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Abstract

In this paper, a combined hybrid method is applied to finite element discretization of
plate bending problems. It is shown that the resultant schemes are stabilized, i.e., the
convergence of the schemes is independent of inf-sup conditions and any other patch test.
Based on this, two new series of plate elements are proposed.
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1. Introduction

The success of finite element methods for the numerical solution of boundary value problems
for elliptic partial differential equations is, to a large extent, due to the variational principles
upon which these methods are built. The assumed stress hybrid methods pioneered by Pian
and Tong (see[8],[10],etc.) are based on modified complementary energy principles and proved
to be very successful in a number of applications; see, e.g.,[3],[7],[8],[10],[11],[19], etc.. For
4th-order problems, the hybrid methods can relax the C'-continuity for deflection elements
so that sufficient flexibility in the finite element solution can be gained. However, because of
the ”saddle-point” nature of the hybrid models, some strict stability conditions such as inf-sup
conditions or LBB conditions must be satisfied by deflection and bending moments (e.g.,[3]),
and then the formulations of hybrid elements can not yet be simplified to a degree comparable
to the use of shape function routine in the conventional displacement methods. And due to the
complicated self-equilibrium equations, application of assumed stress hybrid elements to shell
analysis is not convenient.

To avoid the inf-sup difficulties, the least-squares method (see,e.g.,[1] and the references
therein) having developed in the past decade seems to be an efficient way. But as pointed out
in [1], for 4th-order problems, some conforming shape functions are required and the resulting
least-squares finite element method also fails to be practical because the condition numbers of
the corresponding discrete problems are O(h~*) compared with the O(h~?) condition numbers
that result from standard Galerkin methods for the same problem.

Recently, a new hybrid finite element method for linear elasticity problems named as com-
bined hybrid method was suggested by Zhou (see [23],[26]). This approch is based on a so-called
combined variational principle, i.e., a homotopy family of optimization conditions of two dual
systems of saddle point problem—one is the domain-decomposed Hellinger-Reissner principle,
the other is the primal hybrid variational principle, a dual to the former. Theoritical analy-
ses[23] and numerical tests[26] both showed that the combined hybrid method possesses not
only the features of hybrid methods, but also almost all the significant and valuable properties
of the least-squres methods, such as: it can circumvent the inf-sup conditions, and then the
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weak problems are in general coercive; the resulting algebraic problems are symmetric and pos-
itive definite; essential boundary conditions can be imposed in a weak sense; and finite element
spaces for displacement and stress can be chosen independently, etc..

In this paper, the combined variational principle, as a rational approach to incompatible
displacement schemes, is applied to finite element discretization of plate bending problems.
It is shown that the resultant schemes, named as combined hybrid finite element schemes, is
stabilized, i.e., the convergence of the new incompatible element schemes is independent of inf-
sup conditions and any other patch test. Then the deflection and the bending moments subspace
can be chosen independently. The C'-continuity for deflection interpolations is relaxed. The
self-equilibrium constraint on the bending moments subspace V” is not required.Two new
series of plate elements to are given to show another feature of the combined hybrid method,
i.e., in building the plate bending finite elements there exists great possibility in the choice of
stress/strain-enriched interpolations to enhance accurary of the schemes.

The paper is arranged as follows. In section 2 the combined variational principle is derived
and then a mathematical foundation of the stabilized hybrid method is established. Section 3
is devoted to the discussion of stabilized hybrid schemes and convergence. The error estimates
are deduced. Finally, two new series of plate elements are given in section 4.

In what follows the letter C' will represent different constant independent of the mesh size
h at its each occurence.

2. Combined Variational Principle

We consider the following plate bending problem:
divdive = f, in ,
o = m(Dsyu), in Q, (2.1)
u=Vu-n=0, onT =00.

where Q C 12 is a bounded open set, u represents vertical deflection, ¢ the bending moments,
and n the outer normal unit vector along I'. The operators divdiv,D, and m are defined
respectively as follows:

divdivr = 011711 + 2012712 + 020702,

Dov — 8111) 8121}
2T O12v Oa2v ’
_ T11 + VT22 (]. — l/)’l'12
m(r) = < (1—=v)Ti2 UT11 + To2
for any symmetric tensor 7, and v € (0,0.5) denotes the Poisson’s coefficient, 9;; = %{;, i,j =
10T j

1,2.

We know that for this problem the two basic solution spaces are the deflection space HZ ()
and the bending moments space H(divdiv;Q) := {r € (L?(Q))};divdivr € L?(Q)}, where
(L?(Q))% is the space of square integrable 2 x 2 symmetric tensors.

To relax continuity, we introduce the following two piecewise Sobolev spaces to replace
HZ(Q) and H (divdiv; Q):

V= H H(divdiv; K),
KeTy
U:={ve H H*(K);u=Vu-n=0,0onT},
KET,
where T}, = {K} denotes a regular subdivision of Q, with mesh diameter hy for any K € T},.
We also need the following Lagrange multiplier space as

Ue:=Hi(Q)/ [] Hi(K).
KeTy
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We equip V and U x U, with the norms

|I7]|v == [/ m (1) : Tdx + Zh‘}ddivdivﬂgﬂ]%
K

o)
0.6 llcar = (32 m(Dav) s Davax -+ [Jo = vl )

K

where , . ,

— Ve = inf h — Ve —W
llo—v ||P,K weglg(K)[ x v ||0,K
+ [ m(D2(v — v — w)) : Do (v — v, — w)dx].
K
As to the validity of the second norm, we only need to check that ||(v,v.)|luxv. = 0

implies v = v. = 0. In fact, > |[v — v.||px = 0 yields v € HZ(Q), which, together with
> [ m(Dyv) : Dovdx = 0, implies v = 0. And then v, = 0.
K

Next we will show that corresponding to the deflection/bending moments space V x (U xUy,),
there are two variational principles related to the problem (2.1). In other words, we have the
following equivalence theorem:

Theorem 2.1. Assume that f € L*(Q). Then problem (2.1) is equivalent to either of the
following two saddle point problems:

inf sup {1/2@(7‘, T) - b2(7_7 ’U) + b (7_7 v = Uc) + f(U)} (22)
TEV (v,0e)EU XU,

and
inf sup{1/2d(v,v) — by (T,v —v.) — f(v)} (2.3)
(v,ve)EUXU: 1€V

where

a(o,7) = /mfl(a) : TdX,

by (1, v) :QEI{T : Dowdx,

bi(r,v —v.) = Z %[Mnn(r)V(v —ve) -n+ Mus(1)V(v —ve) + s
oK

—Qn(7)(v — ve)]ds,
d(u,v) = Z/m(DﬂL) : Dywdx,

K
f(v) = [ fodx,
Q

My (7) = (tn) -n, M,s(7) = (tn) - s, Qn(7) = V(tr(r)) - n,
n = unit outer normal vector along 0K,
s = unit tangent vector along OK.

Proof. Firstly we prove problem (2.1) is equivalent to (2.2).
We know from [2] that the condition divdivr = f in Q is equivalent

divdivr = f, in K, (2.4)
bi(r,v:) =0, Vv, € U,. )
Thus the principle of minimum complementary energy can be written as follows:
inf 1/2 = inf 1/2
Te(;rzl(m)g / a(T, T) TEV, divgilvr:f in K / a(T, T) (25)

divdivr=f in Q b1(7,0e)=0, Vv €U,
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By using the same technique as in [2] (see also [22],[23]), we rewrite (2.5) as the following
unconstrained problem:

1nf {1/2a T,T) + sup Z/ —divdivr + f)dx + sup by (7, —v.)}
ve €U,

= inf sup 1/2a(7,7) + /U —divdivr + f)dx + by (7, —v,
=inf, sw {12007+ 3 [ )i + by (, ~vc))

Applying Green’s formula
/T : Dy(v)dx — /divdivv' vdx = ?([Mnn(T)Vv -0+ M,s(T)Vv - s — Qpn(7)v]ds

K K OK

for all 7 € (H?(K))* and v € H?(K) , We then get the saddle point problem (2.2).
Next, we have

HZ(Q) ={veU;Iv. € Ug,s.t.bi(t,v —v.) =0,Y7 € V} =: U (2.6)
In fact, it’s trivial that HZ(Q) C Up. Thus it is sufficient to prove the following conclusion:
If (v,v.) € U x U, is such that for VK € T},V7 € V,
f[Mnn(T)V(U —ve) n+ Mys(T)V(v —ve) s = Qn(1)(v — v.)]ds = 0, (2.7)
oK

we have v = v, on 9K, that is, v € HZ(Q).
For a given couple (v,v.) € U x U,, by virtue of Lax—Milgram theorem, there exists a unique
solution wx € HZ(K) such that

/m(D2w) :Dy(v — v, —wg)dx =0, Yw € Hi(K). (2.8)

Setting 7 = m(Dyw), by Green’s formula, (2.7) and (2.8) we get

0= ?{[Mnn(T)V(’U —ve) -0+ My (1)V(v —v.) - s — Qn(7)(v —v.)]ds

oK

= /[7' :Do(v — v, —wg) — divdivr : (v — v, — wg)]dx
K

= /[m(DQw) : Do (v — v, — wg) — divdiv(m(Dsw)) (v — v, — wi)]dx
K

= —/AQw-(v—vc—wK)dx, Yw € H3(K)

which implies that (v — v, — wi)|x = 0,VK. Therefor (2.6) holds.
So we can write the principle of minimum potential energy as follows:

inf [1/2 d(v,v) — f(v)] = inf [1/2 d(v,v) — f(v)]
€H2 (v,ve)EU X Ue
b1 (T,v—vc)=0, VTEV
which can as well be written as

inf 1/2 _ )],
(U,vc;IéUch[ /2 d(v,v) = f(v) +7S_1€1€ by (1,v. — v)]

just the saddle point problem (2.3). The theorem is proven.
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Remark 2.1. If v € U H}(Q), the term by (1,v — v.) in (2.6) can be reduced to

bi(ro—ve) =Y % M (T)V (v — v.) - nds. (2.9)
0K

According to the optimality conditions of saddle point problems, the problems (2.2) and
(2.3) can be changed as:
Find (o,u,u.) € V x U x U, such that

a(o,7) —ba(T,u) + by (T, u—wu.) =0, VT €V (2.10)
ba(o,v) — by (0,0 —v.) = f(v), V(v,v.) €U x U, (2.11)
Find (o,u,u.) € V x U x U, such that
bi(r,u—u;) =0, VT €V (2.12)
—b1(o,v — v.) + d(u,v) = f(v), VY(v,v.) €U x U, (2.13)

These are the desired variational formulations. However, in this paper we do not directly
discretize the two saddle point problems which require LBB condition. We will use the same
stability-enhanced technique—combined stabilization as in the papers [22][23][26] to circumvent
inf-sup conditions.

The combined hybrid variational principle reads as:

Find (o,u,u.) € V x U x U, such that

aa(o,7) — aba(r,u) + by (r,u —u.) =0, Vr € V (2.14)
aby(o,v) —bi(o,v —v.) + (1 — a)d(u,v) = f(v), Y(v,v.) €U x U. (2.15)
where the weight factor a € (0, 1).

Assume that (o, u) is the solution of the plate bending problem (2.1) , then it is not hard
to see that (o, (u,u.)) is the solution of the problem (2.14)(2.15), where u;|sx = u|ox and
Vu. -nloxg = Vu - nlok for VK € T},. In fact, we have
Theorem 2.2. (o, (u,u.)) is the unique solution of the combined hybrid problem (2.14)(2.15).

Proof.  For the uniqueness of the solution of (2.14)(2.15), we only need to show that the
following problem

aa(d,7) —aby(r,u) + bi(r,ia —a.) =0, VreV (2.16)

aby(7,v) — b1 (7,0 —v.) + (1 — a)d(a,v) =0, VY(v,v.) €U xU, (2.17)
only has a zero solution. Actually, take 7 = & in (2.16) and (v,v.) = (4, G.) in (2.17), and
combine the two relations, then we have

aa(d,5) + (1 — a)d(a,u) =0
which implies ¢ = 0 and @k is a linear polynomial. Thus by (2.16) we get
bi(r,u —1u.) =0, VT €V,

which yields @ € HZ(Q) and (@ — @.)|ax = 0. So @ =0 and @, = 0.

3. Stabilized Hybrid Schemes

In this section, we will discuss the construction of stabilized hybrid schemes and the con-
vergence. For the sake of simplicity, we assume that €2 is a polygonal domain. In what follows
P,(K) denotes the set of polynomials of degree < ¢ for an integer ¢ > 0.

Firstly we introduce three finite dimentional subspaces of piecewise polynomials V* U" and
Ul such that V! c V,U" C U and U! C U..

We discretize the problem (2.14)(2.15) as follows:
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Find (op,un,uen) € VP x UM x Ul such that
aa(on, ) — aba(1,up) + bi(T,up —uep) =0, Y7 eV (3.1)
abs(op,v) —bi(on,v —ve) + (1 —a)d(up,v) = f(v), Y(v,v.) € U" x Uf (3.2)

For this problem , the interelement deflection subspace Uy, and the interelement boundary
deflection subspace U, j may be chosen independently, but in application the two are usually
coupled so that the two displacement subspaces Uy, and U, can be reduced into one (see also
[23,26,27]). For this we give:

Definition 3.1. A nonconforming space U" is weakly compatible if, for K € Ty, there exists
a set S of Ct-continuous nodal points on OK such that :

(D1) d(v,v) =0 implies v = 0;

(D2) A linear mapping T, : v € UM — v. = T.(v) € U, can be established, i.e., v € U"
has a corresponding element-boundary conforming component T.(v) € UPF. In other words,
T.(v) is determined by the nodal parameters of v € U".

Remark 3.1. A nonconforming element which is C'' —continuous at all vertices of element is
weakly compatible, and an element which is not C' —continuous at all the vertices but is interpo-
lated indirectly by these C!' —continuous nodal parameters C' (p,, Sx) = {pv(ai), O1py(ai), Oapy
(a;)}, is also weakly compatible. Thus, all the nonconforming plate elements with C! —continuous
vertices mentioned in Ciarlet’s book [4] and [15-18] can be considered as weakly compatible el-
ements.

As to the construction of the operator 1., we have
Proposition 3.1. (i) Assume that the set of nodal parameters of v € U" on each side K' of
element K (a triangle or a quadrilateral) is

Yk (py) = {pv(ai), 01py(ai), Oapy(ai),i = 1,2},
where a1 and as are the endpoints of K'. Then T, can be constructed as
Yo e UM T.(v)|g € Ps(K'),VT.(v) -n|g € P (K" (3.3)
such that fori=1,2,
T.(v)(a;) = pu(ai), VT:(v)(a;) -s = Vpy(a;) - s, (3.4)
VT.(v)(a;) -n = Vpy(a;) - n,

and then the following invariance

{ Te(pr+2)lox = Prt2lok, (3.6)

VT.(pr+2) " nlox = Vpri2 - nlox
holds for Vpito € Pryo(K) with k = 0;
(ii) Assume that ) ., = {pv(ai), 01pv(as), Oopu(as),i = 1,2; Vpy(as) -n}, where az = a1 is the
midpoint of K'. Then T, can be constructed as
Yo e UM T.(v)|x € Ps(K'),VT.(v) -n|g € Py(K") (3.7)
such that fori=1,2,
T.(v)(a;) = pu(a;), VT.(v)(a;) - s = Vpy(a;) - s, (3.8)
and fori=1,2,3,
VT.(v)(a;) -n=Vp,(a;)-n, (3.9)
and then the invariance (3.6) holds with k = 1.
The proof is trivial.

Now we replace U with T.(U") := {T.(v); Vv € U"} to couple U" with U". The problem
(3.1)(3.2) reduces to:
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Find (op,un) € V? x U" such that
aalop, ) — aby(T,up) + by (T,up — Te(ug)) =0, VY7 eV (3.10)
aby(op,v) — by (oh,v — Te(v)) + (1 — @)d(up,v) = f(v), YoeU" (3.11)

Remark 3.2. If the weakly compatible space U" C C%((2), then by Proposition 3.1, T.(v)|sx =
v|sx, and the following relation holds:

bi(r,o = Te(v) = 7( My (7)V (v — To(v)) - nds
0K

Moreover, if U" ¢ C*(Q), then T.(v) is such that by (h,v — T.(v)) = 0, and the combined
hybrid scheme (3.10)(3.11) is reduced to a usual conforming form.

It is easy to see that the scheme (3.10)(3.11) is stabilized for a weakly compatible subspace
U", i.e., the existence and uniqueness of the discrete solution (o, uy) is independent of inf-sup
conditions and any other patch test. In fact, since the inequality

aa(r,7) + (1 = a)d(v,v) > C(|I7|[5 o + [lv]5)
holds for V(7,v) € Vi x U, where ||v]|y := (3 [ m(D»v) : D,v)3, by Lax-Milgram Theorem
K

we then conclude that there is a unique solution for the problem (3.10)(3.11). Furthermore, we
have

Theorem 3.1. Assume that U" is weakly compatible and that (o,u) is the exact solution to
problem (2.1), (on,up) the discrete solution of the problem (3.10)(3.11). Assume that

by (7,0 = T.(v))| < C||7||v||v||v,Y(r,v) € V x U". (3.12)
Then there holds the following estimate

llo = onlloe +|lu—unllu

N (3.13)

b - T,
<C{inf |loc—7|lv+ inf [|Jlu —v|lu + sup birv —Te(v))
TEVH veUn TEVh, 740 ||T||V
Proof. Assuming that ([], 0, [],u) € V* x U" is any given approximation of (o, u).
Substracting the equations (3.10)(3.11) respectively from (2.14)(2.15) and recalling that
(u—ue)ox =0,V(u —u.) -njaxg =0, we have
aa([[, 0 —on,7) —aba (1, [[gv —un) + b1 (7, [T — up — To([Ty v — un))
aa([], 0 — 0,7) — abs (1, [[yu — u) + bi (7, [[g v — T.(TT, u)), VT € V", (3.14)

aby (I, o —on,v) =bi([I, 0 — on,v = To(v)) + (1 — a)d([ [, v — un,v)

= aby (I, 0 — o,v) = bi([[, 0 — 0,0 — To(v)) + (1 — @)d([Ty u — u,v),Yv € U".
(3.15)

Setting up 7 = doy, := [[, 0 — o and v = duy, := [[, u — up, in the above equations and then
adding both, we get

aa(dop,dop) + (1 — a)d(dup, dup,)
= {aa([], 0 — 0,d04) — abz(don, [T, v — un)
+ aby([[, 0 — 0,0up)} + {01 (I, 0 — 0, 0up — Te(dup))
+ (1 —a)d([Tyu —u,0upn)} + by (6o, [[ogu — Te(I]yw))
=: > (o,u) + b1 (6on, [[o v — Te([Ty w))- (3.16)
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For the algebraic sum ) (o,u), by virtue of Cauchy-Schwarz inequality and by(7,v) <
(a(r,7))?(d(v,v))*/?, we have
Y (o,u) < ala([l, 0 — o, IT, o — 0))"/* (a(don, do2)) "/
+ (1 —a)(d([Tyu — u, [Ty u — w)*?(d(Supn, dup))'/?
+ |abs(0oh, [[ou — up) — +abs([[, 0 — o, dup)
+ 01 ([, 0 — 0, 0up — Te(Sun))|
a(a(don,d01))' *[(a([], 0 = 0,11, 0 = o))"/ + (d([Tgu — u, [Ty u — u)'/?]
+ (1 = a)(d(dun, dun))*[(d([Tou — u, [Ty u —u)"/?
+ 125 ([l 0 = 0.1, 0 = o)1 + CITT, 0 = ollvlldunllv-

Noting that |||y < C(d(v,v))/? < C||v|ly and (a(r,7))*/? < C||7|lv, and using Cauch-
Schwarz inequality again, we have

| S (0, u)| < Claa(Son, dorn) + (1 — a)d(dupy, dup)]*/?
fa([Tyo — 0,11y 0 —0) +d(ITyu —u, [T u —u) + || T, o — o|[{,]*/?
< Claa(don, d0n) + (1 — a)d(Sun, 6up)*?[|[ TTo v — ullf + || T, o — o312
From this estimate and (3.16) we obtain

[aa(don,d0n) + (1 — a)d(dup, dup)]*/?

IN

bi(don,| [, u—Te([ [, w)
< O{lI| Ty il + 1 TL, @ = ol /2 + sup Hyw Tl
Oh
Thus by triangle inequalities we have

llo = onllo,o + [[u— unllv
< Claa([ly 0~ 0,1, 0 = 0) + (1 = @)d(Tyu — u, [Ty u — w)]"/
+ aa(don,don) + (1 — a)d(duy, duy)]'/?

b1 (7h, u—Te( w))
< Clll Ty = ullo +1TT, & — ol B + sup 2Ll Tl vy,
Because this estimate holds for any ([], o,[],u) € V* x U", thus the theorem is proven.

By Definition 3.1, Proposition 3.1 and Theorem 3.1, we obtain the following result:
Theorem 3.2. Assume that the exact solution (o,u) to problem (2.1) is such that (o,u) €
(H*H Q)1 x (H2(Q) N H*3(Q)) with k > 0. Let T, be defined as in Proposition 3.1. Assume
that the deflection displacement subspace U" and the bending moments subspace V" are such
that:

(A1) Vi o {r e V;njlk € P(K), i,j =1,2, VK € Ty };
(A2) U" is interpolated directly or indirectly by nodal parameters |J C*(py, Sk) such that

UM > {v e U; v|g € Pey2(K), VK € Ty}
and

d(v,v) =0 = C*(p,, Sk) = {0},YK € Ty,

where C*(py, Sk) consists of all Y i (py) on element K introduced in Proposition 3.1. Then
the combined hybrid scheme (8.10)(3.11) is convergent and there holds

llo = onlloe + 1l = wnlly < CH [loligr o + Juliragl (3.17)
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4. Plate Bending Element Series

Based on Theorem 3.1, we have two series of combined hybrid (abbr. CH) elements which
are useful in practice. The CH-triangles with 9 DOF and CH-quadrilaterals with 12 DOF will
be denoted respectively by PB—9—CH (B, Z3) and PB—12—CH (B, A3), where the DOF is as
same as in Proposition 3.1 (i), Z3 and A3 denote respectively Zienkiewicz’s interpolations and
Adini’s interpolations (see [4]) for the incompatible deflection displacements, and B denotes
interpolations for the bending moments. Since any complete or incomplete polynomial p; € P,
or Qr = {p(z1,22);p= > ayxizl} with k > 0 can be chosen as the approximated bending

0<i,j<k
moments, we then obtain tszvz) series of CH-plate bending elements.

By Theorem 3.2, we immediately obtain the following conclusion:

Corollary 4.1. The combined hybrid plate elements PB — 9 — CH(B,Z3) and PB — 12 —
CH(B, As3) are all convergent with accurary at least O(h).

Proof. For the above two series of CH-elements, it is obvious that the two conditions (A1)
and (A2) in Theorem 3.2 are satisfied with at least k = 0.

The combined hybrid plate elements corresponding to the case of £ = 1 in Theorem 3.1 can

also be constructed in a similar way.
Conclusion. In this paper, a combined hybrid approach based on a combined variational
principle is proposed for the plate bending problem. Compared with the saddle-point-type
hybrid methods, it possess two main features: 1) The inf-sup difficulty is avoided so that the
deflection subspace U" and the bending moments subspace V’ can be chosen independently
and arbitrarily; 2) The complicated equilibrium equations that should be satisfied by V" is
also circumvented. Then application of this method to shell analysis will be convenient. Two
new series of elements PB —9 — CH (B, Z3) and PB — 12— CH(B, A3) are given to point out
great possibility in building the plate bending elements of higher accurary according to energy
compatibility condition due to many different choices of stress/strain-enriched interpolations,
as we will discuss in a forthcoming paper.
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