.0 < eV + Ny ) [oly22

a,B3,7,8

So we get (3.17) for 1 < r,s < 2 by space interpolation. The rest of the proof is clear.

(3.16)

(3.17)

(3.18)

(3.19)
(3.20)

In some cases, the unknown functions may vanish in some parts of the boundary. Denote by
Vi,Va2, V3 and Vy the corners (—1,—1),(1,—1),(1,1) and (—1,1) of the square {2, respectively.

[;(j =1,2,3,4) stand for the edges with the end points V;_; and Vj (Vg =Vy). Let
l,F]‘ _ _ Fj7
HO,oz,B,w,é(Q) = {v|v € Hlﬁmé(ﬂ),vhﬂj =0}, Py Ho aﬁ . s(Q)NPy.

The orthogonal projection PN’OZB o Hé’gjﬁ . 5(Q) — 7)]1;,-,0 is a mapping such that

1, r;,0
a’ayﬁﬁ’:é(PN,oz],B,w,é’U -0, ¢) =0, vd) € PNJ :

We can estimate ||P1i,”l;j’5m5v —0||1,a,8,7,6, 1 < j < 4. For instance, we have the following result.
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Theorem 3.6. Let vo < as < 72+ 1 and 02 < By < 3 + 1. If one of the following conditions
holds,

i) n<a<n+1, 0 <h<n+1,0<y <1, B <1,

(11) Y1 Sal S’)/1+1, ﬂl :61:0,

then for any v € H&’gfﬁ’%(;(ﬂ) NY 5., 5(Q) andrs > 1,

1, _ _
IPEY 50 50 = vlliasn s < eV 4+ NIl follyrs .

(3.21)

The proof of this theorem is similar to the proof of Theorem 3.5. But PI{H,M,Blm,Jl in
(3.18)-(3.20) is now replaced by Py So by Lemmas 2.5 and 2.6, we reach the
desired conclusion.

Now, let

1,@1,01,71,01 "

Hy 6,752 = {v|v € Hy g, 5(Q) and v]ao = 0}.
The orthogonal projection Plif’,?x,ﬁmd t Hj o 5..6(Q) = P} is a mapping such that

1,0 _
a’aﬁy%(s(PN,a,ﬁ,w,JU —0,4) =0, VopePy.

Next, let Zizlﬁmé(ﬁ) =H) 5. 5(Q) and for r,s > 3,

Zr,s (Q) — Hr,s (Q) N Hl (Hr—l )ﬁ Hs—l (Hl )

a,B,7v,0 x(@:8) %2 az,B2,72,02 x(@1:81) %2 x(@2:82) 2 a1,81,71,01
with the corresponding norm ||v||Zr.sﬁ ,- Forany r,s > 1, we define the space Z%.,5(Q) and
B, B,

its norm by space interpolation.
By a similar argument as in the proof of Theorem 3.5 and using Lemma 2.7, we have

Theorem 3.7. If0 < a; = v < 1land 0 < 3; = §; < 1, i = 1,2, then for any v €
H&,a,ﬁ,y,J(A) N Z;:Sﬁ’,\h(;(ﬂ) with r,Ss Z 1’

1,0 _ _
1PN o 5.7,60 = 0llLa8,6 < (N7 77+ Ny ~2)[o] | 57 (3.22)

857,86

We now turn to some orthogonal projections in the space Hj X(Q,B)(Q). For any u,v €
Hj o (€0), set

Ao 5(u,v) = (Vu, V) @0, Cap(u,v) = (VU,V(X(O"B)U)).

() N Py. The projection f’ji,oaﬁ : H!

Let P} = H& (@8 0 X(aﬁ)(Q) — P% is a mapping such
that

Ta,8(PNS, 50 —v,0) =0, Vo€ PY.

While the projection }A’]{,’?aﬂ tHy o

() — P is a mapping such that
Ga,s(PS 50 —v,0) =0, VoePY.

We focus on some specific cases in which the parameters satisfy one of the following condi-
tions.

(1) a;>—-1, 8;=00r a; =0, 8; >—-1,i=1,2, (323)

i) —-1<a;B:i<1,i=1,2. (3.24)

We can use Lemma 2.1 to prove the following result.

Lemma 3.2. If (3.23) or (3.24) holds, then the semi-norm |- |; \(«.s) is a norm of the space
HS’X(Q,B)(Q), which is equivalent to the usual norm || - ||} \ (o5
Lemma 3.3. If (3.23) or (3.24) holds, then the bilinear form G g(-,-) is continuous and elliptic
on H& (i () X H, () ().

Xt 0,x!*
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Lemma 3.4. If (3.24) holds, then the mapping T*? : v(z) — v(z)x\*?) (x) is an isomorphism

from H (a5, (Q) onto Hy (s ().

Proof. For any v € D(Q), we get from Lemma 2.1 that
102, XNy < [ (Garo(@)P @ (@)t
Q

4(af + 5%)/ v (@) x (20 () ) 0202 () da < |10, 0] ) -
Q

Similarly,
11025 (WX @[ ymarmp) < €]|Oaq]]ytem -
Consequently,
X[y ymaemmr < | [V]]; yiam-

So T is a linear continuous mapping from H} (Q) into H[}’X(aﬁ) (Q). Conversely, we

(—a,=8)
also can show that the inverse mapping T‘D‘v_ﬁ’)f v — vx("® P is also a linear continuous
mapping from H&X(&ﬁ) (Q) into H&,X(—a,—ﬁ) (). Finally, a density argument leads to the desired
result.

Lemma 3.5. If -1 < «;,3; <0 or 0 < o, 5; < 1,i = 1,2, then the bilinear form Gy () is
continuous and elliptic on Hé’x(aﬁ)(ﬁ) X Hé’x(aﬁ)(ﬂ).

Proof. For any u,v € D(Q2), we use Lemma 2.1 to get that
o, 5(u,v) < |IVullyem ||Vl e

+4(af + B)10m, ullyio e (/ V(2 ()X (02 () dr) %

+ 4(0&% + ﬁ§)||8x2u| |X(Q,B) ( UQX(al,Bl) (ml)X(a2_2’ﬁ2_2) ($2)d1})% (3.25)
Q
< |Vl [Vl by 105, e l102,vll e + [19ratl oz lyce)
< c”u”l,x(aﬁ) ||U||1,X(a.ﬁ).
On the other hand, integrating by parts yields

. 1 N 1 N
G, (1) = ||Vl 2 ) +§/Q’LL2W1(1'1)X( ﬂ)(x)dx+§/ﬂu2wz(x2)x< O (z)dz,  (3.26)

where

Wi(z1) = =07, (X0 (z)x 700 (@), Walzs) = =85, (X7 (22))x == 7% (2,).
We now determine the ranges of «; and 3; such that W;(x;) > 0 for all z; € A;,i = 1,2. Let
f(z1) = (1 —22)2Wy(z1). A calculation shows that

fl1) = —(a1 + B1)(a + B — Daf +2(8 — ar)(ar + B — Dy + ax + fr — (B — an)”.
By the properties of the quadratic function, we find that f(z1) > 0 for all zy € Ay, if
(al + ﬁl)(al + ﬁl - 1) Z 07 f(_]') = _4ﬁ% + 461 Z 0> f(]-) = —4@% + 4C“l Z 07 (327)

or
A(Br — ar)* (1 + Br = 1)* +4(ar + Bi) (a1 + Bi — 1) (a1 + 1 = (B — a1)?) 0. ’
Solving (3.27) and (3.28) yields that 0 < a;,; < 1. Similarly, we have W5(z3) > 0 in the case
of 0 < g, B2 < 1. Therefore, if 0 < a;, 5; < 1,i = 1,2, then we obtain from (3.26) that
o, (u,u) > c|ulf} | a- (3:29)

Furthermore, if —1 < a;, 3; < 0,i = 1,2, then we set w = ux(*?). So we know from Lemma 3.4
that w € Hj (., 5 (Q). Hence, by (3.29),
Ga,6(u,u) = @oa,-p(w,w) > cllw|f}  cap > cllull} @ (3.30)

Finally, (3.25), (3.29) and (3.30) lead to the conclusion.
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Theorem 3.8. If —1 < ;,3; <0 or 0 < o, 8; < 1,0 = 1,2, then for any v € H(},X(a,ﬁ)(ﬂ) N
Y;(’j‘ﬁ)(ﬂ) andr,s > 1,

1PN a0 = vl o < eV 4 Ny )llollyre s (3.31)
and

1237%,50 = ol < NI+ N7 lollyre - (3:32)

Proof. By Lemma 2.8 and a similar argument as in the proof of Theorem 3.5, we obtain
(3.31). We now prove (3.32). By Lemma 3.5, for any ¢ € PY;,
51,0 ~ 51,0 51,0
||PN,a,ﬁU - U||?,X(a,a) < Caa,B(PN,a,ﬁv -0, Py, 50— v)
~ 51,0 51,0
= caa’g(PNﬂﬁv —v,¢—v) < c||PN7a7ﬁv = V|1 ytamr ||@ = V||1 y(a8)
Therefore, by the above fact and Lemma 3.2,

||P1if’0a BU - U||1,X(a’ﬁ) <c info ||¢ - /U||17X(a,ﬁ) < c|ﬁ1if’0a BU - ’U|1,X(a’f3)7
, GEPY, ,

and so the conclusion follows from (3.31).

Theorem 3.9. If -3 < ;,3; <0 or 0 < a;, 3 < 3, i = 1,2, then for any v € H&,X(a.ﬁ)(g) n
Yiie(A),rs>1and 0 <p <1,
IPAS, 50 = vlluiesr < V1T + NPT 4 N7 Mol (3:39)

Proof. Theorem 3.8 implies (3.33) for p = 1. We now prove (3.33) with 4 = 0. Let g €
Li(a’ﬁ) (Q) and consider the auxiliary problem

Ao 5(w,2) = (9,2) 507, Vz€ H&X(a_ﬁ)(ﬁ). (3.34)
Taking z = w in (3.34), we get from Lemma 3.2 that [|w||; y.0 < cf|g]|yc.0 . Next, let w(z)
vary in D(2), and so in the sense of distributions, Aw(z) = g(z). Now, we prove that
[wlzx e < el|Aw||yn . (3.35)
Indeed,
O*w 02

/Q (Aw(@) 1 (@)de = /Q (G @3 ) + /Q Gz @)X @)a

+2 /Q T T (@) (1)

oz? 2o

(3.36)

q

0
For any i # j, the derivatives 6—3:5 vanish on the edges with z; = £1. Thus by integration by

parts, '

o o

_/ A% (wy (@11 (1)) 62(”"(&2’52)(“))@
Q

(@)X (x)da

) 83718372 83718372
0“w 1 ow
— [ G @PX D @)ds = 5 [ (G @) G ) e (337

Az
1 ow 2., (a1,81) (a2,B2) "
~3 Q((rj—ml(ﬂf)) X0 () (2 (2))

ow ow
(z) 8—332

[ S @) @ (@) () () o
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Moreover, by the Cauchy—Schwartz inequality,

|/ 8351 8332 (@) (X(ahﬁl)gl)y(X(”’ﬁZ)(m))'dﬂ
<3 2 /(awl(1'))2(()((042,52)(1-2))1)2X(a1751)(ml)x(_a27_ﬁ2)(x2)dx

+3 / () (X0 () P o 29 )

Inserting the above estimate into (3.37), we get that

02 (wx ) (1)) 8 (wx*>72) (z5)) 0w 2
> (o,8)
/Q 0x10%2 01102 dr > /9(83318:52 (7))"x (x)dz
w w

+%/Q(g_xl(w))2w2(m2)x(aﬁ)(x)dw_|-%/Q(aa—mz(x))2W1(xl)X(aﬂ)(x)dxa

(3.38)

where
Wa(on) = =) 0)) ) o) = () (1)
W (w2) = = (x>0 (22))"x 2702 (wp) — ((x(*272) (22))") X722 7202) (a,).
>0 for all z; € A;,i =1,2. To do

)P 0y,

We now determine the ranges of a; and f; such that W;(x;)
this, let f(z1) = (1 — x1)>Wi(x1). A calculation shows that
flzr) = (o1 + B1) (200 + 281 — D)af +2(B1 — 1) (2ar + 261 — Va1 + ay + B — 2(B1 — o).
Following the same lines as in the proof of Lemma 3.4, we can prove that f(z;) > 0 for all
x1 € Ay in the case of 0 < ay,p1 < 5. Therefore, we know from (3.36)-(3.38) that (3.35) is

valid for 0 < o, 8; < 5,i =1,2. If i and B; are negative, then we take u = wy(®?) and find
that

/ 32(11))((0‘1’51 (z1)) 82(wX(a2,ﬁ2)(x2))dm :/ 32(UX( ai,—f1) (1)) (92(UX( ai,— 51)(561))
Q (35618372 837185[72 Q 837185[72 83718372
Hence, we can show that (3.35) is also valid for —1 < «;, 8; < 0,i = 1,2. By the definition of
the space Y (a 5 (), we have that HZ . , () C Y;(’f,m (€2). Thus by (3.35),

dz.

||w||y2(.2 o < cfjw]3 e < 0]} s +10]5 wm) < ellgln- (3-39)
x

Taking z = ﬁ]{,’?aﬂv — v in (3.34), we obtain that

, 51,0
|a047ﬁ(PN a,gV — U, PN g — w)|

< (N NN NG Dl ol
.

|(P]1f7,0aﬂv - Uag)x(aﬁ)|

Consequently

1,0
||PN,a,5U - U||X(a,6)

|(ﬁ1{r’,0a,ﬁ” —0,9)y@o| 1—r 1—sy/n7—1 -1
Sce(Ny 7"+ N, (ND 4+ N, )||U||Y”(’Zﬁ)-
e

T e gl
gelL>,, Iy
e

Finally, we complete the proof by space interpolation.

4. Some Applications

We first consider the problem
—V(a(x)VU(x)) + c(z)U(z) = f(z), =z€Q, (4.1)
f(

a(z) > 0, c¢(z) > 0 and f(x) are given functions. Assume that a(z) =
(

where V = (0z,,0z,), a
= ¢ (z)x") (2), ay(x) € L®(Q), c1(z) € L®(Q),a1() > amin > 0 and

ar ()P (), e(z)
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c1(z) > emin > 0, for z € A. We look for solution of (4.1) such that a(z)VU(z) — 0 as z tends
to 0. Let

ba,B,7,8(U,v) = (a1 VU, Vo), @am + (C1u,0) .5,  Yu,v € Héﬂma(ﬂ).
A weak formulation of (4.1) is to find U € H} 5 _ ;(Q) such that

ba,srs(U,v) = (fv), Yo €H, 5. 5(Q). (4.2)
If fe Li(,%,é) (92), then (4.2) has a unique solution such that ||U||1,a,5,.6 < ¢||f|ly—v.—a-
Next, let uy € Py be the approximation to U, satisfying
ba,gyo(un,d) = (f,¢), V¢ € Py. (4.3)

The scheme (4.3) is unisolvent, and |[un||1,a,6,7,6 < €|l flly=v.-5 -

Theorem 4.1. If (3.16) holds, and U € Y5 5(Q) with r,s > 1, then

U = unlliapq6 < ANy + Ny )U]lyrs

a,B,7.8’

where the constant d depends only on the norms ||a1||L~ and ||c1]|Le.

Proof. Let Uy = PI{T,a,B,v,JU' By (4.2) and Theorem 3.5,

cllun —=UNIE o505 < ba,ﬁ,lw,a(uzv ~Un,un = UN) = ba,8,7,6(U = Un,un — Un)
S AN, "+ Ny T)Ulyre My = Unllia,8,.6:

~,8
Thus
U~ unllags < U = Unlina s + s = Usllio gos < A+ N3)[U]lyzs
We next deal with the Poisson equation
—AU(z) = f(x), z €Q,
{ U(z) = 0, v €00, (4.4)

where f(z) = fi(z)x(=P(z), fi € L>®°(Q), and oy, B; < 1,i = 1,2. A weak formulation of
(4.4)istofind U € H, (e () such that

aa,3(U,v) = (f1,v), Wve H&,X(a,a)(ﬂ)- (4.5)
We know from Lemma 3.5 that
UIF oy < €cl@agUU)] = c|(f1,U)] < cllfille U]l < ellfillpe [U]] - (4.6)

Thus if f; € L>°(Q2), then (4.5) has a unique solution such that [|Ul|; yc.0 < cf|fi|[ze-
The Jacobi spectral approximation to (4.5) is to find uy € P% such that

aa,ﬁ(”N; QS) = (fl; QS)) V(ZS € PRT (47)

It ils(lin;olvent and |[un]|; s < cf|fi]|L>. For error estimate, let Unx = ﬁ#&yﬁU. By (4.5)
and (4.7),

aa,ﬁ(U’N_UNﬂqS):aa,B(U_UNad))a vq&elpgf

Taking ¢ = uny —Upn and using Lemma 3.5, Theorem 3.8 and Theorem 3.9, we have the following
result.

Theorem 4.2. If o and 3 fulfill the conditions in Theorem 3.8, and U € H; N Q)N
Y;(’jﬁ)(ﬂ) with r,s > 1, then

IU = un i yem < (V77 + Ny ) [Uflyre
If, in addition, —% <a,Bi <0o0r0<a;f; < %,i =1,2, then for all0 < pu <1,

I~ o < e(NE 4 NIV 4 N[y
.
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We now consider the singularity of the boundary value. Let I's be the same as in Section 3,
and consider the following boundary value problem

—AU(z) = f(x), in Q,
U(z) = g(=), on I's, (4.8)
U(x) =0, on I' =00Q/Ts,

where f(z) is regular, g € L2 (T'3) with w(z) = (1 —21)* (ay < 1), and g(z) =0 on I3 NT. By
a similar argument as in the proof of Theorem 18.7 of Bernardi and Maday [5], we have that

for any v € HL(Q), its trace on I'; belongs to HY' ~*"/?(T'3). Further, denote by Ug € HL(Q)
the trace lifting of g. Then
1UB||10 < c||g||H£17a1)/2(F3). (4.9)

Next, let
H&};(Q) = {vjv € HL(Q),v =0 on '}, ay(u,v) = / (Vu - V(wv))dz.
Q

A weak formulation of (4.8) is to find U € Héul:(Q) and U* =U — Up € Hj ,(Q) such that
ay(U,v) = (f,v)w, Vv € Hg, (), (4.10)
or equivalently
ay(U*,v) = (f,0)0 — au(Us,v), Vv € Hy,(Q). (4.11)

We can show that a,(u,v) is continuous on HJ(Q) x Hg ,(Q2) and elliptic on Hg (). Let
H;'(Q) = (Hj,(Q)) with the norm ||v|| 1 .. By the above fact, (4.11) and the Lax-Milgram

w

Lemma, we know that if f € H_ (), then (4.10) has a unique solution such that

U0 < clUBlw + £ ll-10) < elllgll yo—enrz gy + 1 Fll-1,0)- (4.12)
Let 73]{,’0 = H&7’£7B7776(Q) NPy and Pjif,ra,ﬁ,%& : H&7’£7B7776(Q) — 73]{,’0 be the mapping such that

aa,ﬁﬂ,é(PJif,l;,gmav -v,4) =0, Ve 7311:;’0-
For simplicity, let Py, = Py 4 3.4, and Pi,l; = Pji,”l;’ﬁ’aﬂ with a = (a1,0) and 8 = (0,0).
The spectral scheme for (4.10) is to find unx € P]FV’O and uy = un — Py ,Up € P}; such that

aw(un, ) = (f, 9w Vo € PRI: (4.13)

or equivalently
ay(uy, ) = (f, #)w — aw(PJ{LwUB,(]S), Vo € P?V- (4.14)
By Theorem 3.6 and a similar argument as in the derivation of (4.12), (4.13) is unisolvent, and

lunllie < Py Uslliw +1fll-1w) < e(lUslI o+ fll-10) < cllgllga-anrz g, HIF-10)-
(4.15)
Next, let Uy = Pﬁ,’iU and Uy, = Uy —PI{WUB. By the ellipticity and the continuity of a,(-,-),
we have from (4.11) and (4.14) that for certain co > 0,
colluy —URIIE, < aw(uy = Ux,uly — UR)
=a,(U* = Ux,uy —UX) +au(Us — Py Us,uy — UR)
< c(|U* = Uxllw + 1Us = Py ,Uslhiw)lluy = UX 1w
< (U = Unlhw + 20Us = Py ,Uslliw)lluy = Uxlh o

By Theorem 3.5 and a result like Theorem 3.6,
lluty = Ukllie < (N1 4+ Ny 7)[U]lyze + (N7 4 Ny = )[U ]|y or),

where Y*(Q) =Y} | 5(Q) and Y (Q) = Y:ﬁs;ﬁ(ﬁ) with a = (ay,0) and 3 = (0,0). Since

uny — Un = ujy — Uy, we get the following result.
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Theorem 4.3. Ifa; <1, U € H&LE(Q) NY5(Q) and Ug € Y75 (Q) with r,s,7,s' > 1, then

= Unlli < (NI~ + N3 Ullyze + (V2 4+ N3~ Ul
Finally, we present some numerical results. We first consider problem (4.1) with a(z) =
(1 —22)(1 — 23) and ¢(z) = 1. Take the test function

U(z) = arcsin(zyz2)e® 2.

Clearly, |0,,U| — o0,i = 1,2, as = tends to 992. We use (4.3) to solve (4.1) numerically.
E(U — up) is the discrete L?>-norm of the error U — uy based on the Gauss-Legendre nodes
and weights. The errors E(U — uy) with Ny = N, are listed in Table 1, which show the high
accuracy and convergence of the scheme (4.3).

We next consider problem (4.4), and take the test function

].-l—il’l ln].-l-l’g
B .

E(U — uy) is the discrete L?-norm of the error U — ux based on the Gauss-Legendre-Lobatto
nodes and weights. The errors E(U — uy) with N; = N, are listed in Table 2, showing the
effectiveness of this approach.

U(z) = i(l +z1)(1+22)In

Table 1. The errors E(U — uy). Table 2. The errors E(U — upn).
N1 :N2 E(U—’U,N) N1 :N2 E(U—’U,N)
8 3.06E-3 8 5.55E-4
16 4.97E-4 16 5.42E-5
32 7.15E-5 32 4.77E-6
48 2.23E-5 64 3.99E-7
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