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Abstract

For nonlinear hyperbolic problems, conservation of the numerical scheme is important
for convergence to the correct weak solutions. In this paper the conservation of the well-
known compact scheme up to fourth order of accuracy on a single and uniform grid is
studied, and a conservative interface treatment is derived for compact schemes on patched
grids. For a pure initial value problem, the compact scheme is shown to be equivalent to
a scheme in the usual conservative form. For the case of a mixed initial boundary value
problem, the compact scheme is conservative only if the rounding errors are small enough.
For a patched grid interface, a conservative interface condition useful for mesh refinement
and for parallel computation is derived and its order of local accuracy is analyzed.
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1. Introduction

In recent years, the compact finite difference method receives an increasing interest due to
its high order of accuracy. The compact finite difference method was developed in 1970s within
a variety of frameworks. It was then realized that all these methods can be constructed in a
systematic way [17]. In [21], a detailed exposition of compact schemes and derivation techniques
was given. The history of the development of compact schemes including some works in 1980s
is also briefly reviewed in [12]. Recent works in this direction were emphasized in discretization
on nonuniform grid [8, 9, 19] or on non-staggered grids[20], method with spectral-like resolution
[14], stability of initial-boundary value problem [2, 10] and optimal accuracy for a given grid
and initial data [11], parallel treatment of compact schemes[18], control of the group velocity
[7], nonlinear compact schemes[4, 5, 6], and mixing with other methods [3].

The main feature of the compact scheme is that the space derivative of the differential
equation is computed implicitly and that it is not written in the usual conservative form.
For nonlinear hyperbolic problem, conservation of the numerical scheme is required to ensure
the solution to converge to a weak solution for vanishing mesh sizes[13]. A compact scheme is
however not in the usual conservation form. An important and fundamental question is whether
the compact scheme yields numerical solutions which, when the solution converges, converge to
weak solutions for vanishing mesh size.

A second important issue is that compact schemes are mainly applied to compute flows in
simple geometries with a structured grid. It is very hard to find study of compact schemes
for complex geometries. A natural way to apply the compact schemes to complex geometries
is obviously by domain decomposition. However, applying domain decomposition to compact
schemes is not simple since the compact schemes are inherently implicit. It is not clear how
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to construct interface conditions to ensure independent (and hence parallel) solution of the
compact schemes in each subdomain. Besides, for nonlinear hyperbolic problems, conservation
at grid interfaces is very important [1, 24].

In this paper we will address these two important issues. First, we want to establish the
equivalence between a compact scheme and a usual scheme in conservative form. The usual
conservative scheme expresses the increment of the numerical solution at each grid point as
the difference between two adjacent numerical fluxes. According to Lax-Wendroff [13], if the
numerical flux is consistent with the exact flux function of the hyperbolic system and if the
numerical flux involves a finite number of grid points, then the numerical solution is a weak
solution if it converges boundedly almost everywhere to some function for vanishing mesh size.
However, we will see that the compact scheme, when made equivalent to a scheme in usual
conservative form, has a numerical flux involving an infinite number of grid points. Hence we
have to extend the convergence theorem of Lax and Wendroff to such a case. This will be done
in Section 2.

In Section 3 we will establish the equivalence between a compact scheme and a scheme in
usual conservative form. Both initial value problem and initial-boundary-value problems will
be considered. For the case of initial-boundary-value problem, it is interesting to note that
rounding errors play an important role, especially in the case of a shock wave.

In Section 4, we construct interface conditions for patched grids with and without grid
continuity. This is important for mesh refinement and for treating complex geometries. The
interface treatment is required to be conservative and accurate, and to ensure independent or
parallel solution of the implicit schemes in each subdomain.

In Appendix A, we show that it is not evident that compact schemes with non-constant
coefficients are conservative.

2. Conservation for a Nonlinear Hyperbolic Equation

2.1. Hyperbolic Equation and Numerical Solution

One of the great advantage of the compact scheme is that each space direction can be treated
independently of the others. Hence one can just consider a one-dimensional problem. The case
of multidimensions for patched grid will be considered in the end of this paper.

Let us consider the scalar hyperbolic equation

u+ flu), =0, z€Q, t>0 (2.1)
together with the initial condition
u(z,0) = uo(z), €N (2.2)

If @ =R, then (2.1)-(2.2) define a pure initial-value problem. If Q = (—1,1), then (2.1)-(2.2)
together with the boundary condition

u(=1,t) = g(t) if a(u) = f'(u) >0 (2.3)

define a mixed initial-boundary-value problem.

The result derived under the assumption of a scalar equation remains valid for a system
of hyperbolic equations, since the compact scheme is component-invariant. When we treat
problems with shock waves, an upwinding compact scheme is necessary, which can be simply
done, in the case of a system, by splitting the flux f into a positive part fT and a negative
part f~ according to the positive eigenvalues and negative eigenvalues of the Jacobian matrix
A =. 9,f(u). Then the positive part f¥ is approximated through a left-sided compact scheme,
and the negative part f~ is approximated through a right-sided compact scheme. See [7] for
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more details. Then the following analysis can be proceeded in a similar way, and the same
conclusions hold. Hence we restrict the analysis to a scalar equation.

The solution of (2.1)-(2.2) is not always differentiable and in the case of discontinuous
solutions, it is more convenient to consider weak solutions. A weak solution u* of the hyperbolic
equation (2.1) with initial condition (2.2) satisfies the following relation

//U*¢td$dt+//f(u*)¢zdl'dt: —/u(m,O)ng(:r,O)da: (2.4)

for any test function ¢(x,t) which is continuously differentiable and which has compact sup-
port. A weak solution is equivalent to the classical solution in smooth regions and satisfies the
Rankine-Hugoniot relation at a discontinuity.

Let z; for j € Z denote the abscise of the grid point j of a generally nonuniform grid.
The mesh size h; = 1(zj41 — xj-1) is generally a function of j. The numerical solution, for
semidiscrete schemes, at point j is denoted u;.

2.2. Conservative Scheme in Terms of Numerical Flux

On a uniform grid with h; = h for all j, if there is a function f(nu)

P called numerical flux
2
and defined by

fj(zé) = f(nu) (Ujfl, e ,’U,jfl, ’LL]', ’U,j+1, e ,’U,]'+T; h), V] (25)
FO (. u,u,u,. .. ush) = f(u)  (consistency) (2.6)

such that the semidiscrete scheme can be written as:

du; 1 nu nu .

= =), v (2.7)
then the scheme is said to be conservative. Here [ and r are two non-negative integers so that
the scheme (2.7) involves (I + r + 1) points in space.

In a usual scheme, both [ and r are finite. The most frequently used schemes for engineering
purpose involve three points, i.e., I = r = 1. Modern high resolution schemes, such as TVD
(total variation diminishing) schemes and ENO (essentially non-oscillatory schemes) schemes
for computing shock flows in gas dynamic problems, involve 5 points in space, i.e., [ =r = 2.

However, the compact scheme considered in this paper, when made equivalent to (2.7),
involves an infinite number of grid points in space, i.e., | — 0o, r — 0o (see Section 3).

For a three-point scheme, Lax and Wendroff [13] proved the following theorem which remains
valid for schemes with more than three points in space.

Theorem 2.1. If the solution of the conservative scheme (2.7) converges boundedly almost
everywhere to some function u* for h — 0, then the solution u* is a weak solution.

Note that the above theorem was proved in [13] for the case of a fully discrete scheme. It is
trivial to repeat the proof for the semidiscrete scheme.

It is not yet known whether Theorem 2.1 remains valid for [ — oo and r — oco. For this
case, we need the following two conditions for convergence

f("“)(u,... S Uy Uy Uy« .. uy h) = f(u) (2.8)

Iltig}) FOPO (U o o U1, Uy Ujg 1y - - s Ujpoos h) = flu(z;_1)) (2.9)
The condition (2.9) is new in compasrison with a scheme for a finite number of grid points.
Thus the following theorem would be new.

Theorem 2.2. Consider the difference equation (2.7) involving an infinite number of grid
points, i.e., | = oo and r — 0o0. The corresponding numerical flux is defined by

fj(_?_é) = f(nu) (u]-,oo’ e ,uj,l,uj, ’U,j+1, e ;ujJroo; h), V]
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which satisfies the constraints (2.8)-(2.9). If the solution of the conservative scheme (2.7)
converges boundedly almost everywhere to some function u* for h — 0 , then the solution u* is
a weak solution of the hyperbolic equation (2.1) with initial condition (2.2).

Proof. Multiply (2.7) by a test function ¢; = ¢(x;,t) which is continuously differentiable
and which has compact support, integrate this equation with respect to time, and sum the
resulting equation over all points in space, we obtain

Z h/ du]d)]dt Z/ £ = 1)t (2.10)

j=—00 j=—o00

Using integration by parts for the left-hand side of (2.10), we have for h — 0,

Zh/ du](b]dt = Z / = (ujp;)d Zh/ ]d;;]dt

Jj= j=—00
=S oo 5[
j=—o00 j=—o00

= —/u(m,0)¢(a:,0)da:— /_-:0 /000 u* prdxdt (2.11)

For h — 0, the right-hand side of (2.10) can be rewritten as

- Z/ I = 1 hegdt = - Z/ 7 gyt + Z/ £ ¢yt

j=—00 Jj=—o00 j=—o00
= - Z FMeiadt+ Y | Mgt
= [ 2 [
- Z / f(”“ ¢J+1 Git1 = 9 gy (2.12)
j=—00

Through using (2.8)-(2.9), we have

lim Z hf(nu ¢J+1 ¢J / f (;Sxda:

h—0
j=—o00

Hence from (2.12) we have
- Z / ;j‘; f<"“ )it = / / Fu*) o dudt (2.13)
j=—o00

In view of (2.11) and (2.13), the equation (2.10) yields for A — 0,

//u*¢tda:dt+//f(u*)¢mdmdt: —/u(m,0)¢(x,0)d:n

That is, u* is a weak solution.
Hence, for a given numerical flux, we must verify whether (2.9) is satisfied.
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3. Compact Scheme on a Uniform Grid

3.1. The Compact Scheme
For the hyperbolic equation (2.1), the semidiscrete compact scheme with three points in
space can be written as

du;
= =F (3.1)

Here F' = f,(u), in the case of a constant coeflicient scheme, is given by the implicit formula
a_thj_l + a()hFj + athj_H = b—lfj—l + b()fj + b1fj+1 (32)

Most of the compact schemes used in the past have constant coefficients. Only recently
we see the appearance of nonlinear schemes[4, 5, 6]. The present paper focuses on constant
coefficient schemes. In Appendix A, we give a remark on the conservation for schemes with
non-constant coefficients. Further study for such schemes should be considered in the future.

For the scheme (3.2) to be consistent with the equation F' = f,, the coefficients a;, b; with
i = —,0, 4+, after properly normalized, must satisfy the relations

a_1+ayg+a =1, b_i+by+b =0. (3.3)
Furthermore, the right-hand side of (3.2) is an approximation to f(u),, that is,
b_ifj—1 +bofj +bifir1 = f(u), + O[R*TP], p>0.
Table 3.1 gives these coefficients for various orders of accuracy.

Table 3.1. Coefficients for the compact scheme: the second-order two-parameter family,
third-order one-parameter family and fourth-order one. The parameters a and 3 are

arbitrary.
accuracy a—1 ap aq b_1 b() b1
2th_order I 1 o a—36—-1 4B—) 1—3+3a
HotB | I+oh8 HotB | 2420428 | 2204208 | AH204208
3th_order 1 2 a - (1) 5ol
3(14+a) 3 3(14+a) 6(14+a) 3(1+a) 6(14+a)
4™ _order z 2 z -3 0 5

3.2. Conservation for a Pure Initial Value Problem

The scheme (3.1)-(3.2) is not in the usual conservative form and it is not clear whether it is
conservative. Consider for example a shock at z = 0 which locates at the middle of two adjacent
cells, say j = 0 and j = 1. If the flux derivatives are computed “exactly”, then (f,)o = 0 and
(fz)1 = 0 so that the shock remains motionless independent of its real speed. In order to
capture the correct shock speed, we must show that it can be made equivalent to a scheme in
the usual conservative form (2.7).

In order to have conservation in the usual sense, we must require that there exit a function
f;ﬁ? defined by (2.5)-(2.6) such that the grid function F} be related to this flux function by

1
Fj=——

o Flw gy g (3.4)

i+ts -3
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Under a reasonable invertible assumption (which we should always impose), the relation (3.2)
can be solved to yield

F; = Z Zlfj_l (3-5)

with z; — 0 for | [ |[— co. By consistency requirement, we must have Y ;° 2z = 0. For
the initial-value problem, the coefficients z; are independent of j. The exact form of z; is not
needed here.

Let us assume the numerical flux in the following form:

J

=3 whi (3.6)

where g; , which is independent of j, is to be related to z; and is subjected to the following
consistency constraint:

> ow=1 (3.7)

l=—00

By translation we write

oo

f;fé) = Z Yifj—i-1 = Z Yi—1fj—t, (3.8)

l=—00 I=—0o0

Substituting (3.6) and (3.8) in (3.4), we obtain

— YL~ Yi-
Fi==> " =it (3.9)

I=—0o0
Comparing (3.9) with (3.5) yields

Y~ Y-

Tt =a (3.10)

The relation (3.10) can be solved to yield

!
yl:yg—hZzl/

I'=1

which, when substituted in (3.7), leads to the following unique value for by

l
h ' 1
=i — - Day + ——
v ZATo(mH,,Z_l“ o )Zl+2l+1>

Hence there is a unique set of y; such that the flux function (3.6) satisfies the consistency
assumption.

The above result can be summarized below.
Lemma 3.1. Let the left-hand side of (3.2) be invertible. Then the scheme defined by (3.1)-
(3.2) can be made equivalent to the usual conservative form (3.4).
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Now we must show that the corresponding numerical flux satisfies the consistency conditions
(2.8)-(2.9). By Lemma 3.1, there is a unique set of y; subjected to the constraint (3.7). Hence

f("“)(u,... JU Uy Uy« o U h) = Z yif(u) = f(u)

so that the constraint (2.8) is indeed satisfied.
Introducing (3.4) into (3.2) leads to the following relation for f;rf:
2

atf79 + (a0 = a) [i7Y + (a1 = a0) [} — ar [T = b S+ bofy +bifi

Let h — 0, then at each point j, we have two situations: either the three points j—1, 7 and j+1
all lie in a smooth region of the solution u (case A), or these three points cover a discontinuity
(case B).

For case A, we must have, for h =+ 0, f;_1 = fj+1 = f; so that

arf{" + (@0 = a) ™ + (0 - ao) [} —an [} = (3.11)
2 2 2

since b_1 + bgp + by = 0.

For case B, we may for convenience consider the discontinuty to lie between j — 1 and j, so
that

=

(nu) (nu)

a,lf;ﬁ%) + (ao — afl)f(iu + (a1 — ao)fj+% Tl s = —b_1(f); (3.12)

i3
where (f) ; = fj — fj—1 denotes the jump at the discontinuity.
Due to the special structure of the linear system defined by (3.11) and (3.12), there is no
difficulty to see that for each j lying inside two discontinuities, we have

1 = fw)

In summary, the result in the following lemma holds
Lemma 3.2. The numerical flux determined by (3.6) satisfies the constraints (2.8)-(2.9).

By Lemmas 3.1 and 3.2, the conditions required by Theorem 2.2 are all met. This leads to
the following theorem.
Theorem 3.3. The compact scheme defined by (3.1)-(3.2) can be made equivalent to the usual
conservative form (8.4) with the numerical fluz satisfying the consistency constraints (2.8)-
(2.9), so that if the numerical solution converges for h — 0, it converges to a weak solution of
the exact problem.
Remark 3.4. The key point for the compact scheme is that, when made equivalent to a
scheme in the usual conservative form, it has a numerical flux involving an infinite number of
grid points. This is the new feature in establishing the convergence result, slightly different
from the classical result of Lax-Wendroff.

3.3. Conservation for the Initial-Boundary-Value Problem

3.3.1. Conservation For the initial-boundary-value problem, the compact scheme (3.2),
now defined for the interior points j7 = 1,2,---,J, must be supplied with suitable boundary
conditions at j = 0 and j = J + 1. The boundary conditions should fulfill the requirement
of accuracy and stability. This has been rigorously studied in [2]. Here we do not require the
exact form of the boundary conditions. The compact scheme along with suitable boundary
conditions implies the following relations

J+1

F=Ya’fi,1<j<J (3.13)
=0
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where the coefficients agj ) depend on j and on the boundary condition, and g; depends on the
data on the boundary for incoming waves. Furthermore, consistency assumption leads to

J+1
Za =r;, 1<j<J (3.14)

where each r; simulates an rounding error. The reason to introduce an rounding error is that,
it is the scheme (3.2) to be solved by the computer which always has rounding errors. Since the
scheme (3.2) is solved with rounding errors, the computed agj ) involves rounding errors so that

there is a difference between the exact consistency relation 22”01 al(] ) = 0 and the numerical

one.
Similarly as for the initial-value problem, we look for a numerical flux of the form

J+1
= Zy f0<i< T (3.15)
so that
i S URR R (3.16)
Here y') must depend on j. Now we write Fj as
1 () _ g
J+1 J+1
j—1
= —= Zy A=3"477V)
=0
1 J+1
1
= 52 T
1=0
which, on using (3.13), yields
(3 _,G=1)
A a0 T+ L1 <Y (3.17)

Moreover, the numerical flux should be consistent with the exact flux, so that the following
consistency relations must hold

J+1

Sy =1,0<i<J (3.18)
=0

Hence (3.17) and (3.18) define (J + 1) + J relations for the (J + 1) x (J +1)2+J +1
unknowns y¥) (0<j < J,0< 1< J +1).
Lemma 3.5. If the rounding errors r; in (3.14) do not vanish, the system (3.17)-(3.18) has
no solution; if the rounding errors rj vanish, the system (3.17)-(3.18) is underdetermined and
has nontrivial solutions.

Proof. The use of (3.14) eliminates J relations. Hence the relations (3.17)-(3.18) only
contain (J+1)? linearly independent relations for the (J+1) x (J +1)2 + J + 1 free parameters
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yl(j). In consequence, the system (3.17)-(3.18) is underdetermined. Summing (3.17) over ! for
each j yields
J+1 () _ I+ (1) S
_2ua=0 Y - 1=0 Y ZZGE”,1<J’<J
=1

which, on using (3.14) and (3.18), yields
O=rj,1<i<d

Hence the underdetermined system (3.17)-(3.18) has nontrivial solutions if and only if the
rounding errors vanish.

From Lemma 3.5, we see that if the rounding error vanishes, then we can indeed find a
numerical flux ensuring the condition (3.16) to be satisfied.
Theorem 3.6. For the initial-boundary-value problem, the scheme defined by (3.1)-(3.2) is
conservative if and only if the rounding errors r; are negligible.

3.3.2. Rounding Errors Generated by a Shock

We have shown that the conservation of the compact scheme depends on the magnitude of
the rounding errors. The rounding error should be small enough for the conservation error to
be neglected. Obviously, rounding errors could be large near discontinuous solutions such as
shock waves in gas dynamics.

Denote e; = Fj — Fj(e) where Fj is the computer solution of (3.2) and Fj(e) is the exact
solution of (3.2). The equation for e; is given by

a_1ej_1 + agej +arejr1 =r; Vj (3.19)

where r; is the rounding error.
Let r; =0 and e; = 77 in (3.19), we obtain the characteristic equation

a_q +a07'+a17'2 =0.

The following result is well-known.
Lemma 3.7. Let the compact scheme be invertible. Then the roots T, T2 are separted by the
unit circle.

For convenience, we let |7 |< 1, |72 |> 1. By a straightforward calculation using Table 1,
we obtain
Lemma 3.8. The roots 11, 7o are are real (a) for the second-order scheme if aff > i, (b) for
the third-order scheme Ya € R and (c¢) for the fourth-order scheme.

We consider both mid-point shock (MPS) and cell-centered shock (CCS). The mid-point
shock locates at j = % while the cell-centered shock locates at 5 = 0. The rounding error
satsifies the relation | 7; || ro |=| r1 | for the mid-point shock and | r; |<| ro | for the cell-

centered shock. We therefore consider the solution of (3.19) with

(1)?;8 0 j<0
(MPS) rj =4 | 125 (CCS) =4 1 =0 (3.20)
0 j>1 0 >0

Proposition 3.9. The solution of (3.19) with r; defined by (3.20) is

ej=c T, j<0; ej=ctrl, j>1 (3.21)
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where
_ a—1+ Tia1 + a—1 + 7201
cC = ——, =
a_1a1(my — 7o) a_1a;(m —73)
for the mid-point shock and
- T2
¢ =ct

20471 + T»ap

for the cell-centerd shock.
Proof. First consider the mid-point shock case. The general solutions of (3.19)-(3.20) for
j #0and j # 1 are given by

ej:cl_ﬁj%-c;ﬂg j <0
ej = chlj + c;Tg j>1
Introducing these solutions in (3.19) for j = 0 and j = 1 yield the relations

_ -1+ _ -1+
P ek U W O L e s L (3.22)
07101(7’1 —7'2) 071a1(72 —7'1)

Since the solution far away from the shock is not perturbed, we must have c;' =0and ¢ =0.
This leads to (3.21).

For the cell-centerd shock, the proof is similar.

Remark. The key in this proof is the domain decomposition technique. Such a technique
was already used in [22] to study the solution behaviour near a shock on overlapping grids.

Example 1. Consider the fourth-order compact scheme for the mid-point shock model. In
this case, we have 7 = V3 -2 and Ty = —+/3 — 2. The solution has the following simple form

V3—1 ; V3 +1 ,
T2 (—V3-2), j<0; ej=——r(V3-2), j>1
2\/3 ( ) J J 2\/3 ( ) )z
The maximum occurs at j = 0 and j = 1. Precisely, eg = e; ~ 0.21. Away from j = 0 and
j =1, the error e; rapidely decays.
Example 2. Consider the fourth-order compact scheme for the cell-centerd shock model.
The solution has the following simple form

€j:

, 3 .
ej:—(—\/§—2)J, Jj<0; ej:%(\/g—Q)J, j>0
The maximum occurs at j = 0 and we have ey ~ 0.29. Away from j = 0, the error e; rapidely

decays.

4. Compact Scheme on a Multiblock Patched Grid

Little effort has been done in the past for domain decomposition with a compact scheme.
Domain decomposition is useful for treating complex geometries and for doing parallel com-
putation. Stability, uniqueness, convergence, conservation, accuracy, and parallization of the
interface treatment are important issues. This has been much studied in the past for patched
grid and overlapping grid methods using traditional difference schemes other than the compact
scheme, see for instances [1, 16, 15, 22, 23, 24]. Here we address conservation, accuracy and
parallelization for multiblock patched grids. Precisely, we look for the most accurate interface
conditions that ensure both conservation and parallization. Parallization means that the in-
terface treatment allows for independent solution of the implicit schemes in each subdomain.
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v
J
Fig 4.1. Patched grid in one dimension

This is important for using parallel computers. Conservation is important for correctly cap-
turing shock waves. The construction is basically for one dimension, but its extension to high
dimension is straightforward.

4.1. Conservative Treatment at Grid Interfaces

Consider two uniform grids separated by an interface located at z = 0. The configuration
is shown in Fig. 4.1.

In the left subdomain D,,, the mesh size is h,. Denoting u;, f; and Fj, with j =0, -1, -2,
..., the solutions, the fluxes and the flux derivatives, respectively, the compact scheme can be
written as:

a_lhqu_1 + aohqu + alhqu_H = b_lfj_1 + bofj + b1fj+1), j< -1 (4.1)

In the right subdomain D,, the mesh size is h,. Denoting v;, g; and G;, with j = 0, 1, 2,
..., the solutions, the fluxes and the flux derivatives, respectively, the compact scheme can be
written as:

a_lhij_1 + aohij + alhij_H = b_1gj_1 + bogj + blgj_,_l, j=1 (4.2)

The solutions of the two subdomains should be coupled at the interface through some
interface condition. Obviously, in order to solve (4.1) for j = —1, we require the interface value
Fy. Similarly, we need the interface value Gy for (4.2) with j = 1. These are to be defined by
interface conditions.

It is quite convenient to use the conservative criterion of Berger [1] to derive conservative
interface conditions.

The Berger’s conservation criterion can be described as follows. In the case of a Cauchy
problem without interface, conservation of the difference scheme can be expressed by stating
that the following quantity is conserved in time:

j=—oc0

When there is an interface, a similar quantity can be defined which can be split into three parts
accounting for the contributions from the left and right subdomains and the interface:

S = SDu + SDU + Sinterface (44)

If
as _

= - (4.5)
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for any time, the interface treatment is conservative. In this case, if the numerical solution of
the interface problem is convergent, it converges to a weak solution of the exact problem, i.e.,
it allows for a correct shock capturing.

In any case, the quantity S should be a consistent approximation to the integral f_oooo udx
of the exact solution w. It is sufficient enough to approximate this integral by the mid-point
formula.

4.2, Basic Requirement for Conservation

Using (3.1) for each subgrid, and (4.5), the Berger’s conservative criterion can be written as

> Fihy+ Y Gjhy =0 (4.6)

j<—1 i>1
Proposition 4.1. If Fy and Gy satisfy the relation
hu(alFo — a_lF_l) + hv(a_lGo - alGl) = b1f0 - b_1f_1 + b_1g() — b1g1 (47)

then the problem is conservative.
Proof. Summing (4.1) over j = —1,—2,..., we obtain the following equation

—00 —00 —00 1 —0 —0 —00
a_q Z F];1 + ag Z Fj + ay Z Fj+1 = h_(bil Z f]',1 + bg Z fj + by Z fﬁl) (48)
=1 =1 =1 w =1 =1 =1

Noting that

ZFj_l = ZFj—F_l, ZF];H:ZF]'_‘_FO’
=1 =1 =1 =1

—00

Sfia o= Do fi—f Y fin=>_fi+fo
=1 =1 =1 =1

we can rewrite (4.8) as:

—00 1 —00
(a1 +ao + a1) Z F; —a,F4+aFy = h_u[(bA +bo + b1) Z fi —=bafa+0bifo]

= =1

Making use of the consistency relations in (3.3), we finally obtain

— 0 1
E Fj +a1fp —a_1F_1 = h—(blfo — b—lf—l)- (49)
j=-1 v

Summing (4.2) over j = 1,2,..., we obtain the following equation

oo oo

a_y Z Gja +ao ZGJ' +a; ZGJ&H = hi(b,l Zgjfl + by Zgj + by Zgﬂl) (4.10)
A = =1 v =1 = =

Noting that
Y Gi1 = > Gi+Go, Y Giu=)» G;j—G,
= = = =

oo oo oo oo
ZQH = Zngrgo, Zgﬁlzzgj_gla
=1 = =1 =l
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we can rewrite (4.8) as

oo 1 —00
(a1 +a0+a1)Y Gj+a,Go—aG = h_[(bfl +bo+b1) > fi+b1go — bigil.
=1 v =1

Making use of the consistency relations in (3.3), we finally obtain

ZG]' + a_1G0 - 01G1 =

Jj=1

1
h_(b—lgo —big1). (4.11)
Multiplying the relation (4.9) by h, and the relation (4.11) by h,, summing the resulting
equations, and making use of (4.6), we obtain (4.7).

Proposition 4.2. The interface condition (4.7) has locally a (p+1)-th order of accuracy for

all the three-point compact schemes if hy, — hy = O[hE,, h?] with some integer p > 0.
Proof. Using Taylor expansion, we have

A= 20+ 250+ 5 (%) e 00

fo= 10+ 500+ 5 (%) e+ % (%) feeet0) + 008
R Ry MURE (3 P ORReT)

o= 102004 5 (%) 20 - 2 (%) frn0) 4 0mi
6o = 50100+ 5 (%) funat0) + 00

w = 100500+ (%) a0 - (%) et + 0
G = nmwfgnum+§(%)zﬁam+owﬂ

o o= fO+2 5 (0 (%

) <h>jﬁﬂ)+ﬂ%]
f

Hence one can expand the left-hand side of (4.7) as

hy(a1Fo —a1Fa) 4+ hy(aaGo — a1Gr) — [bifo — b fa +baago — bigi]
= KOf(O) + Klfx(o) + KQfmc(O) + K3fzzz( ) + O[hivhi]

with
Ky = 0
Ky = far—ac— (b + b)) — he)
Ky = %[al +a-1— i(bl —b_1)](hy — h3)
Ky = %[al —a-1— %(bl +b-1)](hy, = hy)
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Using Table 3.1, we find that K; = 0 for all the second to fourth order schemes, while Ky = %
for both of the third and fourth order schemes and K5 = lj_“;fﬁ — i for the second order
scheme. This proves the proposition.

According to the above proposition, if the interface involves an abrupt refinement so that
hy — hy = Olhy, hy], then the local accuracy of a conservative interface treatment for the
compact scheme drops to second order. If there is no refinement (as would occur in parallel
computations), then this interface treatment is as accurate as the interior scheme.

4.3. Full Interface Condition

The interface condition (4.7) is incomplete in the following two senses

1) it has only one relation while we need to determine two unknowns Fp and Gy,

2) it couples the unknowns F_; and G; belonging to different subdomains so that the
difference equation in each subdomain can not be solved independently.

Thus we have to add an additional interface condition. This is done by requiring a suitable
order of accuracy and, most desirably, by requiring the difference equation in each subdomain
to be solved in an independent way (parallelization requirement). This is only possible if the
additional interface condition has the form

hu(alFo — G,_lF_l) =A (412)
or
hv(a,ng - alGl) =B (413)

where A and B are linearly functions of their arguments to be determined by accuracy consid-
eration.

Let us concentrate on (4.12). In order the problem to be parallelizable, A must be indepen-
dent of Gp and G;. Hence we rewrite (4.12) as

hy(a1 Fo — aaF_1) = ayfo + by fo + cugo + dugr (4.14)

For convenience, let = hy,/h,. Performing a Taylor expansion up to fourth order, we
obtain the following relations from (4.14)

Gy +by +cy+dy =0
%(au Ez(cu - du) =a; —a-
5@

_ bu) -3
wt bu) + = (cu +dy) = £(a1 +a)

Ay = by) = ey —dy) = Lar —ay)

(4.15)

which, when using the exact solution, ensures that

arFy —a_ F — hi(aufo + buf + cugo + dugr) = O(hi,rh3)
that is, if the coefficients a,, by, ¢y, and d, are determined by (4.15), then the additional
condition (4.14) has a local fourth order of accuracy (globally third-order accurate) for any
given set of a1 and a_;.
Unluckily, the system (4.15) has no nontrivial solution and is thus unusable.
Now let us assume

hu(alFO - alefl) = auf[) + buffl + cuf72 + duff?) (416)
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which leads to the following relations for third order accuracy

Ay +by +cy+d, =0

ay — by — 3¢y — 5dy =2(a1 — a—y)

ay, + by + 9¢y +25d, = 4(a1 +ay)
@y, — by — 27¢y, — 125d,, = 6(a; — a_y)

(4.17)

Now the system (4.17) has a unique set of solution and is given by

11 1
Q, = —a; — -a_1

6 3

bu = —3(11 - 5071

Cy = =a1+a_q
2

1 1
du = —gal — 60,_1

Similarly, if we write (4.13) as
hy(a-1Go — a1G1) = aygo + byg1 + cug2 + dygs (4.18)
then the following relations hold for third order accuracy requirement

ay +by,+cy,+d, =0

—ay + by + 3¢, + 5dy, = —2(a1 — a_y)

ay + by + 9¢, + 25d, = —4(a1 +a_y)
—ay + by +27¢y + 125d, = —6(a; —a—y)

(4.19)

which yields uniquely

1 11
Ay = —Za1 — —/—a_
37t 6!
b L +3
v — =a a_
2 1 1
C = —a1 — §a
v — 1 2 —1
dv = Eal + 5(1,1

One can repeat the above analysis to derive lower order additional treatment by setting
d,=0ord, =0.
Proposition 4.3. The most accurate full set of conservative interface conditions, allowing
independent or parallel computations, can be written as

{ hy(a1Fy —asF) = A (4.20)
hy(a1Go — a1G1) =bifo—baf1+bi1go—bigi — A .
or
hy(a41Go —a:1G1) = B (4.21)
hy(arFo —aaFy) =bifo —b_ifa +bigo —bigr — B '
where

A = aufo + buf_1 + Cuf_Q + duf_3
B = ayg0+byg1 +cuge+dygs
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with
11 1 1 11
Ay = Eal - ga—la Ay = §a1 - Ea_l
1
bu = —3&1 — 50,_1, bu = —3(],1 — §a_1
Cuy = §a1 +a_1, Cy = §a1 +a_1
1 1 1 1
dy = —gal - ga—la dy = —gal - 60—1

4.4. Further Consideration and Extension to High Dimensions

The choice among (4.20) and (4.21) may depend on stability consideration. If the wave is
right-going, the interface condition (4.20) is more stable since its first relation involves upstream
upwinding. Similarly, if the wave is left-going, the interface condition (4.21) is preferred.

The extension of the interface treatment to high dimensions with grid lines from the adjacent
subdomains not matching exactly at the interface is not difficult. Consider for instance the
interface condition (4.20), the first relation in (4.20) can be implemented as in one dimension
since it uses information only from the left subdomain. The second relation must be adapted
to account for interpolation in the plane tangent to the interface and can be roughly written as

hv (a_lGo(?) — a1G1(7)) = bll(f(), ?) — b_ll(f_l, ?)
+b_1g0(T) — bigi (T) — A(T)

where I(f, @) is some interpolation to the interface grid point 2 belonging to the right sub-
domain.
Numerical experiments will be conducted in subsequent studies.

Appendix A. Remark on Conservation for Compact Schemes with
Non-constant Coefficients

In thisn appendix, we use the conservation criterion of M. Berger[1] to analyze the conserva-
tion for compact schemes with non-constant coefficients, here restricted to the case of a Cauchy
problem.

For the hyperbolic equation (2.1), the semidiscrete compact scheme with three points in
space can be written as

de
— = F; Al
dt J ( )
Here F' = f,(u), in the case of a non-constant coefficients, is given by the implicit formula
dNhF; 1+ af Wy + af hF 0 =9 £+ b6 0 i (4.2)
For the scheme (A.2) to be consistent with the equation F' = f,, the coefficients agj), bgj)
with ¢ = —, 0, +, after properly normalized, must satisfy the relations
W) 4 4 Z1, b9 48 ) — o, (43)

If the conservation criterion (4.3) is satisfied, then the scheme is conservative. Using (A.1),
the condition (4.3) reduces to

i hF; =0 (A.4)

j=—o0



Conservation of Three-point Compact Schemes on Single and Multiblock Patched Grids for. .. 399
Using (A.3), we obtain
a(jih(ijl _Fj)+hFj+agj)h(Fj+l - Fj) = (f] 1 _fJ)+b (fJ+1 = i) (A.5)

Summing (A.5) over all j, we obtain

Z a(ﬁh(ijl Z hE; + Z al Fip — Fy)
j:—oo j=—o0 j=—o00
= Z b(] f] 1= Z b f]+1 - f])
j=—o00 j=—o00

which can also be written as

o0

3 (@YY —a)nEy + Z hF; + Z —a{))hF;
Jj=—00 j=—00 j=—00
= > e =+ > e =6y
j=—o00 j=—00
or
S onE =Y Y- +67) 9T fi— S (0 T = (09 +al)+a ) hE; (A6)
j=—00 j=—o00 j=—o00

From (A.6), it is clear that for the conservation criterion (A.4) to be satisfied for all f;, we
must have . . _ _
U — (0Y) +6) + 89D =0 v (A7)

agj_l) (Y (9) —}-a(]))—}-a(ﬁ_l) 0 Vj (A.8)

Hence a compact scheme, with non-constant coefficients, must satisfy the constraints (A.7)-
(A.8) to have conservation. It is not sure that the compact schemes with non-constant coeffi-
cients all satisfy these constraints. This point need be addressed in a separate paper.

Acknowledgement A.1. The author wishes to thank the Editor and Referee for their
valuable suggestions.
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