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Abstract
Consider the following neutral delay-differential equations with multiple delays (NMDDE)

m

Y (t) = Ly(t) + Y _[My(t— )+ Njy/ (¢ — 7)), ¢>0, (0.1)

Jj=1

where 7 > 0, L, M; and Nj; are constant complex-value d xd matrices. A sufficient condition
for the asymptotic stability of NMDDE system (0.1) is given. The stability of Butcher’s
(A,B,C)-method for systems of NMDDE are studied. In addition, we present a parallel
diagonally-implicit iteration RK (PDIRK) methods(NPDIRK) for systems of NMDDE,
which is easier to be implemented than fully implicit RK methods. We also investigate
the stability of a special class of NPDIRK methods by analyzing their stability behaviors
of the solutions of (0.1).

Key words: Neutral delay differential equations, (A,B,C)-method, RK method, Parallel

diagonally-implicit iteration RK method.

1. Introduction

Consider the stability behavior in the numerical solution of neutral delay differential equa-
tions with multiple delays(NMDDE)

y' () = fty(t),yt — ), ylt — 1),y (E—71), -y (E— 7)), £ 20, (1.1)
y(t) =g(t), —-7<t<0, (1.2)
where 7; are some given positive constants for j =1,---,m, 7 > Typ—1 > --- > 1 >0, f and

g denote given vector-value functions and y(t) is the unknown function to be solved for ¢ > 0.
The purpose of the present work is to investigate the stability properties of Butcher’s (A,B,C)
(see [2]) and NPDIRK methods by means of the linear test equations of the type (1.1), i.e.

{ y'(t) = Ly(t) + 301, [Myy(t — 75) + Ny'(t — 7)), t >0, (13)
y(t) =g(t), -1 <t <0, ‘
where 7 > 0, L, M; and IN; are constant complex-value d X d matrices. The methods represented
by matrices (A,B,C) are called as general linear method by Butcher(see([2]). It includes many
numerical methods such as RK and LM methods and so on. As an example of (A,B,C) methods,
we also obtain the stability result of RK methods. NPDIRK method is a new scheme for
numerical solving NMDDE that is presented in this paper.

There have been a number of studies on the numerical stability analysis of system (1.3)
with the cases of m =1 and/or d = 1 and/or N; = 0. The stability of RK and one-parameter
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methods for the case m = 1 have been investigated in [10,11]. [1] and [9] have studied stability
properties of RK methods for m = 1 and d = 1. The stability analysis of RK methods and
linear multistep methods for system (1.3) with N; =0 (j = 1,---,m) and/or 7; = j7, has been
studied in [5,6]. In [15] Zhang & Zhou studied the numerical stability of multistep RK methods
for system (1.3).

In this paper, we firstly give a sufficient condition for the asymptotic stability of the test
NMDDE (1.3). Then, we extend and generalize the stability results of [1,5,6,9,10,11,15] to the
general (A,B,C) methods for numerical solving NMDDE (1.1)(1.2). Finally, in section 5, we
present NPDIRK scheme for NMDDE (1.1)(1.2), which is easier to be implemented than fully
implicit RK methods on parallel computers for numerically solving NMDDE (1.1) and (1.2).
We also study stability properties of a special class of PDIRK methods with respect to (1.3).

2. The Asymptotic Stability of Test Equation (1.3)

Definition 2.1. The NMDDE (1.3) is called to be asymptotically stable, if for any continuous
differentiable initial function g(t) and for any delay 7; > 0, (T, > T—1 > --- > T1), the
solution of (1.3) y(t) = 0 as t = co.

Let

Qvr,v9, o) == (I — ZN]-UJ-)*(L +) M), (2.1)

j=1

Ai(F) and Re);(F') stand for the i-th eigenvalue and the real part of i-th eigenvalue, respectively,
of any matrix F.
Lemma 2.1. The system (1.3) is asymptotically stable if the following conditions

sup ReX;(Q(v1,v2,--+,0m)) <0, for all i and vj € C and |vj| <1 (2.2)

and m
>IN lI<1 (2.3)
hold, where [|N;|| = sup ||IN;&]|.

l1€l1=1
The proof is analogous to that of Theorem in [15] we omit it here.

3. Stability of (A,B,C)-Methods for System (1.3)
For the initial-value problem of ODEs
y'(t) = ft,y(t), t>0, y(0)=yo, (3.1)
An (A,B,C)-method for (3.1) is given in a standard form as (see [2])
Y1 = (A® DY, + h(Bo ® I)Fyy + h(By @ I)Fpy1, (3.2)

where I stands for the identity matrix; A, Bo, B1 € R™", Y1 = (Ui 1, U 2s -5 Ut )L Ynii &
y(tn + aih)v Q; > 0> a; # Qi (le 7é .7)) Fn+1 = (fT(tn)ynyl)v ) fT(tnaynJ‘))T‘ Define

r(h) := (I —hB;)"' (A + hBy) (3.3)

as the stability matrix of the (A,B,C) method. It is well known that (A,B,C)-method (3.2) is
said to be A-stable for ODE (3.1) if

(I — hBy) is regular and p(r(h)) < 1 for any Re(h) < 0. (3.4)
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Definition 3.1. An (A,B,C)-method for NMDDE (1.3) is called to be asymptotically stable if,
under conditions (2.2)(2.3), the numerical solution Y, of (1.3) at the mesh points t, satisfies
lim, o Y, = 0 for any stepsize h > 0.

Application of (A,B,C)-method (3.2) to the test linear system (1.3), which can be written
as

y'(t) = 2(t), 2(t )+ [M; 3) 4 Njz(t —75)], (3.5)
j=1
yields
Yn+1 = (A ® Id)Yn + h(B() ® Id)Zn + h(Bl ® Id)Zn+1, (36)
Zpii = (I © L)Ynyi + Z - © M)V, 18545 + (I @ Nj) Zt;46,44) - (3.7)
j=1

Forn =1,2,---and i = 0,1,Y,_;445;4: = 9((n = l; + 6; +9)h),Zn_i;46,4: = 9'(n = l; +
(53' + i)h) with (n — l; + (5]' +1i) <0, Ynfl]‘+(j]‘+7: and anlj+(j]‘+7: with (n — l; + (53' +1i) > 0 are
defined by the interpolation procedure which was proposed by in ’t Hout[7]. That is

Yo lj+6;+1 = Z L Y- lj+p+is (38)
p=—v

n l+§ +i = Z L 'n, l]+p+z (39)
p=—v

for0<d; <1, j=1,---,m and

L) = ]] (9 _:) (3.10)

k=—v,k#£p

where v,s > 0 are integer, v < s < v+ 2, and l; = [r;h71],6; = I; — ;71 8; € [0,1) for
j=1,-;m, by >+ >1; > s+ 1, [q] denotes the smallest integer that is greater than or
equal to ¢ € R.

Consider the following polynomial

= Z Ly(8)2",

p=—v

z € C,0 € [0,1) and L,(9) is given by (3.10). We quote the following lemma, which can be
found in [5,6,8,11,15].

Lemma 3.1. (i) The inequality |y(z,0)| < 1 holds if and only if v < s < v + 2, whenever
|zl =1 and 6 €10,1). (i) fv<s<v+2, v+s>0, |z] =16 € (0,1), then |y(2,0)| =1 if
and only if z = 1.

Lemma 3.2. (Lancaster, 1969) Let ¢ be a polynomial in two variables

q
y) = > iy,

i,7=0

A, B are square matrices of dimension s and m, respectively, p(A, B) denotes the composite
malric

q
p(A,B)= > riA @B

4,7=0
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If M, Aa, -+, As are the eigenvalues of A and uy, ps,- -+, us are the eigenvalues of B, then the
eigenvalues of ¢(A, B) are the numbers ©(X;, p;),i = 1(1)s,j = 1(1)m. Here ® denotes the
Kronecker product.
Theorem 3.1. Assume that

(i) the assumptions of Lemma 2.1 hold;

(ii) the underlying (A,B,C) method satisfies ReA;(By) > 0 fori=1,2,---,r;

(i) the interpolation procedures (3.8)(3.9) satisfy v <s <wv + 2.

Then the underlying (A,B,C)-method for NMDDE (1.3) is asymptotically stable if and only
if it is A-stable for ODEs.

Proof. The proof is similar to that of Theorem 4.1 in Hu et al.(1995). From (3.6) we get

Yn+1*lj+l) = (A ® Id)Yn*lj+P + h(BO ® Id)anlj+p

3.11
+h(B1 ® 14) Zn+1-1;+p- (8-11)

By multiplying L,(6;) to (3.11) and summing about p we obtain
EZ:_U Lp(‘sj)YnJrlfljer = (A ® Id) E;:_U Lp((sj)ynflﬂrp (3 12)

+h Egzo (Bi @ Id) E;:ﬂ; Lp(5j)Zn*lj+p+i-

Multiplying (I, ® N;) on both sides of the equation (3.12) and summing about j for j =1,---,m,
then the above equation becomes

E;n:1 ([ ® Nj) Z;:_lv Lp((sj)yn+1—lj+p = Z;n:1 (A ® Nj) E;:_U Lp((sj)yn—lj—i-p
+h Zi:O Z;n:1 (Bi © N;) E;:—’U Lp((sj)Zn*ljerH-

From (3.6)-(3.9) we obtain
Yop1 = (A®@ DY, +h Egzo 2?21(31' ® Mj) Z;:ﬂ; Lp(‘sj)yn+i—l,-+p
+h P i (Bi @ L)Y + b Xicg Xy (Bi @ Nj) Y-, Lp(0) Znmty i
which, together with (3.13), implies
Vi = (A DY, +h Yo " (Bi@ M) S Ly(0)Yari 1549

+h Z;ZO(Bi ® L)Ynqi + 27:1 (I ® Nj) Z;:—v Lp((sj)yn*ljﬂﬁl
- Zj:1 (A®N;) Zp:—v Lp(05)Yn—t;4p-

The characteristic equation of the above difference equation is

det P(z) =0, (3.14)

(3.13)

where

P(z) =21y — (A® )z — hZLO E;”Zl (B; @ M) 3¢ Ly (8;)ztm—litpi

p=—v

—h lezo(Bz ® L)Zlm+i _ Z’m (I ® N]) ES Lp((sj)zlm—lj+p+1

j=1 p=—v
+ ZJ:I (A ® N]) Epzf’u Lp(éj)zlm_lj—i_p'

Assume that z (]z| > 1) is a root of the characteristic equation (3.14). Let

8§

U= Y Ly(6;)z"7 = y(2,6;)z717,

p=—v

then for I; > s+1, (j=1,---,m),0; =>°_  L,(4;)2P~5 is an analytic function for |z| > 1.
When |z| = 1, we get [0;] < 1 for §; € [0,1) by Lemma 3.1; when z = oo, |v;] = 0 since
l[; > s+ 1. Thus by employing the maximum modulus principle for analytic functions we obtain

[v;] <1for |z| >1, 6; €[0,1). (3.15)
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Noticing the condition (2.2) and the inequality (3.15), we have ReX;(Q(v1,---,0m)) < 0 for all
i=1,---,d, 0 < <1, |v;] <1 whenever |z| > 1. From condition (ii) we can obtain that
det(I — hBy1 ® Q(v1,--+,Vm)) # 0. Using the notations about v; and Q(v1,v2,- -, vn), P(2)
can be written as
P(z) = 't (Lq = 0L, (I @ Nj)Tj) — 2 (A @ (I = 3T, Njvj))
—h Yo Bi @ (L+ Y0y Mj;)2im+i
=zt (I ® (I - Z;n:l Njﬁj)) ((ZI —Ael- h(BU + Blz) & Q(ﬁl,ﬁ% T )i}\m))
= lmt1 (1 ©(I-Y", Njaj)) (I —hBy, @ QG1,+,0m))
—zlm (1® r-ym, Njaj)) (A® T +hBy®Q(01,+,0m))
= olm (I ©(I-¥", N]-aj)) (I—hBy ®Q@1,+,0m))
(ZI - T(hQ(iJ\l, T 7i)\m))) )

where r(hQ (01, -+,0,)) := (I —hB; ® Q) (A® I+ hBy ® Q). So,

det P(2) = 27 (detlT = 7, Njaj])r ~det[I — hBy ® Q(01, -+, om)]
-det[zI — r(hQ(V1,- -, Um))]-
Since det[I — Z;nzl N;v;] # 0 and det[I — hBy ® Q(V1,---,Um)] # 0 and 2z (|z| > 1) is a root

of the characteristic equation det P(z) = 0, this means that the root z of the characteristic
equation should satisfy

det[zI; — 1 (hQ(By, - -, 0m))] = O.

From the spectral mapping theorem we have the identity
Ai(r(hQ (1, -+, vm))) = r(Ai(hQ(01, -+, 0m)))-
Henceforth from condition (ii) of the Theorem, we can conclude
[r(Ai(hQ (01, - -+, 0m)))| < 1= [Ai(r(hQ(v1,---,0m)))| <1,

which means
det[zI; —r (hQ(V1,---,0m))] =0 = |2| < 1.

This contradicts with the assumption |z| > 1.
Suppose that an (A,B,C)-method for NMDDE (1.3) is asymptotically stable. Let m = 1,
Mj; = N; = 0. We can obtain that it also is A-stable for ODEs and the proof is completed.

4. Stability of RK Methods for System (1.3)

A general s-stage implicit RK method for ODEs can be expressed as

{ Ky =e®yn+ hA;  Fi(K,), (4.1)

Yn+1 = Yn + hb! @ Fl(Kn)a

where t, = nh (n = 0,1,2,---) are the grid points of the discretization, h is the stepsize,
Yn ~ Y(tn), Kn = (Kni, Kn2, -+, Kns)T = (y(tn + c1h),y(tn + c2h), -, y(tn + csh))T, e =
(1, )T, F(Ky) = (f(Knp), - f(Kns)T, b= (b;) and ¢ = (¢;) are s-dimensional vectors,
A; = (aij) is an s X s matrix. The notations 4; ® F and b! ® F stand for (4; ® I)F and
(b ® I)F, respectively.
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Let
0 -+ 0 1
Vo= (i )= (i ) a | 0 0t e
0 - 0 1
Then s-stage RK method (4.1) can be seen as an (A,B,C) method
Vi1 = AV, + hB1Fopr, (4.2)

where N N
_ 1®©I 0 _ 1 0
Bl_(thX)I 0>_<bT 0>®I'
Lemma 4.1. The eigenvalues and spectral abscissa of the composite matriz Ay ® I are

Ai(Ar @ 1) = Ai(Ar),
p(Ar @ I) = p(Ay).

By simple calculation, Runge-Kutta method as a special case of (A,B,C) method (3.2), we
can obtain

R . _Jo (I-hA ®Q) exI)
QL Bm) = o 1y (T 0 Q)T - hAL Q) MewT) ||

Its eigenvalues are the same as those of the stability matrix of Runge-Kutta method (4.1).
Therefore, from Theorem 3.1, Lemma 4.1 and (4.2) we can obtain the following conclusion.
Theorem 4.1. Assume that

(i) the assumptions of Lemma 2.1 hold;

(i1) the underlying RK method satisfies ReX\;(A1) >0 fori=1,2,--- s;

(1i1) the interpolation procedures (3.8)(3.9) satisfy v < s < v+ 2.

Then the RK method applied to NMDDE (1.3) is asymptotically stable if and only if it is
A-stable for ODEs.
Remark. There are a lot of RK methods satisfying the conditions of Theorem 4.1.

5. NPDIRK Scheme for NMDDE (1.1) and Stability of a Special
Class of NPDIRK Methods

The so-called PDIRK methods are parallel diagonally-implicitly iterated RK methods for the
parallel numerical integration of ODEs. These methods have many important computational
advantages over fully implicit RK methods: they preserve their stability properties and stage
order, while the computational cost involved in their implementation is similar to diagonally
implicit RK(DIRK) methods (cf. [3,4,12,14]). Another attractive feature of PDIRK method is
the availability of embedded formulae of lower orders which make them an ideal starting point
for developing variable-order /variable-step code.

PDIRK methods have above many advantages over fully implicit RK methods, however,
the question that they whether or not can be applied to NDDEs and preserve the asymptotic
stability of the analytical solution of system (1.3) has not been investigated. This paper gives
a partial answer for the question.

In the following we shall studied the stability of a special class of PDIRK methods (see, for
example, [3, 4, 12, 14]), which satisfies

D=dl and p(I-D 'A)=0, (5.1)
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where D is a diagonal matrix , d is real constants and p(-) stands for the spectral radius.
Define NPDIRK scheme for system (1.1) by:

K — F(ety + ch, yn +hD @ KW, yo_iyis, + hD © Kn_iy4s,,

“ Ynelmtdm FhD @ Kn g 15, Knoty 460, 5 Knetyt6m)
= Flety +ch, yn + hA® KXy i, + hA® Koty 15,
Y Ynelmtdm FRAR K g, 460> Knotitsis s Knt46m) (5.2)
—Fletn+ch, yn + kDR KW, yp 1,16, + hD @ Kn 1,450, -
Yn—lmtdm + MWD @ Kyt 46,5 Knti4505 5 Knetp46m)
(k=0,1,--- ko),
ko) =y + hbT @ K ko), (5.3)

where DO K,, = (DRI)K,, ARK, = (AR K, bT9K = (0T @K, Ky = (Kp1, - Kns)T,
F(etn+0h7 y’n+hA®Kn, yn—l1+(51 +hA®Kn—ll+(517 Ty y’n—lm+5m +hA®Kn—lm+(5m7 Kn—l1+617
Ty anlertSm) = (f(tn + Clhayn + hzj':1 al,an,j; Yn—1146, T+ hzj'zl al,anfl1+61,j7 Tty

S
Yn—lm+6m T 12501 015 Kntptsnmjs Knotitorts =05 Knotpton1), o5 fltn + cshy yn +
8§
Wiy s Ky Yn—titsr + hD51 s Knotitor g s Yntmtom T hD25 1 s Kntptbm, iy
Kn—ty+61.m, " Kn—t,,+6,,.m)" - For the linear system (1.3), we have

K& _(IoL)e®yn + hD o K¥™) = (Io L) (e ® yn + hA 0 KF)
+ 20 (I M) (yn—i;+5;, + hA @ Kpi;16;) + 250, (I Nj) Kny; 45, (5.4)
—I®L)(e®@yn+hD @KWY, (k=0,1,-, ko).

That is

KM = XEP + (I -hD o L) (e ® L)yn + 7, (6 © My)yu_i,+5,+
+h Z;n:l (A ® Mj)anl]‘+6]‘ + E;n:l (I X Nj)anlj+6j;

where X = h(I—hD® L) }((A— D) ® L) is the iterative matrix of NPDIRK method (5.3)(5.4).
It is easy to see that the condition (5.1) implies X*0 =0, (ko > s). Under the condition (5.1),
a calculation yields

(I-—hA® L) 'KV = (e ® L)yn + Y71 (€ ® My)yn—1,45,+ 55)
+h Z;n:l (A ® Mj)Kn*lj+5j + E;n:l (I ® N]‘)Kn*lj+5j .

Since (5.3)(5.5) can be rewritten as

(ko)

yn+1

I-h(A®L) 0
-w'el I

K(ko) ]

I
[

0 exL ] [ K, ]
0 I Yn
43 { hA® M;)+I®N; 0 ] [ Do Lp(0:) Kt 4p
i=1 0 0 > o= Lp(00)Yn—ti414p
n f: { 0 e® M; ] [ E::ﬂ« Lp(0i) Kn—t;-14p
0 2= Lp(00)Yn—t+p

its characteristic equation is the same as RK method (4.1), hence we obtain
Theorem 5.1. Assume that

(i) the assumptions of Lemma 2.1 hold;

(ii) the corrector method of PDIRK methods, that is the underlying RK, is A-stable for
ODEs and ReX;(A) >0 fori=1,2,---,s;

(i) the interpolation procedure (3.8)(3.9) satisfies r < s <r +2;
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(iv) D =dI and p(I — D' A) = 0 in NPDIRK method (5.2)(5.5).
Then the resulting NPDIRK difference systems of (5.3)(5.4) corresponding to (1.3) is asymp-
totically stable.

6. Conclusions

In this paper, we firstly give a sufficient condition for the asymptotic stability of the system
(1.3). Then we extend and complement the results of Zhang & Zhou[15], Kuang & Xiang &
Tian [10,11,13], Hu et.al. [1,5,6,9] about stability properties of numerical methods for DDEs
or NDDEs to the systems of NMDDE (1.3). We observe that under some conditions, they
possess the same stability properties. Finally, we give a NPDIRK scheme for NMDDE, and we
also study the stability properties of a class of NPDIRK methods with respect to (1.3). It can
be found that the characteristic equation for this class of method is the same as that for RK
method and, as a consequence, it has the same stability with respect to (1.3) as the underlying
RK method.
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