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Abstract

Using outward rotations, we obtain an approximation algorithm for Max-Bisection
problem, i.e., partitioning the vertices of an undirected graph into two blocks of equal
cardinality so as to maximize the weights of crossing edges. In many interesting cases, the
algorithm performs better than the algorithms of Ye and of Halperin and Zwick. The main
tool used to obtain this result is semidefinite programming.
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1. Introduction

Given an undirected graph G = (V, E) and nonnegative weights w;; = w;; on the edges
(i,4) € E, the maximum cut problem ( Max-Cut) is that of finding the set of vertices S that
maximizes the weight of the edges in the cut (S,V \ S); that is, the weight of the edges with
one endpoint in S and the other in V'\ S. For simplicity, we usually set w;; = 0 for (i,j) ¢ E
and denote the weight of a cut (S,S) by w(S) = > w;;. The Maximum Bisection of

i€S,jEV\S
G = (V,E) is a partition of the vertex set V into two equally sized sets S and V' \ S so that
w(S) is maximized. In Max-Bisection (MB) problem, n = |V| is assumed to be even.

Max-Cut is well-known to be NP-hard and so is Max-Bisection. This means that one should
not expect to find a polynomial time algorithm for solving it exactly. Therefore many experts
are interested in developing polynomial time approximation algorithms for Max-Cut and Max-
Bisection. A (randomized) algorithm for the maximization problem is called (randomized) r-
approximation algorithm, where 0 < r < 1, if it outputs a feasible solution with its (expected)
value at least r times the optimum value for all instances of the problem.

The best known approximation ratio for Max-Cut is 0.87856 ([7]). Using outward rotations,
Zwick [14] obtain an approximation algorithm for Max-Cut that, in many interesting cases,
the algorithm performs better than the algorithm of Goemans and Williamson [7]. Feige,
Karpinski and Langberg [5] show that for graphs of degree at most A, their algorithm achieces
an approximation ratio of at least 0.87856 + ¢, where € > 0 is a constant that depends only
on A. In particular, using computer assisted analysis, they show that for graphs of maximal
degree 3, their algorithm obtains an approximation ratio of at least 0.921, and for 3-regular
graphs, the approximation ratio is at least 0.924. We refer to [2] for the survey of Max-Cut.
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To our knowledge, the best known approximation ratio for Max-Bisection is 0.7016 ([8]).
This work is an extension of the works of [1] and [12]. Feige Karpinski and Langberg [4] design
a 0.795 approximation algorithm for Max-Bisection restricted to regular graphs. In the case of
three regular graphs their results imply an approximation ratio of 0.834.

All the above works adopt the SDP relaxation for Max-Cut or Max-Bisection. SDP relax-
ations have been successfully applied to various graph optimization problems ([1]-[10], [12]-[14]).
Many experts put forward different techiques to get a good approximation solution from the
SDP relaxation (for example, see [7], [8], [12], and [14]). Using these techiques carefully, we
obtain an approximation algorithm for Max-Bisection that, in many interesting cases, the al-
gorithm performs better than the algorithm of Halperin and Zwick [8].

2. SDP Relaxation of MB

The MB problem can be formulated as the following binary integer program

. 1
w* := Max §Zwij(1—mixj)

i<j
st. > x;=0 (2.1)
i=1
m? =1,j=1--,n
Using the “triangle inequalities”, the SDP relaxation of MB becomes
1
w3PP ;= Max 3 Zwij(l — v - Vj)
1<J
s.t. > owviev; =0,
1<i,j<n
ViV v v > =1, 1<4,5,k<n (2.2)

—vi-v; = v v vy > -1, 1<4,5,E<n
v v+ —vj v > -1, 1<4,5,E<n
Vv v v — v -vp > =1, 1<4,5,k<n
llvjll=1, wv; € R™ =1, n.

To state it precisely, it is convenient to use the following notation.
W = Z w;; — The total weight of the edges of the graph.
i<j

A = wSPP /W — The ratio between the solution of the relaxation (2.2) and the total weight
of the edges in the graph.

B = w*/W — The ratio between the solution of the relaxation (2.1) and the total weight
of the edges in the graph.

Clearly w* < wSPP < W. By inductive method, one can prove that w* > W/2. So we get
that 1/2< B < A < 1.

We present an SDP-based approximation algorithm for MB as follows.
SDP-Algorithm

Step 1. SDP Solving: Solve (2.2) and obtain the vectors vy, - - -, vy,.

Step 2. Rotating: Rotate the vectors vy, - - -, v, into new vectors vf,---,v},.

Step 3. Randomized Rounding: Choose a random hyperplane (by choosing ran-
domly its normal r which is a vector uniformly distributed on the unit sphere),
and set S = {i|v} -r > 0}.
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Step 4. Vertex Swapping: Let S = S. Do one of the following two cases:
If |S| > %, for each i € S, let (i) = 3 w;; and S = {iy, i, ’i\gl}’ where
i¢S
C(i1) > ((iz) > --- > ((i|5))- Then, remove vertex ig from S and reassign
S = {i1,12,- 'vi\§|71}- Repeat this swapping procedure till |§| =n/2.
If S| < g then for each i € V \ &, let ((i) = Y wj and V \ § =
jes
{iv, iz, iy g} where ((ir) > ((i2) > -+ > ((iy\g). Then, add node
iy\3) to S ar~1d rez;,Lssign V\S = {i1, iy, --- ’i|V\S‘\71}' Repeat this swapping
process till |S| = 5"
The rotations of the vectors in Step 2 will be outward rotations (see [11], [12] and [14]).
Let p € [0,1] be a constant. Let wuy,---,u, be n unit vectors such that for each i # j, u;
and u; are orthogonal, and u; is orthogonal to the space spanned by vi,---,v,. We then set

v; = /pvi + /1 — pu;, for 1 <i <n. Thus, [|[vj|| = 1, and for i # j, v; - v} = p(v; - vj).
For any U C V, denote the total weights within the cut (U, V' \ U) as w(U,V \ U) or w(U),

that is:
w(U) = Z Wi -
(i,j)EE€U,jeEV\U

Clearly, the construction of bisection S guarantees that

Lemma 2.1.

s sz
wg) >4 :
n2 ) i 18] <

n—|S| 2

3. Analysis of the SDP-Algorithm

Goemans and Williamson [7] define h(t) = arccos(1—2t)/7. Let t; be the value of ¢ attaining
the minimum of h(t)/t in the interval (0, 1]. The value of ¢; is approximately 0.84458. For every
0<p<1,let

h,(t) = %arccos(p(l — 2t)). (3.1)
ho(t) = ho(0)
t

Let ¢, be the value of ¢ attaining the minimum of —2 in the interval (0, 1].

We are finally able to define the function which gives the performance guarantee of the
SDP-Algorithm:

h"ﬁlA) if A>t,,
a(d,p)=9 17 1 h,(t 1 (3.2)
(Z — —)h,(0) + ”t( ) if 5 < A<t,.
p p

Let E[w] be the expected value of the cut w(S,V \ S) produced by the randomized algorithms
given in the previous section. Given a vector r drawn uniformly from the unit sphere, we know
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by the linearity of expectation that

Blw($)] = ¥ wy - Prisga(v; ) # sgn(v] -r)]
vy, arecoslolv 1) 33)

where sgn(xz) =1 if x > 0, and —1 otherwise.
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Figure 1

In the above figure, the solid line corresponds to hj (t), the dashed line corresponds to hg.o (%),
and the dotted line corresponds to hg 5(t).

Lemma 3.2. If A > t,, then

=

A
) sor
Proof. Letting A\e = w;;/W and z. = (1 —v; - v;)/2 for e = (i,j), we can rewrite A as
A =3 Aez.. The expected weight of the cut w(S) produced by the algorithm is equal to
e

Elw(S)] 2

arccos(p(v; - v;))

Elw(S)] = ; wij - -
W Z \ arccos(p(l — 2z.)) (3.4)

™

Wi:)\ehp(we).

To bound Efw(S)], we evaluate

min Z Aehp(ze)
st Y Aewe=A (3.5)

0<z, <1.



Approximation Algorithm for Max-Bisection Problem with the Positive Semidefinite Relaxation 361

Consider the relaxation obtained by replacing h,(t) by the largest (pointwise) convex function
h,(t) smaller or equal to h,(t) (see Figure 2). It is easy to see that h,(t) is linear with slope

ho(tp) — hy(0
hots) = (0) between 0 and t,, and then equal to h,(t) for any ¢ greater than t,. But for

tp
A>t,,
> Aehp(we) 2D Xehp(we) > ho(D Aewe) = hy(A) = hy(A), (3.6)
where we have used the fact that Z Xe = 1, A¢ > 0 and that h is a convex function. This
shows that ‘ A
Blu(S)] 2 Why(4) = "2 ys0r, (3.7)

proving the result.

1
Lemma 3.3. If 3 < A<Lt,, then

B(d) = Ryl1=)0+ 24
::a—§M@+£%w>
::a—ﬁmw+§mm>

Similar to (3.4)-(3.7), we can prove the lemma.
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In the above figure, the solid line corresponds to h,, the dashed line corresponds to in,
the horizontal dotted line corresponds to ¢t = t,, and the vertical dotted line corresponds to

hp(t) = hy(ty)-
Lemma 3.4. The expectation of w(S) of the SDP-Algorithm satisfies the following inequality
E[w(S)] > a(A, p)w’PF > a(A4, p)w*.

Proof. 1t follows from Lemma 3.3 and 3.4.

In order to analyze the algorithm, we will need estimation on the expectation of the random
variable C' = |S|(n —|S|). This random variable is a function of the configuration of the vectors
and the specific outward rotation used. We need to find a constant v(p), which satisfy that for
every configuration of the vectors that satisfy the constraints of the semidefinite program the
following holds:

EIC) > ()
Note that
S| —1SD] = X Prlsn(vj 1) # sgn(v 7))
- Zg&ﬁ@;gﬂ&
1<J

Consider the following two numbers 7, (p), 72(p) defined by:

. 2 l—-y
1(p) = 7?;1;20 m(aTCCOS(Py) —(y+ T) -arccos(p)),
. 1 — 3z) arccos(p 2 arccos(p
w()=  min L 30accos) (v)
_1ng_§ s 4 n
3r+1 -2
(@ )aiccos( 5) + arccos(px))-

By the triangle inequality, Halperin and Zwick [8] obtain the followings lemma:

Lemma 3.5. The SDP-Algorithm yields S satisfying the following inequalities:

E[IS|(n ~ 1SD] = “-(0).

where v(p) = min{y1(p), 12(p)}.

Define a new random variable as

w(S) | ASI; —|S])

e 2 , ¢>0.

z(c) ==

Then we have
E[:(c)] > a + ey,

On the other hand,
z<2+ec.

Similar to [12], we have the following lemma:
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Lemma 3.6. If random variable z(c) fulfills its expectation, i.e., z(c) > a + ¢, then

where
«

R(A,p) = T

We solve the maximization problem

R(A) = R(A,p).
(4) = max R(4,p)
Note that « and v are also functions of p.
Then together with Lemma 3.6 and Frieze and Jerrum’s analysis [1] yield the final result:

Theorem 3.7. The worst-case performance ratio of the SDP-Algorithm for the MB problem is
at least R(A) for sufficiently large n.

Performance ratio of the SDP-Algorithm

We have calculated the following table, which shows that R(A) > 0.7016 in many cases.
Also see Figure 3.

In the above figure, the solid line corresponds to our R(A), the dashed line corresponds to
Halperin and Zwick’s ratio.

Figure 3 indicates that the hard case of the SDP-Algorithm is A € [0.90,0.92]. When A
reduces from 0.90 to 0.50, the performance ratio increases from 0.7019 to 1.0. Considering the
case A = 0.5, we deduce that wSP?Y = w*. So it is natural that the performance ratio equals
1.0. We guess that A is close to B and wSPF is close to w* when A reduces from 0.90 to 0.50.
When A increases from 0.92 to 1.0, the performance ratio increases from 0.7018 to 0.7456. We
guess that A is close to B when A increases from 0.92 to 1.0.

Acknowledgments. The authors would like to thank Prof. Yinyu Ye for his useful com-
ments, Dr. Jiawei Zhang for his helpful dicussions, and Prof. Uriel Feige and Prof. Uri Zwick
for kindly giving us their nice papers. Thanks are also due to the two anonymous referees for
their suggestions to improve the presentation of our paper.

Table 1: Worst-case performance ratios of the SDP-Algorithm for A € [0.50, 1.00].

A p t, @ ~y R(A)
0.50 | 0.00 | 0.9999 1 1.0000 | 1.0000
0.51 | 0.00 | 0.9999 | 0.9804 | 1.0000 | 0.9804
0.52 | 0.01 | 0.7500 | 0.9618 | 1.0000 | 0.9616
0.53 | 0.02 | 0.7500 | 0.9441 | 1.0000 | 0.9437
0.54 | 0.03 | 0.7500 | 0.9273 | 1.0000 | 0.9266
0.55 | 0.06 | 0.7501 | 0.9126 | 1.0000 | 0.9104
0.56 | 0.09 | 0.7502 | 0.8990 | 1.0000 | 0.8951
0.57 | 0.13 | 0.7505 | 0.8873 | 0.9999 | 0.8807
0.58 | 0.15 | 0.7506 | 0.8752 | 0.9999 | 0.8671
0.59 | 0.19 | 0.7510 | 0.8658 | 0.9998 | 0.8544
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A p t, @ ~y R(A)
0.60 | 0.23 | 0.7515 | 0.8576 | 0.9997 | 0.8425
0.61 | 0.27 | 0.7521 | 0.8505 | 0.9995 | 0.8314
0.62 | 0.31 | 0.7528 | 0.8445 | 0.9992 | 0.8211
0.63 | 0.36 | 0.7539 | 0.8407 | 0.9987 | 0.8115
0.64 | 0.38 | 0.7544 | 0.8339 | 0.9985 | 0.8025
0.65 | 0.43 | 0.7557 | 0.8322 | 0.9977 | 0.7942
0.66 | 0.45 | 0.7563 | 0.8269 | 0.9973 | 0.7864
0.67 | 0.49 | 0.7576 | 0.8254 | 0.9965 | 0.7792
0.68 | 0.52 | 0.7587 | 0.8230 | 0.9957 | 0.7725
0.69 | 0.55 | 0.7599 | 0.8214 | 0.9948 | 0.7662
0.70 | 0.58 | 0.7612 | 0.8204 | 0.9938 | 0.7604
0.71 | 0.60 | 0.7622 | 0.8181 | 0.9930 | 0.7549
0.72 | 0.63 | 0.7638 | 0.8184 | 0.9916 | 0.7498
0.73 | 0.65 | 0.7649 | 0.8172 | 0.9906 | 0.7450
0.74 | 0.67 | 0.7661 | 0.8164 | 0.9895 | 0.7405
0.75 | 0.69 | 0.7674 | 0.8161 | 0.9883 | 0.7363
0.76 | 0.71 | 0.7688 | 0.8163 | 0.9869 | 0.7324
0.77 | 0.73 | 0.7703 | 0.8169 | 0.9853 | 0.7287
0.78 | 0.74 | 0.7711 | 0.8154 | 0.9845 | 0.7252
0.79 | 0.76 | 0.7728 | 0.8168 | 0.9827 | 0.7220
0.80 | 0.77 | 0.7737 | 0.8161 | 0.9817 | 0.7190
0.81 | 0.78 | 0.7747 | 0.8156 | 0.9807 | 0.7162
0.82 | 0.80 | 0.7767 | 0.8184 | 0.9785 | 0.7137
0.83 | 0.80 | 0.7767 | 0.8157 | 0.9785 | 0.7113
0.84 | 0.82 | 0.7789 | 0.8194 | 0.9759 | 0.7093
0.85 | 0.82 | 0.7789 | 0.8172 | 0.9759 | 0.7074
0.86 | 0.84 | 0.7814 | 0.8218 | 0.9730 | 0.7058
0.87 | 0.84 | 0.7814 | 0.8201 | 0.9730 | 0.7044
0.88 | 0.86 | 0.7841 | 0.8258 | 0.9696 | 0.7033
0.89 | 0.87 | 0.7856 | 0.8286 | 0.9678 | 0.7025
0.90 | 0.88 | 0.7872 | 0.8318 | 0.9658 | 0.7019
0.91 | 0.89 | 0.7890 | 0.8356 | 0.9636 | 0.7017
0.92 | 0.90 | 0.7908 | 0.8401 | 0.9612 | 0.7018
0.93 | 0.91 | 0.7929 | 0.8453 | 0.9585 | 0.7023
0.94 | 0.92 | 0.7951 | 0.8514 | 0.9556 | 0.7033
0.95 | 0.93 | 0.7975 | 0.8586 | 0.9524 | 0.7048
0.96 | 0.94 | 0.8002 | 0.8672 | 0.9487 | 0.7071
0.97 | 0.95 | 0.8032 | 0.8777 | 0.9445 | 0.7104
0.98 | 0.96 | 0.8068 | 0.8909 | 0.9395 | 0.7151
0.99 | 0.98 | 0.8163 | 0.9193 | 0.9259 | 0.7226
1.00 | 1.00 | 0.8446 1 0.8836 | 0.7456
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