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Abstract

In this paper we presented a convergence condition of parallel dynamic iteration meth-
ods for a nonlinear system of differential-algebraic equations with a periodic constraint.
The convergence criterion is decided by the spectral expression of a linear operator derived
from system partitions. Numerical experiments given here confirm the theoretical work of
the paper.
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1. Introduction

In order to analyze physical characters of nonlinear dynamic equations issued from engineer-
ing applications we often need to compute their periodic solutions. Most models of mechanical
systems and circuit simulation might be described by nonlinear differential-algebraic equations
(DAEs) as follows

—~
~

{ alt) = ey, +(0) = 2(T), "
y(t) = g(l‘(t),y(t),t), te [OaT];

where z(t) € R™ and y(t) € R™ for t € [0,T], f : R* x R™ x [0,T] = R™ and § : R" x R™ x
[0,T] — R™ satisfy f(z,y,0) = f(z,y,T) and j(z,y,0) = j(z,y,T) for any given z € R" and
y € R™, and y(0) satisfies y(0) = g(z(0),y(0),0).

It is a general knowledge that computation of periodic solutions for a dynamic system is
very time-consuming owing to the unknown of initial values. The usual way to treat (1) is the
shooting techniques and its variants [1, 2]. For example, if the time interval is broken into small
pieces then the parallel shooting process is available. This parallel process is not direct since
the standard shooting must be called for every small interval.

A direct parallel method for transient computation is dynamic iteration (see [3]) or waveform
relaxation. The dynamic iteration method was originally presented to simulate VLSI in 1982
[4]. It decouples dynamic equations in system level, for example a system of ordinary differential
equations (ODEs) or DAEs may be partitioned into some simplified systems of ODEs or DAEs
[5, 6, 7]. We can also study dynamic iterations of linear integral-differential-algebraic equations
(IDAEs) [8]. Numerical algorithms based on this approach could be conveniently implemented
on multi-processor computer systems [9]. They are instinctive parallel algorithms.
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The dynamic iteration method has been adopted as a computational tool to study periodic
solutions of linear systems [10, 11]. A simple form of nonlinear ODEs under a periodic excitation
is studied in [12]. There is no theoretical work in this field to analyze the case of nonlinear
DAEs as (1). In this paper for a class of nonlinear functions f and § we give a convergence
condition for the dynamic iteration solutions of (1). The criterion comes from an analytically
spectral expression of a linear operator. The linear operator is a periodically dynamic iteration
operator resulted in system partitions. A nonlinear DAEs example is provided to illustrate the
novel condition.

2. Main Results

The parallel dynamic iteration method of (1) is written as
d : : : ’
{ L (5) = fa D 0,200,y (0,50 0,0, VO =D,y
y{’““)(t) = g(a® (1), ™ (1), y* TV (1),y P (1),1), t€[0,T], k=0,1,...,

where the function (%) (t) is an initial guess with z(®)(0) = z(®)(T') and the nonlinear splitting
functions f : (R™)? x (R™)% x [0,T] = R" and g : (R")? x (R™)? x [0,T] — R™ satisfy

fl@,z,y,y,t) = f(z,y,1), gl z,y,9,t) = §(z,y,t), te0,T], (3)

in which x € R™ and y € R™. Typical and important partitions in practical application are
the Jacobi and Gauss-Seidel splitting functions.

We let R! (I = m,n) be the standard Euclid space equipped with an inner product (-,-).
The 2-norm || - || in R! is induced by the inner product. For the splitting functions f and g in
(3) we assume that they obey the following condition.

Condition (L). (1) For f(-,us,us,ua,t), on [0,T] there is a positive constant a; such that

(f(u1,u2,us,ua,t) = fvr,uz,us,u,t),ur —v1) < —arffur — v1]%, ur,v1 € R (4)
(2) For f(u,-,-,-,t), on [0,T] there are nonnegative constants a; (j = 2,3,4) such that
4
||f(’LL,UQ,U3,U4,t)—f(u,’l)Q,’l)g,’l)4,t)|| S Zaj“uj_vj”? U2,V € Rn; up, v € Rm(l = 3)4); (5)
i=2
(2) For g(-,-,-,-,t), on [0,T] there are nonnegative constants b; (j =1,2,3,4) such that

||g(U1,U2,U3,U4,t) —g(Ul,’l)2,’U3,’U4,t)||
- (6)
< ijHuj —vjill, u, vy € R*(1 =1,2), us,vs € R™(s = 3,4).

Jj=1

The inequality of (4) is a strongly dissipative condition. The inequalities (5) and (6) are
classical Lipschitz conditions. In this paper we assume that (1) and each approximative system

in (2) have periodic solutions.
~ by~ b2 = 4
We denote that b = by = —— dby, = —.
e~enoe ) 1~ 1_b3, P 1_~b3,an A ]_—b3
ar — agby, a2 = as + azbe, and a4 = a4 + agbs. For w € C([0,T],C) or L?([0,T],C), we define
a linear operator R as

Further, we also let a; =

~ ~ T t
(Rw)(t) = e~ (1 —e 1Ty L /0 e~ (T=3)y(s5)ds + /0 e~ (t=Dy(s)ds, te€[0,T]. (7)
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The operator R is compact (see [10, 11]), it is also positive due to (Rw4)(t) > 0 if wy > 0
for t € [0,T]. The error estimate of the dynamic iteration method (2) could be yielded by
Condition (L), namely

Theorem 1. Assume that by < 1 and a1b3 + agby < ay in (4) - (6), for (1) and (2) we have

e — al|(t) < @ (Rl - 2])(®) +@(RIy™ —y@®), k=0,12... ()
and

ly®D = yll(t) < bolle® — a||(t) + bally™® — yl|(t) + by (R]jz™) —]))(2)

abi (Rlly® — y)(©), k=0,1,..., (©)

where t € [0,T].
Proof. First we denote that e ™ (1) = 2+ (1) — 2(t) and e (1) = y=+D (1) —y(¢), by
use of (4) and (5) it holds

(e 1), e 1)
(f ( 1) (1), 28 (£), y $+D (2), y B (1), 1) — f(a(t), (t), y(t),y(2), 1), e (2)
(fa®H0(8), 28 (1), y<k+1 ORIRION)
= F(a(8), 2™ (£),y 0 1),y ® (1), 1), €5 (1) (10)
+(F(@(8), 20 (), y B (1), y B (1), 8) — f (D), 2(2), y kD (1), y B (8), 1), 5T (1))
+(f(x(t),z(t),y <k+1<> y® (1), 8) — fz(t), 2(t),y(8),y® (1), ), eV (1))
+(f(x(t), 2(t), y(t),y <> t) — flx(t), z(t),y(t),y(2), ) e (1)

< (- a1||e’“+”<t>||+a2||ez ()]l + asley™ ”<t>||+a4||ey O e @)]l.

d.
Because z(*+1)(t) and z(t) are continuously differential functions on [0, T7, a“egf“) (t)|| always

exists for all ¢ such that ||e(Hl )|l # 0 where || - || 1s the 2-norm in R™. Moreover, we have
d
the relationship (aegkﬂ)(t),egkﬂ)(t)) = ||elF+1) (¢ )|| || (E+1) (1)|| for almost all ¢ such that
||e§ck+1)(t)|| # 0. Thus, (10) can be simplified as
d
il e HV|(1) < —ar[lel D (@) + azllel? ()] + asllef ()] + aallel (#)]]. (11)
On the other hand, by (6) we analogously acquire
eI @) < bullel™ D ()] + ballel? ()] + bsllef ™ (1) + ballef ()], (12)
that is
el D1 () < Ballel D (0)]] + ballel® ()] + ballelf (). (13)

Substituting (13) into (11), we obtain
||€ SN < —alle V@) + axllefNI() + aallef 0. (14)

Now we pay attention to a known comparison theorem on differential inequalities (see also
[13]), (14) becomes

~ t
e ) < e*a1t||e£’“+”||(0>+5z/ e ) 1elh]|(5)ds
1]

¢ (15)
+ay / e =) |1elh]| () ds
0
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()]

The above inequality is also valid for ||e | = 0. We use the periodic constraint ||ez k+1) |(T) =

1e¥7911(0), by (15) we yield
~ T
leSFFD1(0) < @(1 —e*‘“T)*/O e~ =) |1efM]|(s)ds
~ T
+E4(1—e_“1T)_1/0 e~ T 1elk)|| (s)ds

If we substitute this inequality into (15), then (8) is proven.
Finally the error estimate (9) automatically holds as long as we put (8) into (13). This

completes the proof of Theorem 1. Q.E.D.
Let us define another linear operator V in C([0,T], C?) or L*([0,T],C?) as
0 O asR asR
=~ = -~ - . 16
4 [b2 b4}+{a2bm a4b1R} (16)

This operator is also positive. Thus, we may write (8) and (9) together as

[ ) o

IN

ly®) —y|| 1y © —y||

(0) _
(Vk [ lz = ll ])(t), be[0,T], k=12, ... (17)
For the linear operator V, as a special case of [11], by computing the Fourier series coefficients
of the equalities of its eigenpairs we have an analytic expression about its spectrum.
Theorem 2. Let w = 2w /T, the spectrum of V in (16) is

U{a. ’pr = 0, :l:l, .- .}, (18)
where i = \/—1 and
, 0 0 1 A ag
R 1 [a@ a ] 19
Qip) [bz b4]+ipw+61 [azbl a4bl] "

Proof. First, let 8(t) = [p(t),(t)]* and assume (A, ) be an eigenpair of V in C([0, 7], C?)
or L%([0,T],C?). Based on the equality V8 = M0, we compute the corresponding Fourier series
coefficients. For p = 0,+1,.. .,

Vo), = 1 OT(voxt)eiMdt N
[ 2112108 212

- o a Lo v la @ 12
bs b:; Uy ipw + ay a2b1 G4b1 Up

it deduces that Q(ipw)d, = M,. That is, o(V) C U{o(Q(ipw)) : p =0, +1,...}.
For any given p € {0,+£1,...}, let (A,0,) be an eigenpair of Q(ipw). We define 6,(t) =

I
p
’g.
£
>
s
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e?“t@,. It is easy to know

v = |5 5 2 ]

[00)+ Revery | 2

ZQ g4 G,le 6451
. 0 0 eipwt 62 64
— tpwt o o @ - A o~ @
6. [ by by :| + ipw—f-a,l |: asb;  asb; :|
= e?'Q(ipw)O,
— 6,00,

Thus, J{o(Q(ipw)) : p =0, £1,...} C (V) since the spectral set o(V) is closed. This completes

the proof of Theorem 2. Q.E.D.
A simple convergence condition of (2) can be retrieved from Theorem 2 because p(V) =

sup{p(Q(ipw)) : p=0,%1,...}.
Corollary. For a given splitting or partition, the dynamic iteration method (2) converges to

the exact periodic solution of (1) if
sup{p(Q(ipw)) :p=10,%1,...} < 1. (20)

3. Numerical Experiments

In this section we do numerical experiments for a five-dimensional test system of nonlinear
DAEs as

gt (t) = =231 (t) + 0.25tanh(y1 (t) — z2(t)),
%wQ (t) = —2m5(t) + 0.25tanh(y1 (t) — z3(t)) + 0.25tanh(y(t) — x3(t)),
%mg(t) = —225(t) + 0.25tanh(y2(t) — z1(t)) + 1, (21)
y1(t) = 0.25tanh(y2(t) — y1(t)) + 0.25tanh(z3(t) — y1(t)) + 0.5cos(t),
y2(t) = 0.25tanh(z1(t) — y2(t)) + 0.25tanh(x2(t) — y2( ) —1,
{ 71(0) = z1(27), 2(0) = z2(27m), x3(0) = z3(27m), ¢ € [0,2n],

z —Zz

where tanh(z) = c-°
e +e”*
the periodic transient response of (21). For £ = 0,1, ..., the dynamic iteration method of (21)

is

. We take the following dynamic partition to numerically compute

(40 gy = —22FD (4) 1 0.25tanh(yP (1) — 2V (1)),

dt™!
d
%mg’““) (t) = =225 (1) + 0.25tanh(y'® (t) — 2P (1)) + 0.25tanh(yP (1) — 2P (1)),
d
%w(lﬁ_l)(t) = —ngk—’_l)(t) + 0.25tanh(yék)(t) - asgk) () +1,
k+1)(t 25tanh(yék)(t) — y%kﬂ) () + 0.25tanh(m§k+1)(t) — ygk"_l)(t)) + 0.5cos(t),

) =
gD (1) = 0.25tanh (2D (1) — g8 (1)) + 0.25tanh(@ T () — ySFD (1) — 1,
\ m&’“”(m = er), 00 =2 2m), 2TV =2 2m), e, 2"(]' )
22
This partition satisfies the conditions (4), (5), and (6) where the parameters may be taken
as a; = 2, ay = 0.5, az = 0, ag = 0.25v/3, by = 0.25v/2, by = 0, by = 0.5, and by = 0.25. The
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convergence criterion (20) is safeguarded since

1 0.5 0.25v/3

R =0, +1,...

Q0P) =773 | 0475v3 0.25ip+ 05+ 006256 |» P = OFD

and sup{p(Q(ip)) : p = 0,£1,...} = 0.4564. For any fixed k, the differential part of (22)
is linear and easily solved at the present form. At each iteration the algebraic part of (22) is
nonlinear. It could be computed by the well-known Newton iteration method in function spaces

(see also [7]).

Table 1. Numerical results of the dynamic iterations.

Number of the dynamic iterations Iterative error
1-3 2.2465, 5.2250 x10*, 1.5833 x10
4-6 1.1596 x10 >, 1.3952 x10 %, 1.4676 x10°
7-9 1.2354 x107°, 1.4945 x10~7, 1.6320 x10 %

0.425 0.5
0.4245
0.424
0.4235
0.423
%00.4225
0.422
0.4215
0.421

0.4205

0.42 L L L —-0.5 i i i
o
Figure 1. Iterative waveforms mg?’)(t) and yil)(t) (dashed lines) of the periodic solution
functions z3(t) and yi(¢) (solid lines) in Example.

For the example we let the time-step is 0.0057(= At) and the initial guess is the zero
function. The number of the Newton iteration is taken as 3 in our code for solving (22). The
iterative error is defined as the sum of the squared difference of successive waveforms taken
over all time-points, namely for computed waveforms w® (t)(I = k, k + 1) the iterative error is

ngﬂ) = \/Z?i% lwE+D) (£;) — w®) (t;)||? where t; = jAt (j = 0,1,...,399). The computed

results of the first nine iterations are given in Table 1. The third iteration waveform a::(f) (t)

and the first iteration waveform y%l)(t) for the true responses z3(t) and y; (¢) of (21) is shown
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in Figure 1. The approximative phase pictures (dashed lines) of z; versus z3 (k = 3) and y;
versus y2 (k = 1) for their exact phase relationships (solid lines) are drawn in Figure 2.

0.425 T T T T —0.705
0.4245 - —

0.424 - R —0.71 1
0.4235 - 4

0.423| R —0.715| J

>°0.4225 - -

0.422 R —0.72 1
0.4215 -

0.421 | E _0.725} |
0.4205 - 4

0.42 ; ; ; ; —0.73 i i i ;
—0.04 —-0.02 o 0.02 0.04 -0.6 -0.4 -0.2 o 0.2 0.4
%4 v,

Figure 2. Approximative (dashed lines) and exact (solid lines) phase drawings for k = 3
(left) and k =1 (right).

4. Conclusion

By invoking a linear operator theory we successfully gained a simple convergence condition

of parallel dynamic iteration method for a class of nonlinear DAEs. The condition reported
in this paper is easy to be checked in practical application. This approach suits for computer
simulation.
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