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Abstract

This paper finds a way to extend the well-known Fourier methods, to so-called n+1
directions partition domains in n-dimension. In particular, in 2-D and 3-D cases, we
study Fourier methods over 3-direction parallel hexagon partitions and 4-direction parallel
parallelogram dodecahedron partitions, respectively. It has pointed that, the most concepts
and results of Fourier methods on tensor-product case, such as periodicity,orthogonality of
Fourier basis system, partial sum of Fourier series and its approximation behavior, can be
moved on the new non tensor-product partition case.
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1. Introduction

Fourier methods method play very important role in numerical approximation theory and
its applications, e.g. see [1]. As we know, the original result has been studied in univariate case.
Strictly, the tensor product approach is still staying in the one dimension level via decreasing
dimension. How to generalize the approach into higher dimension, beyond box domains, is still
an open problem. On an equilateral triangle case, Pinsky in 1980 [2] and 1985 [3] and Prager
in 1998 [4] have studied eigen-decompositions of the Laplace operator as generalized Fourier
transformation. Recently Sun [5]-[7] has constructed a partial foundation to define generalized
Fourier transformation on an arbitrary triangular domain also via eigen-decomposition. It is
well-known that a triangle in 2-D and a simplex in 3-D are natural non-box extensions of the
interval [0,1] in 1-D, and the origin Fourier transformation is carried on the interval [—1,1].
It seems there is no essential difference between intervals [0,1] and [—1,1] in 1-D, however,
the situation is quite different in high dimension. What is more natural non-box extensions
in 2-D and 3-D of the interval [—1,1] in 1-D? In this paper we point that a parallel hexagon
and a parallel dodecahedron can be as a direct generalization in 2-D and 3-D of the symmetry
interval [—1, 1], respectively. In next sections at first we introduce 3-direction and 4-direction
mesh in 2-D and 3-D, respectively. Then we define a parallel hexagon in 2-D, and a parallel
hexagon prism and a parallel dodecahedron in 3-D as our three basic periodic domains. Finally
we proposed an orthogonal basis system on related function space. We have proposed that
the most concepts and results of Fourier methods on tensor-product case, such as periodicity,
orthogonality of Fourier basis system, the related sine and cosine transformations, partial sum
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of Fourier series, discreting Fourier transformation (DFT), Fast Fourier transformation (FFT)
and its approximation behavior, can be moved on the new non tensor-product partition case.
2. A basic function system on 3-direction partition

Given an origin point O and two plane vectors e; and es, we form a 3-direction 2-D partition
as drawn in Fig. 1. To deal with symmetry along the three direction, we adapt a 3-direction
coordinates instead of the usual two coordinates. Setting the origin point O = (0,0,0), each
partition line is represented by ¢;=integer (I=1,2,3), and each 2-D point P is represented by

P = (ty,ty,t3), b1 +1ty+1t5=0, (2.1)
and any function f(P) defined on the plane can be written as
f(P) = f(ti,t2,t3), ti+ta+1t3=0
In particulary, Py is called an integer node if and only if for an integer pair

Pk:(k17k23k3)7 k1+k2+k3:0

(3,0,-3X3,-1,-2)(3,-2,-1)X3,-3,0)

7Za)

Fig.1: 3-direction partition Fig.2:Parallel hexagon domain

Definition 2.1. A function f(P), defined in the 3-direction coordinate, is called periodic
with period Q = (11,72,73), 71 + T2 + 73 =0, if for all P = (t1,t2,t3),t1 +t2 +t3 =0

f(P+Q)=f(P)
We take the following parallel hexagon 2, drawn in Fig.2, as our basic domain
Q ={P|P = (t1,to,t3) t1+to+t3 =0, —1<t,ts,t3 <1} (2.2)
Lemma 2.1. For any integer pair (ni,ns,ns) with n; + ns +n3 =0, then
ni—nNs =Ny —N3 =N3 —N| =V, (mod 3) (v=-1,0,1)

and
n? +n3 +n3 = 20 (mod 6), (v=0,1)

Definition 2.2. For a given integer pair j=(j1, ja, js) with j1 + jo + js = 0,let w = 5, a
complex function g;j(P) on the three-direction coordinates is defined

gj(P) — hititiztatjsts (23)
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Lemma 2.2. On any integer node P=(nq1,n2,n3), function g;(P) can only take three pos-
sible values: 1, w and ©, which are the three roots of 22 = 1. Moreover, if no —ny = v(mod 3)
and j1 — jo = p(mod 3) (v,u = —1,0,1), then g;(P) = w"".

Theorem 2.1. (Periodicity) For all nodes P, g;(P + Q) = g;(P) if and only if Q is an
integer vector @ = (n1,ma,n3),n1 +ns+n3 =0, and 0<n?+n3+n2=0 (mod 6).
Proof: Since g;(P + Q) = ¢,(P)g;(Q) and
gj(Q) = himitiznetisng — w(jl—jz)(nz—m)
hence, by using Lemma 2.1, ¢;(Q) = 1 holds if and only if 0 <nf +n3 +n3 =0 (mod 6).

Corollary 2.1. The basic hexagon: Q = {P|P = (t1,t2,t3} t1 +t2+1t3 = 0,-1 <
t1,t2,t3 < 1} is a minimum periodic domain for all functions g;(P).

We will denote the set of all continuous function f(P) with periodic domain 2 by Cq.

Theorem 2.2. (Normalization of integral on Q) For |j| = |j1| + |j2| + |73l

/ng(P)dP = Ca0j1.0
where c, — area of the basic hexagon €.

Proof. The results is trivial for j = (0,0, 0).In general case, we may decompose the integral
into three terms, each integration domain is a parallelogram

I = /ng(P)dP =14 1 4 1
where
1 0
= / ¢ (2=int g / i3 Us=in)ts g3,
J o »
0

1 0 1
Ij[?] — / ei%’r(js—jz)% dt3/ ei%’r(jl—jz)tl dtl, Ij[3] _ / ei%’r(h —j3)t1 dt2/ eizT"(jz—js)tz dt2
0 -1 0

-1

First we assume jz — jo # 0, then jo —j; # 0 and j; — j3 # 0 hold simultaneously by Lemma

21, _ _
i (6213?' (j2=j1) _ 1) (62’{ (F1—7s) — 1)
! 2L (jy = 1) 20 — )
2 _ (€T 1) (X)) gy (e ) 1) (5 s ) 1)
! UL (js —ja)  EE(G2—jr) T % (j1 — Js) (s — o)
Since 5" (2=71) = %7 (s —32) = 5" (71=Js) hence I; = I][-l] + 11[2] + I][~3] =0.

If ji = —2j> = —2j3 # 0, for an example, then ¢*5* (2 =) = 72 = 1 1M = 12 = [P = 0,
the integral I; still vanishes. Thus, the proof is completed.

Corollary 2.2.
< 9j, gk >n: 095\j—k\,0 (24)

where inner product is defined as

< g >a= /Q F(P)g(P)dp



56 J. SUN

Theorem 2.3. (Completeness and orthogonality) For all integer triple j = (41, j2, j3)
g](P) = ei%(jlt1+j2t2+j3t3)
with t; +t2 +t3 = 0 forms an orthogonal basis system, in the sense (2.4), in the space Cq(R?).

The orthogonality has been proved from (2.4), the completeness can be proved by positive
operator theory in next section via partial sum of the Fourier series or directly by well-known
Stone theorem, e.g. see [1]. Thus, we may define so-called the best approximation as follows

Definition 2.3.

2n
Eulfl = min  max|f(P)— Y a;;(P)| (2.5)
e [41=0

3. Bivariate Fourier series and error estimates

Definition 3.1. For a function f(P) € L(Q), the related generalized Fourier series (GFS)
are defined as

FP) ~ S 0P = - < fg > (31)
li[=0 “
where |j| = [j1] + |j2| + |j3]-
Following lemmas are useful later.
Lemma 3.1. Ift; +ts +t3 =0, then
sin 2t1 + sin 2ty + sin 2t3 = —4sint; sints sin t3

and
cos 2t1 + cos 2ty + cos 2t3 = 4 costy costy costz — 1

Lemma 3.2. E‘zﬂzo g;(P) =

. +1)m(t3— . +1)m(to— . +1)m(t1— . w(tsa— . 7(ta— . w(t1—

i (TL ) (t3 t2) i (TL ) (tz t1) i (TL ) (tl t3) i n (t3 t2) i n (tz tl) i n (tl t3)
. m(ts—t . m(ta—t .om(ti—t
sin (ts—t2) sin ( 23 1) sin (t1—t3)

Proof. Decomposing the sum into several parts, we have

> gi(P) =1+ i >+ i > o+ i > }gi(P) (3.2)

[71=0 Je=—nj1=0 jz=—nj2=0 ji=—nj3=0
where

L _ gnlta—ts) D (tts) _ q

1 n n
. . 1
— } : ta—t 2 : ti—t3) _
E , § : g;(P) = whitemte) Whh=te) = wlta—ts) — 1 wlti—ts) — 1

Jje=—nj1=0 Jjo=—n j1=0

wnTH(t:;_tz) sin %(tg - t3) w3 (t1=t3) gipy %(tl - t3)
- )

sin %(tg — t3) sin %(tl — t3)
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—n(tz—t1) w(n%»l)(tzftl) 1

—1 n
1—w -
Z Z g](P) = w(t;;—tl) -1 w(t2_t1) -1 ’

Jjz=—n j2=0

wfn(tlftz) w(n%»l)(tgftz) _ 1

Z Z g] w(tl ta) _ 1 wlts—t2) — 1

Jj1=—n jz=0

By using Lemma 3.1 a straightforward computation leads to Lemma 3.2.
Differing with univariate case, there are several ways to define partial sum for the above
bivariate Fourier series.

Definition 3.2. I-st and 2-nd order partial sum of Fourier series (3.1) can be defined by

2n 1 n—1
Sn=Y_ v gj(P), SH= - > S (3.3)
|7]1=0 m=0
or
n n _ 1 n—1 B
Z gj(P), SP= - > S (3.4)
1=— ]2: m=0
respectively.

Similar with 1-D case, based on Lemma 3.1 and 3.2 a straightforward computation leads
these partial sum to be rewritten in terms of integration form.

Theorem 3.1.
_ 1 / F(P— Q)Ga(Q)dQ, SPIfI(P) = L / fP-QGHQdQ  (35)
o JQ Cq JQ
and
_ 1 / F(P = Q)Gn(Q)dQ, SPIfI(P) = — / FP-QEPQdQ  (36)
o JQ cn Q

where G (P) =

(n+1)7r(t1—t3) n7r(t3—t2)
3 3

sin 2%

sin (n+1)”3(t3_t2) sin (n+1)”3(t2_t1) sin —sin sin

sin TU8t2) gip T2 h) iy Tl t)
(3.7)
GE(P) = 1sin B (ts — t2) sin F (o — t1) sin (8, — t3) (3.8)

n sin Z(t3 —t2) sin T (t2 — t1) sin Z(t; — t3)
and
_ sin PEDT (1 — 1) sin PEDT (1, 1)
Gn(P) = , (3.9)
sin 5 (t3 — t2) sin (t3 — t1)

_ 1 = (t3 — 1 = (1 t

Gil(py = L s mh) sin (s mh)y (3.10)

n-sin (t3 —tz) sin% (t3—t1)

Now based on above formulas of partial sum, as an application, we turn to study convergence
of bivariate Fourier series. First, we point that

Theorem 3.2. If f(P) € Cq(R?), then its second order partial sum (:E?] [f] converges to f
itself uniformly.
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Proof. Note as a linear operator, G*Ef lis positive. By using well-known positive operator
theory”, it is sufficient and easy to check the result is true for the following nine functions:

2 2 2 2
f(pP)= 1,(:05%(753 — t3),sin %(tg — t3),c08 %(tg - tl),sing(tg —t1),

2 2 2 2
cos ?ﬂ-(tl —t9), sin g(tl —t3),C08 ?ﬁ(h + to — 2t3),sin Eﬂ-(tl + to — 2t3).

Theorem 3.3. For f(P) € Cq(R?), if its all coefficients y; of the Generalized Fourier
series erlzo v;9;(P) are zeros, the function f(P) must equal to zero itself.
Thus we have also proved the completeness theorem in last subsection. Moreover, we get

Theorem 3.4. If f(P) € C4,, then its generalized Fourier series (3.1) converges uniformly.

Finally, we list some results on error estimate of finite bivariate Fourier series. These are
natural extensions of the univariate case.

Theorem 3.5. If a bounded function |f(P)| < M is periodic over the basic domain Q, then
there is an upper estimation of its finite Fourier series

2n n n
1Sul =1 > %g;(P) < CiM(nn)®, [Sul =1 D> > 7g;(P)| < CoM(lnn)*  (3.11)
|7]=0 ji=—nja=-n

where C1 and Cs are constants.

Proof: We only give the proof of the second part. In fact, from (3.6) and (3.9),
5ul < OM [ 1G(@1dQ < Cabt ()
Q
the right inequality is caused by using the following lemma:

Lemma 3.3.

|Si1’1 %(tg —t2)| |Si1’1 %(tg —t1)|

9} sin %(tg — t2) sin %(tg — tl)

dP < C(Inn)?. (3.12)

Furthermore, similar with univariate case, based on integration by parts we have following
error estimations. The detailed proof here is omitted.

Theorem 3.6. Let f € CZF and |f*®)| < My, then following two error estimates hold
1Su[f] = f| < CiMi(lnn)?(n=%)2, |S,[f] = f| < CoMyi(Inn)?(n=")2. (3.13)
where C1 and Cs are two constants.

Note that the related best approximation estimation in (2.5)
Ealf] < CMy(n™)?. (3.14)

The above facts indicate that for the same smooth functions, in rough speaking, the generalized
Fourier series (GFS) has the same approximation rate to the best uniform approximation, except
the factor (Inn)2.

4. Generalized Sine and Cosine in 3-direction mesh

1

5 (e + e7%), now we define

As natural extension of 1-D sinz = (e — e~ %) and cosz =
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Definition 4.1. T'Sin;(P) :=
1
27 Wir.dzds (P) + Giz.gain (P) + Gjajn o (F) = 91 —ja, 32 (P)

~9—jo,—j1,—is(P) = 9—js,—jo,~ir (P)} (4.1)
Definition 4.2. TCos;(P) :=

1
5195125 (P) + 9250, (P) + Gjssgn o (P) + 91, —jo,—3 (P)

+9—ja—j1,—is (P) + 9—ja,—ja,—jn (P)} (4.2)
Based on two facts 71 + j2 + j3 = 0 and t; + t3 + t3 = 0, there are several equivalent forms
for functions T'Sin and T'Cos. For instance,
TS’Z'n]. (P) = ei5 (J2—ja)(t2—ta) gipy jimty + ei5 (J2—ia)(ta—t1) gipy jimts + et 2—Ja)(t1i—t2) ipy jimts.
(4.3)

TCOS]' (P) = et 2—J3) (t2—t3) g jimty + et 2—J3)(ta—t1) g jimts + et 2—ia)(t1—t2) (g jimts.
(4.4)

Theorem 4.1. Tsin function vanishes on all integer net lines:
TSin;(P)=0, if t =integer, 1=1,2, or 3
Theorem 4.2. Let I’ be a direction connecting the vertexr and the middle-point of corre-
sponding side, then for all integer net lines
0T Cos;(P)
or
Note that sin zm = 0 and d% coszm = 0 if z = integer. Hence, it is reasonable to call T'sin
and T'cos as generalized sine and cosine functions in the 3-direction partition, respectively.

Let Q7 be a sub-triangle domain in the 3-direction partition, we consider the following
eigenvalue problem

=0, if ¢t =integer, 1=1,2, or 3.

0 _9n_ (9 _ 0, (0 _ 0,
Oty Ots Oty Ot Ots Oty

with zero Dirichlet boundary ul,, = 0 or Neumann condition gy sap =0

Lu = \u, L=—( (4.5)

By the way, we point that £ = —§h2A in equilateral triangle case.
It is easy to verify Tsin and Tcos functions form eigen-functions of the related zero Dirichlet
and Neumann boundary problems, respectively.The corresponding eigenvalues equal to

27 . . . . . .
Aj = (?)2((31 —j2)? + (G2 = 43)* + (43 — 1)) (4.6)
Below we give two examples to show the above generalized sine and cosine function can be
applied in spectral methods.
Example 1: (Dirichlet boundary) Suppose the true solution is wy(t1,ts,t3) = titats,

the related approximation spectral solution becomes
A
Ul N = ———{sin 2j7t; + sin 27ty + sin 257t
1,N ];1 2]3,”3 { JTy J T2 J 3}
Taking N = 4,8,16, 32,64, the maximum truncation error between the true solution and the
approximated solution is listed in Table 1.
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Table 4.1: Test 1

N 4 8 16 32 64
[ — unlloo | 5.83¢ — 4 | 1.65¢ — 4 | 3.66¢ — 5 | 9.55¢ — 6 | 2.08¢ — 6
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Example 2:( Neumann boundary) For a given true solution us(t1,ta,t3) = t3(1—#1)% +
t3(1 — t2)? + t2(1 — t3)? the related approximation spectral solution is

1 N

0~ — =7 lcos2jmty + cos 2jmty + cos 2jmtsz}
Jj=1

U2, N =

Taking N = 4,8,16, 32,64, the maximum truncation error between the true solution and the
approximated solution is listed in Table 2.

Table 4.2: Test 2

N 4 8 16 32 64
Tu— unlloo | 3.30e —4 | 4.98¢ — 5 | 6.84e — 6 | 8.97e — 7 | 1.15e — 7

The numerical tests in Table 1 and Table 2 match analysis results in Theorem 3.6.

5. 3-D Fourier series over parallel hexagonal prism and
dodecahedron partitions

In 3-D case we first consider a mixing partition: a partial tensor product of 1-direction tg
and 3-direction mesh (¢1,%2,t3). The corresponding 3-D basic domain is a parallel hexagon
prism

Qp = {P|P = (to, t1,t2,t3) t1+1ta+1t3=0,—1<tg,t1,t2,t3 <1} (5.1)
And the related basic function system becomes

iZE (j1t1+iata+its)

gi(P)=¢ """ xe (5.2)
where 4-d index
J = (jo,J1, j2,J3) with J1+j2+ 43 =0.

In more general 3-D case, we need to construct 4-direction partition as follows. Given a set
of three linear independent vectors ey, e, e3, let e, = —e; — e5 — e3, we may obtain six normals
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of six planes among the four directions as follows

np =ez Xez;, Ng =e€3 Xe; Nng=e; Xe,

Ng=e3Xe4="nN1 —Na;N5 =€ X €4 =Ny —N3;Ng = €3 X €4 = N3 — Ny} (5.3)
For any 3-D point P, we set up a 6-D coordinate system
t1 = (Pyny);ta = (Pyng);ts = (Pyng);ta = (Pyona);ts = (Pyns); te = (P, ng) (5.4)
With ty = t; — tosts = to — ta:te = t3 — t1.

-2

(Fig. A-1: Basic Dodecahedron Domain)

As our basic domain, we take following parallel dodecahedron, see Fig. A1-A2, which
contains 14 vertex, 12 parallelogram and 24 edges.

Qd = {P|P = (t17t27t37t47t57t6)7 -1 S tl/ S ]-7 (]- S v S 6)7

t4:t1_t2;t5:t2_t3;t6:tg_tl}. (55)

(Fig. A-2: Dodecahedron Domain) (Fig. B: Parallel Dodecahedron Partition)

Thus we have formed a dodecahedron partition in Fig. B. The related basic function system
is defined as

(5.6)

where
J=1J1J2,703:Ja,J5, 6}, with js = ji — jo3j5 = j2 — J35J6 = Js — J1,
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and
6

§-P = juty = @1 — j2 — ja)t1 + (342 — js — 1)tz + (355 — ju — jo)ts.

v=1

Lemma 5.1. For non zero index j

/ 4;(P)dP = 0. (5.7)
Qq

To prove Lemma 5.1, as done in (3.2), now we decompose the integral into four terms, each
integration domain is a parallelepiped.

Most results in bivariate case can be moved in this 3-D case, such as periodicity, orthogo-
nality and completeness of the basic function system. We list a basic theorem here. Proofs are
omitted for saving pages.

Theorem 5.1. (Basic theorem) For all integer triple j = (j1,j2,J3), and
J1 =31 = Ja = Ja,jo = —j1 + 3j2 — Js, Js = —j1 — j2 + 3J3
the function family
gj(P) — ei§(31t1+32t2+33t3) (5.8)

forms an orthogonal basis system in the space Cq(R?) such that
< Gjs G >q,1= /Q 9; (P)ge(P)dPdP = 0 = ¢, 6} |,0 (5.9)
d

where ¢, is volume of the basic dodecahedron, defined in (5.5).

Just as in 2-D case, the basic function (5.2) and (5.6) can be applied as 3-D shape functions
for finite element methods.

Finally, it is worth to point that the above results in 3-D can be entended to general high
dimension without essential difficnlty.

Acknowledgement. Thanks to Li Huiyuan for useful discussion and Yao Jifeng for making
figures.
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