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Abstract

In this paper we are going to discuss the difference schemes with intrinsic parallelism
for the boundary value problem of the two dimensional semilinear parabolic systems. The
unconditional stability of the general finite difference schemes with intrinsic parallelism
is justified in the sense of the continuous dependence of the discrete vector solution of
the difference schemes on the discrete data of the original problems in the discrete W2(2’1)
norms. Then the uniqueness of the discrete vector solution of this difference scheme follows
as the consequence of the stability.
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1. Introduction

1. In this paper we consider the boundary value problems for the two dimensional semilinear

parabolic systems of second order of the form
ur = A, y, 1) (Usa + uyy) + B(@,y,t,u)us + C(2,y,t,u)uy + f(z,y,t,u) (1)

where (z,y) € @ = (0,11) x (0,12), t € (0,T], and u(z,y,t) = (u1(z,y,t),u2(x,y,t), -, um(z,
y,t)) is a m—dimensional vector unknown function (m > 1); A(z,y,t), B(z,y,t,u) and C (z, v,
t, u) are given m X m matrix functions, and f(zx,y,t,u) is a m—dimensional vector function and
Uy = %, Uy = Z_Z’ Upy = %, Uyy = giy‘; and u; = % are the corresponding m—dimensional
vector derivatives of the m—dimensional unknown vector function u(z,y, t).

In the domain Q7 = Q x [0, T] the homogeneous boundary conditions and the initial condi-
tion for the system (1) are

u(z,y,t) =0, (r,y) €90Q,0<t<T, (2)
u(z,y,0) = p(z,y), (z,y) € Q. (3)

In [1]-]9] the general finite difference schemes with intrinsic parallelism for the linear and
quasilinear parabolic problems have been discussed. For the one-dimensional quasilinear parabolic
systems, in [8] some general difference schemes with intrinsic parallelism are constructed and
proved to be unconditional stable and convergent. For the two dimensional quasilinear parabolic
systems, in [9] some fundamental behaviors of general finite difference schemes with intrinsic
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parallelism are studied, i.e., the existence of the discrete vector solutions of the nonlinear dif-
ference system with intrinsic parallelism is proved, and the convergence of the discrete vector
solutions of the certain difference schemes with intrinsic parallelism to the unique generalized
solution of the original quasilinear parabolic problem is proved.

2. Difference Schemes with Intrinsic Parallelism

2. Divide the domain Qr = {0 < z < 11,0 <y < 15,0 < ¢ < T} into small grids by the
parallel planesz = 2; (1 =0,1,---,I),y =y; (j =0,1,---,J)and t =¢" (n =0,1,---,N) with
x; = thy, y; = jhe and t" = nr1, where Thy =, Jhy =l and N7 =T, 1,.J and N are integers
and hq, ho and 7 are the steplengths of grids. Denote h* = max(hi, ha) = h, h. = min(hq, hs).
Denote va = {vjli = 0,1,---,I;j = 0,1,---,J;n = 0,1,---, N} the m—dimensional discrete
vector function deﬁned on the discrete rectangular domain Qa = {(z;,y;,t")|i =0,1,---,1;j =
0,1,---,J;n=0,1,---, N} of the grid points.

Let us now construct the general difference schemes with intrinsic parallelism for the bound-
ary value problem (1), (2) and (3):
ot gy

g . *
1) - 1] :A%+1 A,U;Lj+1 Bn+1éalc ZJrl CnJrl(S; ZJrl fn+1 (l)A

(i:1,2,"',I—1;j:1,2,"',J—1;”:0,1,"',N—1),

where
*
n+l _¢2 n+1 2 n+1
A —(SI ij +6y ij
"+>‘ n+1 ntug; n+A% n+1 n+ag;
Vip1,; — 20 +U . Vijr1 — 20 5o
= 2 2 )
hi h3
1 1
An+ A(xl)yjathr )7
n+1l _ ~ .. an+1l 50, n+l
Bij —B(l'l,y],t 76Uij )7
n+l _ .. an+1l 20, nt1
Cij —C(l‘l,y],t 76 Uij ))
+1 _ 1 50, n+1
fn f(xiayjatn—‘r 76 U?j ) (4)
In this difference scheme, the expressions §°v!;, 6011%“, §Ovt ) and 8l Z’JH, oiv ZH can be
taken in the following manner. We can take
S0, n+1 _ n n+1 n+1 n+1
§ Uij - >‘ alz] z+1] +:u’zga2z] i—1j +>‘2] 31] ij+1
n+1
+,uzga4zg z] 1 +CK5” +alzg i+1j
n n
+; v+ Qv 05+ A0 (5)

such that the sum of coefficients equals to unit, that is
)\n alzg + :u’zja%] + Al]a:ﬁj + :u’zja4zj + a5lj + alz] + 042” + 043” + 044” + 045” =1
and the sum of the absolute value of these coefficients is uniformly bounded by any given
constant with respect to the indices 7, j and n. The coefficients are dependent on the indices i, j
and n, this means they are different for different layers and different grid points. This shows
that the choice of the coefficients has great degree of freedom.
For the expressions 6Lo%™" and 610%™, we can take for example as

z zg y z]
n+)\ n+1 n+1 n+Uz]
= VT = U
61 n+1 _ m l+ J ) + d J =17
- 13 21,
x z] ij hy ij R

31]6 ’U +d4136 Uz 15
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where
n n n n o _
diy; +dy; +d3; +dy; =1

and the sum of absolute values of the coefficients is uniformly bounded by any given constant
with respect to the indices 7,5 and n.

By the similar principal we have the expression for Sovfjﬂ, 501;?]-“ and 5;1);‘].“ with an
analogous behaviors.
The finite difference boundary conditions are of the form
Ugj = U?j =vjp = vy =0, (2)a

(ZZO)]-::I)] :0)]—7"'7J;n:0)17"'7N)-
The finite difference initial condition is of the form

) = i 2
(t=0,1,---,I;7=0,1,---,J),

where ¢;; = ¢(mi;yj) (i=0,1,---,1;j =0,1,---,.J).

3. Suppose that the following conditions are satisfied.

(1) A(z,y,t), B(z,y,t,u), C(z,y,t,u)and f(x,y,t,u) are continuous functions with respect
to (z,y,t) € Qr and continuously differentiable with respect to u € R™; and there are con-
stants Ag > 0, By > 0,Cp > 0 and C > 0 such that |[A(z,y,t)| < Ao, |B(z,y,t,u)| <
By, |C(z,y,t,u)| < Co, and |f(z,y,t,u)| < |f(z,y,t,0)| + Clu|. And there is a constant C such
that |By| + |Cu| + |fu| < C for all uy,us € R™, and all (z,y,t) € Qr.

(IT) There is a constant oo > 0, such that, for any vector £ € R™, and for (z,y,t) € Qr,

(€ A(z,y,8)€) > ool¢[*.
(IIT) The initial value m—dimensional vector function op(z,y) € C1(Q) and ¢(z,y) = 0 for
(x,y) € 0.
(IV) Suppose that h*/h. is uniformly bounded as h; and hs tend to zero. Let A =

T (h% + th) Agsume 7 is small such that AT < 7y for a positive constant 79 depending only

on the known data.

4. In the following we shall use the symbols and notations in [8]. The following estimates
and existence results are proved in [9].

Lemma 1. Suppose that the conditions (I)—(IV) are fulfilled. Then the general finite
difference scheme (1)a—(3)a with intrinsic parallelism corresponding to the original problem
(1), (2) and (3) has at least one discrete solution va, and there hold

n2
<K
max R < K, @
, , N-1 N NoLpontt _ npf2
Cmax (I0R15 +I0RIE) + S0 A et 1 Y | r<K, ()
n=0L n=0 2 n=0 T 2

and

N

N—1 )
(Z ||sz+1||2¢) <K ®
n=0

3. Stability and Uniqueness

5. Now we prove the stability and uniqueness of the solution for the difference schemes
(1)a—(3)a with intrinsic parallelism.

Let the m x m coefficient matrix functions A(x,y,t), B(z,y,t,u), C(z,y,t,u) and the m—
dimensional vector function f(:r,y,t,u) are different from A(z,y,t), B(z,y,t,u), C(z,y,t,u)
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and f(z,y, t,u) only by some errors respectively. And also the m—dimensional vector function
P(z,y) is different from ¢(x,y) by some errors. These mentioned matrix functions and vector
functions also satisfy the similar conditions as (I)—(III).

Suppose that the discrete vector function o = {o%|i = 0,1,---,I;j = 0,1,---,J;n =
0,1,---, N} satisfies the finite difference system
ot — o
1] - An+1 A ~n+1 Bn+16;~l7;+1 Cn—i—la; lr;—i—l fn+1 (9)

(i:1,2,---,I—1;j:1,2,---,J—1;77,:0,1,-",N—1)

and

to; = 075 = 0, Ujp =05 =0, (10)

(ZZO,].,,I,]ZO,].,,J,HZO,].,,N)
U?J = Qij (11)

(120717717]:0717711)7

where
An+1 A(xzyyjatn—i_l):
FITY = flas, gy, t"F, 8005, (12)

and BZH and CN’Z.H are defined similarly.

The finite difference system satisfied by the difference vector function wa = va — Ua =
{wy = o —o5li = 0,1,---,I;j = 0,1,---,J;n = 0,1,--+,N} of the two discrete vector
solutlons vA and UA is of the form

n+1

u An+1 Awn-i-l SZ+1+R?].+1, (13)
where !
Srtt = B”H(Sl n+1 é;gﬂglwqﬂ + B(o, ﬁ)nflgow?jﬂ
+C (v, v)nfrlgowlnﬂrl + f(v, v)n+150 n+1,
REF =A@ Aopt + Bl Sl
O S+ P
(i=1,2,---.1-1;j=1,2,---,J-1;n=0,1,--- N — 1),
and
A[f;]?j‘H - 4 (mi,yj,t"H) _i (l'i,yj,tn+1),
F[6]23‘+1 = [ (wi,yy, t" 0005 = F (@i, ", 0000
Blo a5 = (B ok,
O, )1+ = (G5,
Flo, )5 = (F)iH,
where

(Bu)i; )l = / By (zs,y;,t"*", 56% "'H +(1 —3)506?]-+1)ds,

@“l/hm%ﬂ“wwl(ﬂWWW&

and there is similar expression for (C,);*!, B [U]Z+1 and C [o ]"+1.
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6. Making the scalar product of the vector A ’u}?j+1h1h27' and the vector equation (13) and

then summing up the resulting products for i =1,2,---, I —1 and j =1,2,---,J

— 1, then we
have

I-1J—-

[u

Ing

*
1 1
(A w;‘j+ ,w?j+ — wf]) hihs

i=1 j=1

—1J-1
* *
1 1 1
= E:(Aw;‘j+ JATF Awg+)h1h2
1 j=1
1J-1

I—
Y03 (A w5+ R ) huha.

i=1 j=1

~

.
Il

By the same argument as that in section 3 of [9] we have the following inequality

182w I3 + 18, WA 13 = leswhI3 — [18,wX 13

I-1J-1
* *
+2r % (A wpit AT A wg.ﬂ) hihy
i=1 j=1
I—-1J-1
< 2T ( n+1’ S%Jrl + R%Jrl) h1h2 ;
i=1 j=1

which yields

2
16,513 + 10,05 13 = 8w 3 — 18,015 + oor | & w3 |
I 1J-1

Z > (1S + [R5 haho. (14)
i=1 j=1
By the assumption (I) and Lemma 3 in [9], we have
I-1J-1
3585 hyhy
i=1 j=1
with —wi} 2
<O (I6wx I3 + 118,wx™ 13 + 18w I3 + 16,wR |13 + AT || =2——2 )

Hwx ™ 2 (102533 + 18,5313 + 1002115 + 116,5R13)) ,

I-1J-1

2 *
> 3 IR haho SC(HA[ﬁ]Z“H Aogt |+ |BE0 || aioesx i+ noezng)
i=1 j=1 o

e L as,ost iz + s, + o)

which C' is a constant independent of the steplengthes hy, hs and 7; and A = 7 (_hlz + _hlz )
1 2
Then, by substituting the above inequalities into (14), we obtain

2
[0 + 10,05 13 — w1 — 18,013 + or | & wi |

< Ot {l18aw ™3 + 10, wxT I3 + l6swillS + 16, wk I3

n+1 n
+AT Ya — WA

Hlwx 31008 113 + 18,534 13 + 10:0R 13 + 118,93 13))
2
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G W R G R RER A e
+ oot do iz + 6o + | Pt} (15)

Denote by RH those terms in the { } at the right hand of the above inequality.
7. From (13) it follows

2 * 2 __
AR < o (2 w4 ).
5 2

Take 7 > 0 small such that CA7 < =. Then

2 * 2 _
T|—2—=| <Cr (HA wZHH + RH1> (16)
) 2

2

—WA

n+1
where RH is different from RH only without the term At H —a__al
2
8. Substituting (16) into (15) and letting 7 small such that CAT < 22 we have

182w 13 + 18, wx™ 13 — ll6:will3 — l10,wk I3

3 __
+207 A "+1H2 < CrRH;. (17)

Multiplying (16) by € > 0 and combining the resulting product with (17), and then taking
Ce < % we obtain

18cwx™ 113 + 118, wx™ |12 = 10zw 12 — 6, wR I3

n+1 n 2
W — Wp

—7' HA witt H +er < CTRH,. (18)

T 2

From the estimate (7) and the Lemma 2 in [9], we obtain, for 0 <n < N —1

n 2

k41 _
1w 13 + 18,0k 13 + Z |A wk+1H T+EZ

WA wk

T

(ZIIw’”“II2 T+ro>, (19)

where we denote

~1n+1]]2
ro = 5. I+ 15,18 + _max [ ABIE

N-1
. 2 - 2 . 2
+ 3 (1@ [, + lewat I, + |1 Feix™ 1) =
By Lemma 3 in [9], for any €; > 0 there holds
C
WX % < erllAwxH3 + a(l|5zw”+lll2 +[18,wx"]3)

_ )

n+1 _ wg

IN

l@éw“ww%AH

C n n
10wk B + o, )
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By taking £; small such that Ce; < min (@, %), we get

4
2
n 2 n k+1 k
. € w —w
1wkt I3 + 16,0k I3 + 22 S| A wht | 74 ST [ PA—2A
2
k= =0

2 T
0 k

2
<C (Z(Ilézw’&ll% + [l6,wkl5)T + 7“0) : (20)
k=0

Then, by Lemma 2 (ii) in [9] we obtain, for n =0,1,--- N — 1,
n . 2
18w 13 + 18, 13 + D0 ||A wh | 7
k=0

2
7 < Cry. (21)
2

n

>

k=0

k+1 k
Ya ~WA

T

This shows that the discrete solution va of the finite difference system (1)ao—(3)a in the

discrete functional space W2(2’1)(QA) is continuously dependent on the discrete initial vector
function o(z) in the discrete functional space of the form H', and the coefficient matrixes
A(z,y,t), B(z,y,t,u), C(z,y,t,u) and the nonlinear vector function f(z,y,t,u) in definite
sense respectively. We have proved the following stability theorem.

Theorem. Under the assumptions (I)—(IV), the following estimates hold for the difference
vector function wa = va—0a = {w}; =v;—v5li=0,1,---,1;j=0,1,---, J;n =0,1,---, N},

~ 2 ~ 2

lva = Bally e ., < K {Ilea = @alliy

2
Az, yi, T — Az, ys, t"H ‘
1gigl—1,1gjngl%}£1,ogn§N—1 ‘ (i, 93, ) (@i, yj, )

I-1J-1N-1

~ 2
+ZZZ sup ‘B(miayjatn—‘rlﬂu)_B(wi’yjatn+17u)‘ hthT

I-1J-1N-1

~ 2
+ZZZ sup ‘C(xiayjatn—i_lvu)_C(xiayjatn+17u)‘ h1h2T

i=1 j=1 n=0 “ER™

I-1J-1N-1

~ 2
+ZZZ sup ‘f(miayjatn+17u)_f(wiayjatn+17u)‘ hthT )

where K is a constant independent of steplengths hi, he and 7; and

lealli = llealls + da0all3 + 16,0all3,
A

and
N-1 o 9
2 — n 12 n+1
”wAHWz(z‘l)(QA) = 0N il + z;) HA A Hz ’
n—

N-1 2
>

n=0

n+1 n
w —w

A A T
2

T

Corollary. Suppose that the conditions of the Theorem above are satisfied. Then the
discrete solution of the difference scheme (1)a—(3)a is unique.
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