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Abstract

We discuss AOR type iterative methods for solving non-Hermitian linear systems based
on Hermitian splitting and skew-Hermitian splitting. Convergence domains of iterative
matrices are given and optimal parameters are investigated for skew-Hermitian splitting.
Numerical examples are presented to compare the effectiveness of the iterative methods
in different points in the domain. In addition, a model problem of three-dimensional
convection-diffusion equation is used to illustrated the application of our results.
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1. Introduction

Given a nonsingular system of linear equations

Ax = b, A ∈ C
n×n, b ∈ C

n, (1.1)

where the coefficient matrix A is non-Hermitian, we assume that D = diag(A) is nonsingular.
Since both splittings A = M − N and D−1A = D−1M − D−1N lead to the same iteration
operator, we may assume, without loss of generality, that

A = I − B, where diag(B) = 0. (1.2)

It is convenient to regard any splitting M − N of A = I − B as having the identity incor-
porated into M, and we thus write

M = I − MB, and N = B − MB. (1.3)

Then, with AOR type iteration matrix [4]

Tω,γ = (I − γMB)−1{(1 − ω)I + (ω − γ)MB + ωN}, (1.4)

and cω,γ = ω(I − γMB)−1b, we have the associated AOR type iterative method [1, 3]

x(i+1) = Tω,γx(i) + cω,γ i = 1, 2, . . . .
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Letting

F =
B + B∗

2
and G =

B − B∗

2

denote, respectively, the Hermitian and skew-Hermitian parts of B, then the Hermitian splitting
of A is defined by [4]

A = Mh − Nh with Mh = I − F and Nh = G (1.5)

where we assume that Mh is invertible, which is, for instance, guaranteed if the Hermitian part
Mh of A is positive definite. The associated skew-Hermitian splitting of A is given by [4]

A = M s − Ns with M s = I − G and Ns = F. (1.6)

In this way, the specific splitting defined in (1.5) and (1.6) generates the following two AOR
type iterative methods

x(m) = T h
ω,γx(m−1) + ch

ω,γ (m = 1, 2, · · ·), (1.7)

where
T h

ω,γ = (I − γF )−1{(1 − ω)I + (ω − γ)F + ωG}, ch
ω,γ = ω(I − γF )−1b,

and

x(m) = T s
ω,γx(m−1) + cs

ω,γ (m = 1, 2, · · ·), (1.8)

where
T s

ω,γ = (I − γG)−1{(1 − ω)I + (ω − γ)G + ωF}, cs
ω,γ = ω(I − γG)−1b,

Each of these methods depends on two parameters γ and ω.
The last fourty years have produced many methods for solving linear systems. Much is

known in the literature [7, 8] about basic ones. AOR type method which was proposed by
A Hadjidimos in [3] in 1978 is a accelerated overrelaxation method. Using Hermitian and
skew-Hermitian matrix splitting and combining with krylov subspace iterative methods, many
methods have been developed [2, 5]. In [1] Bai has also given the convergence domain of the
matrix multisplitting relaxation methods. Based on the technique in [4], further discuss of the
convergence of AOR type methods will be given in our paper.

The organization of this paper is as follows. In section 2, we study the convergence properties
of AOR type iterative methods for Hermitian splitting and skew-Hermitian splitting and give
the near optimal parameters for skew-Hermitian splitting. In section 3, the three-dimensional
convection-diffusion equation is employed as a model problem to illustrate the application of
our results. Numerical experiments are presented in section 4 to compare the effectiveness of
our methods in different points of convergence domains.

2. Convergence of AOR type Iterative Methods

Lemma 2.1. If I−γMB is nonsingular and if τ is a eigenvalue of Tω,γ of (1.4) with eigenvector
v, normalized by v∗v = 1, then

τ =
1 − ω + (ω − γ)m + ωη

1 − γm
, where η = v∗Nv and m = v∗MBv. (2.1)
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Proof. Using (1.4), we obtain from Tω,γv = τv that {(1 − ω)I + (ω − γ)MB + ωN}v =
τ(I − γMB)v, so that v∗{(1 − ω)I + (ω − γ)MB + ωN}v = τv∗(I − γMB)v. Thus, with the
definitions of η and m, 1 − ω + (ω − γ)m + ωη = τ(1 − γm), which gives (2.1).

The general complex numbers m and η appearing in (2.1) are all elements of the field of
values for the matrices M and N, respectively. It is, of course, well-known (see, e.g., Stoer-
Bulirsch [6]) that the field of values of a matrix Q is the convex hull of the eigenvalues of Q
when Q is a normal matrix. Because Hermitian and skew-Hermitian matrices are particular
normal matrices, the numbers m and η of (2.1) can be directly estimated in these special cases.
This is done below. We assume that the Hermitian part, namely, M = I − F, of A is positive
definite. If {fj}n

j=1 denotes the eigenvalues of F, with α = f1 ≤ f2 · · · ≤ fn = β, then as
diag(B) = 0 implies diag(F ) = 0, it follows that α ≤ 0 ≤ β, and since I − F is assumed to be
positive definite, then β < 1, i.e.,

α ≤ 0 ≤ β < 1, (2.2)

Now we can get the following results.

Theorem 2.1. If the Hermitian part A+A∗
2 of A is positive definite, then T h

ω,γ of (1.7) is
convergent for

{
1
α + (α−1)2+ρ2(G)

2α(α−1) ω < γ < 1
β + (β−1)2+ρ2(G)

2β(β−1) ω

0 < ω < 2(1−α)(1−β)
(1−α)(1−β)+ρ2(G)(1−α−β) .

where F �= 0

or{
0 < ω < 2

1+ρ2(G)

0 < γ < 1
β

where F = 0

(2.3)

Proof. Let τ be any eigenvalue of T h
ω,γ . It follows from (2.1) that

τ =
1 − ω + (ω − γ)m + iωη

1 − γm
, where iη = v∗Gv, m = v∗Fv. (2.4)

Since the eigenvalues {fj}n
j=1 of F lie in the interval [α, β], then η and m necessarily

satisfy

α ≤ m ≤ β and − ρ(G) ≤ η ≤ ρ(G). (2.5)

Let us assume that

0 < γ <
1
β

, or
1
α

< γ < 0,

then τ in (2.4) is defined, since, by (2.5), we have α ≤ m ≤ β. Now we have to show that there
exists an area such that for all possible values m, η and γ, ω with (γ, ω) in the area T h

ω,γ of
(1.7) is convergent.

The inequality |τ | < 1 is guaranteed if

[1 − γm + ω(m − 1)]2 + ω2η2 < (1 − γm)2,

which is equivalent to

f(m) + ω2η2 < 0.
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where
f(m) = 2ω(1 − γ)(m − 1) + (ω2 − 2γω)(m− 1)2.

It is easy to know that m1 = 1, m2 = ω−2
ω−2γ satisfy f(m) = 0. By analysing the geometric

properties of f(m) and combining with f(m) < 0 we investigate the convergent domains as
follows:

I If F �= 0, we have α �= 0 and β �= 0.

1. If 0 < ω < 2γ and 0 ≤ γ ≤ 1, it holds that m2 ≥ 1. The value of f(m) + ω2η2

becomes maximal, when η = ρ(G) and m = β. (See Figure 2.1(1)). Thus, the
inequality |τ | < 1 is guaranteed if f(β) + ω2ρ2(G) < 0, which is equivalent to

γ <
1
β

+
(β − 1)2 + ρ2(G)

2β(β − 1)
ω.

So τ satisfies |τ | < 1 for all (ω, γ) with

⎧⎪⎨
⎪⎩

0 < ω
2 < γ < 1

β + (β−1)2+ρ2(G)
2β(β−1) ω,

γ ≤ 1,

0 < ω < 2(1−β)
ρ2(G)+(1−β) ;

2. If 0 < ω < 2γ and γ > 1, it holds that m2 < 1. By β < 1 and f(m) < 0, see Figure
2.1(2), we have β < m2, which means

γ <
βω − ω + 2

2β
,

so that the value of f(m) + ω2η2 becomes maximal, when η = ρ(G) and m = β.
Thus, the inequality |τ | < 1 is guaranteed if f(β)+ω2ρ2(G) < 0, which is equivalent
to

γ <
1
β

+
(β − 1)2 + ρ2(G)

2β(β − 1)
ω.

So τ satisfies |τ | < 1 for all (ω, γ) with

{
max{ω

2 , 1} < γ < 1
β + (β−1)2+ρ2(G)

2β(β−1) ω,

0 < ω < 2(β−1)2

(β−1)2+ρ2(G)
;

3. If ω > 2γ and 0 ≤ γ < 1, it holds that m2 < 1. By β < 1 and f(m) < 0, see Figure
2.1(3), we have m2 < α, which means

γ >
αω − ω + 2

2α
.

Thus, the inequality |τ | < 1 is guaranteed if

{
f(α) + ω2ρ2(G) < 0,
f(β) + ω2ρ2(G) < 0,
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which is equivalent to

1
α

+
(α − 1)2 + ρ2(G)

2α(α − 1)
ω < γ <

1
β

+
(β − 1)2 + ρ2(G)

2β(β − 1)
ω.

So τ satisfies |τ | < 1 for all (ω, γ) with

⎧⎪⎨
⎪⎩

1
α + (α−1)2+ρ2(G)

2α(α−1) ω < γ < min{ 1
β + (β−1)2+ρ2(G)

2β(β−1) ω, ω
2 , 1},

γ ≥ 0,

0 < ω < min{ 2(1−α)
(1−α)+ρ2(G) ,

2(1−β)

(1−β)2+ρ2(G)
, 2(1−α)(1−β)

(1−α)(1−β)+ρ2(G)(1−α−β)};

4. If ω > 2γ and γ ≥ 1, it holds that m2 ≥ 1. With α < 0 it is easy to know that there
is no (ω, γ) for |τ | < 1. (See Figure 2.1(4)).

5. If ω = 2γ and 0 < γ < 1, it holds that f(m) = 4γ(1 − γ)(m − 1). By β < 1 and
f(m) < 0, the value of f(m) + ω2η2 becomes maximal, when m = β and η = ρ(G).
(See Figure 2.1(5)). Thus, the inequality is guaranteed if

0 <
ω

2
= γ <

1 − β

1 − β + ρ2(G)
;

6. If ω = 2γ and γ ≥ 1, it is easy to see that there is no (ω, γ) which satisfies |τ | < 1.
(See Figure 2.1(6)).

7. If ω > 0 and 1
α < γ < 0, it holds that m2 < 1. By β < 1 and f(m) < 0, we have

m2 < α which means γ > 1
α + α−1

2α ω. Thus, with analogous technique used in 3, and
see Figure 2.1(3), the inequality |τ | < 1 is guaranteed if

{
f(α) + ω2ρ2(G) < 0,
f(β) + ω2ρ2(G) < 0.

So, τ satisfies |τ | < 1 for all (ω, γ) with

{
1
α + (α−1)2+ρ2(G)

2α(α−1) ω < γ < min{ 1
β + (β−1)2+ρ2(G)

2β(β−1) ω, 0},
0 < ω < min{ 2(1−α)

(1−α)2+ρ2(G)
, 2(1−α)(1−β)

(1−α)(1−β)+ρ2(G)(1−α−β)};

8. With similar technique used above we can prove that there is no solution for |τ | < 1
if ω < 0 and γ > 0, or ω < 0 and γ < 0.

II If F = 0, we have α = 0 and β = 0, which means m ≡ 0. It is easy to obtain that τ
satisfies |τ | < 1 for all (ω, γ) with

0 < ω < 2
1+ρ2(G) .

With above results, (2.3) is proved.
We now consider skew-Hermitian splitting (1.6). As this splitting requires the solution of a

system with matrix I −G in each iteration step, we will assume that such systems can be easily
solved. From (1.8) and (2.1), for an arbitrary eigenvalue τ of T s

ω,γ with normalized eigenvector
v, we have

τ =
1 − ω + ωm + (ω − γ)ηi

1 − γηi
, where m = v∗Fv ∈ R and iη = v∗Gv (η ∈ R). (2.6)
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Figure 2.1(1)
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Figure 2.1(4)
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For γ and η, again (2.5) holds: α ≤ γ ≤ β < 1, −ρ(G) ≤ η ≤ ρ(G), where α and β satisfy
(2.2). In this case, we have the following theorem.

Theorem 2.2.
Let the Hermitian part A+A∗

2 = I −F of A be positive definite, and let the eigenvalues of F
satisfy α = f1 ≤ . . . ≤ fn = β. Then, T s

ω,γ is convergent for

{
0 < ω < 2

1−α
ω
2 < γ,

Figure 2.1(5)

1

↑f(m)

→
mO

Figure 2.1(6)

1

↑f(m)

→
mO
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The near optimal parameters ω and γ are

{
ω0 = 2

2−(β+α) ,
1

1−α ≤ γ ≤ 1
1−β ,

with

ρ(T s
ω,γ) =

β − α

2 − (β + α)
.

Proof. Noticing that τ in 2.6 is of the form

τ = 1 − ω

γ
+

s

1 + it
,

where s = ω
γ −ω+ωm and t = −γη. For ω > 0, it holds that sα ≤ s ≤ sβ where sα = ω

γ −ω+ωα
and sβ = ω

γ − ω + ωβ.

Now, s
1+it is on the circle with center s

2 and radius |s|
2 , then 1 − ω

γ + s
1+it is on the circle

with center s
2 + 1 − ω

γ and radius |s|
2 . It does not traverse the full boundary of this circle, but

only moves through those values for which 0 ≤ t2 ≤ γ2ρ2(G). All those circles are contained
in the two ‘extremal’ disks D1 and D2, having centers c1 and c2, with both disks touching at
(1 − ω

γ , 0) where

c1 =
ω
γ − ω + ωβ

2
+ 1 − ω

γ

c2 =
ω
γ − ω + ωα

2
+ 1 − ω

γ

where c2 < c1, and it is easy to know that T s
ω,γ is convergent for

{
0 < ω < 2

1−α ,
ω
2 < γ.

For 0 < ω
γ ≤ 1,

1. Increasing ω from 0 to 1
1−α with 0 < ω ≤ γ ≤ 1

1−α , which guarantee sβ ≥ 0 and sα ≥ 0,
means that the maximal distance 1 − ω + ωβ of D1 from the origin is decreased, while
1 − ω + ωα, the maximal distance of D2 from the origin, is decreased too, but smaller
than the former. (Figure 2.2(1));

2. Increasing ω from 0 to 1
1−α with 1

1−α < γ < 1
1−β , which guarantee sβ > 0, sα < 0, and

1 − ω + ωα > 0, 1 − ω + ωβ > 0, means that the maximal distance 1 − ω + ωβ of D1

from the origin is decreased, while the maximal distance of D2 from the origin, (Figure
2.2(2)) is 1 − ω

γ which is smaller than the former.

3. Increasing ω from 0 to 1
1−α with γ ≥ 1

1−β , which guarantee sβ < 0, sα < 0, 1 − ω +
ωα > 0 and 1 − ω + ωβ > 0, means that the maximal distance 1 − ω

γ of D1 and D2 gets
the minimal value β−α

1−α when ω = 1
1−α and γ = 1

1−β . (Figure 2.2(3));
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4. Increasing ω from 1
1−α to 2γ

1+γ−γα(< 1
1−β ) with 1

1−α < γ < 1
1−β , which guarantee 1 −

ω + ωα < 0, 1 − ω + ωβ > 0, sα < 0, sβ > 0 and sα

2 + 1 − ω
γ > 0, means that the

maximal distance 1−ω + ωβ of D1 from the origin is decreased, while OB1, the maximal
distance of D2 from the origin is smaller than the former. (Figure 2.2(4)). In this case,
the minimum of 1 − ω + ωβ is β−α

2−(β+α) when ω = 2γ
1+γ−γα and γ = 1

1−β ;

5. Increasing ω from ( 1
1−α <) 2γ

1+γ−γα to min{ 1
1−β , 2

1−α} with 1
1−α < γ < 1

1−β , which guar-
antee 1−ω+ωβ > 0, 1−ω+ωα < 0, sα

2 +1− ω
γ < 0, sα < 0 and sβ > 0, means that

the maximal distance 1 − ω + ωβ of D1 from the origin is decreased, while |1 − ω + ωα|,
the maximal distance of D2 from the origin is increased. (Figure 2.2(5));

6. Increasing ω from 1
1−α to 2γ

1+γ−γα(< 2
1−α ) with γ ≥ 1

1−β which guarantee 1 − ω + ωα ≤
1 − ω + ωβ ≤ 1 − ω

γ , 1 − ω + ωα < 0, sα

2 + 1 − ω
γ > 0, sα < 0 and sβ < 0, implies

that the maximal distance 1 − ω
γ of D1 and D2 get minimal value β−α

2−α−β when γ = 1
1−β

and ω = 2γ
1+γ−γα . (Figure 2.2(6));

7. Increasing ω from ( 1
1−α <) 2γ

1+γ−γα to 2
1−α with γ ≥ 1

1−β which guarantee 1 − ω + ωα <
0, 1 − ω + ωα ≤ 1 − ω + ωβ ≤ 1 − ω

γ , 1 − ω + ωα < 0, sα < 0, sβ < 0, and
sα

2 + 1− ω
γ < 0, implies that the maximal distance ω − 1−ωα of D1 and D2 get minimal

value β−α
2−α−β when γ = 1

1−β and ω = 2γ
1+γ−γα . (Figure 2.2(7)).

Figure 2.2(1)
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For 1 − ω
γ ≤ 0, we can get analogous results when ω decreases. The detail is as follows.
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Figure 2.2(5)
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Figure 2.2(8).
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1. Decreasing ω from max{ 2
1−α , 1

1−β} to 1
1−β with 1

1−β ≤ γ ≤ ω, which guarantee sα ≤
0, sβ ≤ 0, means that the maximal distance |1 − ω + ωα| of D2 from the origin is
decreased, while |1 − ω + ωβ|, the maximal distance of D1 from the origin is decreased
too, but smaller than the former. (Figure 2.2(8));

2. Decreasing ω from max{ 2
1−α , 1

1−β } to 1
1−β with 1

1−α ≤ γ ≤ 1
1−β , which guarantee sα ≤

0, sβ ≥ 0, and 1 − ω + ωβ ≤ 0, means that the maximal distance |1 − ω + ωα| of D2

from the origin is decreased, while the maximal distance of D1 from the origin is |1 − ω
γ |

which is smaller than the former. (Figure 2.2(9));

3. Decreasing ω from max{ 2
1−α , 1

1−β} to 1
1−β with γ < 1

1−α , which guarantee sα > 0, sβ >

Figure 2.2(9)
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Figure 2.2(14)
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0, 1−ω + ωα ≤ 0 and 1−ω + ωβ ≤ 0, implies that the maximal distance |1− ω
γ | of D1

and D2 get minimal value β−α
1−β when ω = 1

1−β , γ = 1
1−α . (Figure 2.2(10));

4. Decreasing ω from 1
1−β to 2γ

1+γ−γβ (> 1
1−α ) with 1

1−α ≤ γ ≤ ω, which guarantee sα ≤
0, sβ ≥ 0,

sβ

2 + 1 − ω
γ ≤ 0, and 1 − ω + ωβ > 0, means that the maximal distance

|1 − ω + ωα| of D2 from the origin is decreased, while OB2, the maximal distance of D1

from the origin is smaller than it. (Figure 2.2(11));

5. Decreasing ω from 1
1−β to 2γ

1+γ−γβ (< 1
1−β ) with γ < 1

1−α , which guarantee sα ≥ 0, sβ ≥
0, 1 − ω + ωβ ≥ 0,

sβ

2 + 1 − ω
γ < 0, implies that ω

γ − 1, the maximal distance of D1

and D2 get minimal value β−α
2−α−β when ω = 2γ

1+γ−γβ and γ = 1
1−α . (Figure 2.2(12));

6. Decreasing ω from 2γ
1+γ−γβ to 1

1−α with 1
1−α ≤ γ ≤ 1

1−β , which guarantee sα ≤ 0, sβ ≥
0, and sβ

2 +1− ω
γ ≥ 0, means that the maximal distance |1−ω+ωα| of D2 from the origin

is decreased, while 1 − ω + ωβ, the maximal distance of D1 from the origin is increased.
(Figure 2.2(13));

7. Decreasing ω from 2γ
1+γ−γβ to 1

1−α with γ < 1
1−α , which guarantee sα > 0, sβ > 0, and

sβ

2 + 1 − ω
γ > 0, means that the maximal distance 1 − ω + ωβ get minimal value β−α

2−α−β

when ω = 2γ
1+γ−γβ and γ = 1

1−α . (Figure 2.2(14));

8. Decreasing ω from 1
1−α to 0, with 0 < γ ≤ ω ≤ 1

1−α , which guarantee sα ≥ 0, sβ ≥
0, 1 − ω + ωβ > 0, 1 − ω + ωα ≥ 0, which means that the maximal distance of D1

reach minimum β−α
1−α when ω = 1

1−α which is larger than β−α
2−(α+β) . (See Figure 2.2(14)).
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Thus, an optimal value ω0 arises from the condition that the disks D1 and D2 have equal
distance from the origin. This means −(1−ω +ωα) = 1−ω +ωβ, and this gives ω0 = 2

2−(α+β)

with 1
1−α ≤ γ ≤ 1

1−β and ρ(T s
ω,γ) = 1 − ω0 + ω0β = β−α

2−(α+β) .

Remark. The near optimal parameters are not unique. The eigenvalues of iterative matrix
T s

ω,γ do not traverse the full boundaries of extremal circles D1 and D2, so the exact optimal
value of the spectral radius is not larger than β−α

2−(β+α) .

3. Application to the Model Convection-diffusion Equation

For the three-dimensional(3D) convection-diffusion equation [2]

−(uxx + uyy + uzz) + q(ux + uy + uz) = f(x, y, z)

on the unit cube Ω = [0, 1]×[0, 1]×[0, 1], with constant coefficient q and subject to Dirichlet-type
boundary conditions, we use the seven-point finite difference discretization with the centered
differences to all the terms. Then we get the system of linear equations (1.1) with the coefficient
matrix which has been transformed to the form (1.2):

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz, (3.1)

where the equidistant step-size h = 1
n+1 is used in the discretization on all the three directions

and the natural lexicographic ordering is employed to the unknowns. In addition, ⊗ denotes
the Kroneck product, Tx, Ty and Tz are tridiagonal matrices given by

Tx = tridiag(t2, t1, t3), Ty = tridiag(t2, 0, t3), and Tz = tridiag(t2, 0, t3),

with

t1 = 1, t2 = (−1 − r)/6, t3 = (−1 + r)/6.

Here, r = qh
2 is the mesh Reynolds number. It is easy to know that the Hermitian part H

and the skew-Hermitian part S of the matrix A are

H = Hx ⊗ I ⊗ I + I ⊗ Hy ⊗ I + I ⊗ I ⊗ Hz

and

S = Sx ⊗ I ⊗ I + I ⊗ Sy ⊗ I + I ⊗ I ⊗ Sz,

where

Hx = tridiag( t2+t3
2 , t1,

t2+t3
2 ), Hy = Hz = tridiag( t2+t3

2 , 0, t2+t3
2 ),

Sξ = tridiag( t2−t3
2 , 0,− t2−t3

2 ), ξ ∈ {x, y, z}.
Then, we know that

F = Fx ⊗ I ⊗ I + I ⊗ Fy ⊗ I + I ⊗ I ⊗ Fz

and

G = Gx ⊗ I ⊗ I + I ⊗ Gy ⊗ I + I ⊗ I ⊗ Gz ,

where

Fx = tridiag(− t2+t3
2 , 0,− t2+t3

2 ), Fy = Fz = tridiag(− t2+t3
2 , 0,− t2+t3

2 ),

Gξ = tridiag(− t2−t3
2 , 0, t2−t3

2 ), ξ ∈ {x, y, z}.
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From Lemma 7.1 in Appendix in [2] and by direct computations, we get the concrete forms of
Theorem 2.1 and Theorem 2.2.

Theorem 3.1. For the system of linear equations (1.1) with the coefficient matrix (3.1) arising
from the centered difference scheme, the iteration (1.7) converges for any initial guess to the
unique solution when ω, γ satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 < ω < 8 sin2(π/(n+1))

4 sin2(π/(n+1))+(q cos(π/(n+1))/(n+1))2
,

u = − 1
cos(π/(n+1)) + (cos(π/(n+1))+1)2+(q/(2(n+1))cos(π/(n+1)))2

2cos(π/(n+1))(1+cos(π/(n+1))) ω,

v = 1
cos(π/(n+1)) + (1−cos(π/(n+1))2+(q/(2(n+1))cos(π/(n+1)))2

2cos(π/(n+1))(cos(π/(n+1))−1) ω,

u < γ < v.

Theorem 3.2. For the system of linear equations (1.1) with the coefficient matrix (3.1) arising
from the centered difference scheme, the iteration (1.8) converges for any initial guess to the
unique solution when ω, γ satisfy:

0 < ω <
2

1 + cos(π/(n + 1))
.

The near optimal parameters ω and γ are{
ω0 = 1,

1
1+cos(π/(n+1)) ≤ γ ≤ 1

1−cos(π/(n+1)) (n > 2) ,

with

ρ(Tω,γ
s) = cos(π/(n + 1)).

4. Numerical Example

In this section, we give a numerical example to illustrate the effectiveness of AOR type
iterative methods for Hermitian splitting and skew-Hermitian splitting.

4.1 Spectral radius

In this subsection, we have computed and compared spectral radius of various points in the
convergence domain. For Hermitian splitting, it is found that spectral radius decreases when
the point moves from the origin to the boundary along straight line of the domain. So, we need
only to compare the points in boundary. As the result of comparison, Table 4.1.1 shows that
the optimal spectral radius for the model problem in section 3 can be got in the point which
near ω = 1 and γ = 1. For skew-Hermitian splitting, if we choose n = 10, Theorem 3.2 shows
that the near optimal radius is about 0.9595. The optimal radius should be not larger than this
number. By computing, we have found that the optimal point is ω = 1, γ = 1 and the optimal
spectral radius is much smaller than the near one for the numerical example when q became
larger. We can see these numerical results from Tables 4.1.2-4.1.3.
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Table 4.1.1 Spectral radius for the model problem in section 3 (n = 10, q = 1)

ω γ ρ(T h
ω,γ) ρ(T s

ω,γ)

1.6766 0.6707 0.9939 2.2852

1.9103 0.9551 0.9166 2.7418

1.6144 0.9686 0.6144 2.1621

1.3979 0.9785 0.3979 1.7379

1.2325 0.9860 0.2325 1.4141

1.1022 0.9920 0.1292 1.1588

0.9968 0.9968 0.1493 0.9587

1 1 0.1548 0.9586

0.9098 1.0008 0.1639 0.9623

0.8367 1.0041 0.1752 0.9653

0.7745 1.0069 0.2255 0.9679

0.7210 1.0094 0.2790 0.9701

0.6743 1.0115 0.3257 0.9721

0.6333 1.0134 0.3667 0.9738

0.5971 1.0150 0.4029 0.9753

0.5647 1.0165 0.4353 0.9766

0.5155 -0.5155 0.9987 0.9786

0.5424 -0.4881 0.9986 0.9775

0.6427 -0.3856 0.9985 0.9733

0.6849 -0.3425 0.9985 0.9716

0.7331 -0.2932 0.9984 0.9696

0.7886 -0.2366 0.9984 0.9673

0.8531 -0.1706 0.9985 0.9646

0.9292 -0.0929 0.9982 0.9614

1.0202 5.66e-17 0.9980 0.9980

1.1309 0.1131 0.9977 1.2152

1.2685 0.2537 0.9973 1.4853

1.4443 0.4333 0.9965 1.8300

Table 4.1.2 Spectral radius for the model problem in section 3 (n = 10, q = 1)

ω γ ρ(T h
ω,γ) ρ(T s

ω,γ)
0.1 92 1.2801 0.9931
0.2 92 1.5603 0.9863
0.3 92 1.8404 0.9794
0.4 92 2.1205 0.9725
0.5 92 2.4007 0.9656
0.6 92 2.6808 0.9588
0.7 92 2.9610 0.9519
0.8 92 3.2411 0.9450
0.9 92 3.5212 0.9382
1 92 3.8014 0.9313

1.02 92 3.8574 0.9299
1 1 0.1548 0.9586
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Table 4.1.3 Spectral radius for the model problem in section 3 (n = 10, q = 3)

ω γ ρ(T h
ω,γ) ρ(T s

ω,γ)

0.1 42 1.2689 0.9945

0.2 42 1.5378 0.9890

0.3 42 1.8067 0.9835

0.4 42 2.0756 0.9780

0.5 42 2.3446 0.9725

0.6 42 2.6135 0.9670

0.7 42 2.8824 0.9614

0.8 42 3.1513 0.9560

0.9 42 3.4202 0.9504

1 42 3.6891 0.9449

1.02 42 3.7429 0.9438

1 1 0.4644 0.9514

Table 4.1.4 Spectral radius for the model problem in section 3 (n = 10, q = 10)

ω γ ρ(T h
ω,γ) ρ(T s

ω,γ)

0.9 0.9 0.8032 0.8898

0.9 1 1.3968 0.8915

0.91 0.9 0.8068 0.8885

0.91 0.91 0.8348 0.8887

0.92 0.9 0.8105 0.8873

0.92 0.92 0.8707 0.8877

0.92 0.93 0.9062 0.8879

0.93 0.9 0.8142 0.8861

0.93 0.93 0.9119 0.8867

0.93 0.94 0.9527 0.8868

0.94 0.9 0.8181 0.8849

0.94 0.94 0.9593 0.8856

0.95 0.9 0.8221 0.8836

0.95 0.95 1.0148 0.8846

0.95 0.96 1.0717 0.8848

0.95 1 1.4715 0.8855

0.96 0.9 0.8262 0.8824

0.96 0.96 1.0804 0.8836

0.96 1 1.4867 0.8843

0.97 0.9 0.8304 0.8812

0.97 0.97 1.1595 0.8825

0.97 1 1.5019 0.8831

0.98 0.9 0.8347 0.8800

0.98 0.98 1.2572 0.8815

0.98 1 1.5172 0.8819

0.98 1.01 1.7304 0.8820

0.99 0.9 0.8392 0.8881

0.99 0.99 1.3818 0.8805

0.99 1 1.5326 0.8807

0.99 1.01 1.7488 0.8809

1 0.9 0.8437 0.9072

1 1 1.5480 0.8795

1 1.01 1.7673 0.8797
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4.2 Iterative Effectiveness

The second test is for the three-dimensional convection-diffusion equation

−(uxx + uyy + uzz) + qexp(x + y + z)(xux + yuy + zuz) = f(x, y, z)

on the unit cube Ω = [0, 1]× [0, 1]× [0, 1], with the homogeneous Dirichlet boundary conditions.
In Tables 4.3.1-4.3.3 we list the numerical results for the centered difference schemes when
q = 1, n = 10. The results also show that for Hermitian splitting, the optimal value can
not be got in ω = 1, γ = 1. That is to say, SOR type iterative method is not optimal. For
skew-Hermitian splitting, it is found that the larger q is, the faster the convergence speed is.
When q is large enough the iterative methods for Hermitian splitting can hardly convergent.
In the Tables, the symbol “ti” (i = 1, 2), represent CPU times, “Ri” (i = 1, 2), denote spectral
radius, “ITi” (i = 1, 2), mean iteration numbers, while i = 1, 2 are of Hermitian splitting and
skew-Hermitian splitting respectively.

Table 4.2.1 (n = 10, q = 1)

ω γ t1 IT1 R1 t2 IT2 R2

0.1 1 12.406 137 0.9035 90.845 > 1000 0.9966

0.2 1 6.700 66 0.8157 105.300 > 1000 0.9932

0.3 1 4.942 45 0.7396 109.384 > 1000 0.9899

0.4 1 4.733 35 0.6792 135.698 > 1000 0.9865

0.5 1 3.846 30 0.6390 112.077 880 0.9831

0.6 1 2.858 29 0.6229 70.799 732 0.9797

0.7 1 2.947 30 0.6327 61.586 626 0.9764

0.8 1 3.288 33 0.6673 54.512 547 0.9730

0.9 1 7.577 42 0.7232 84.487 486 0.9696

1 0.9 4.555 44 0.7061 45.194 436 0.9689

1 1 6.301 59 0.7958 65.160 436 0.9662

1 1.1 NaN NaN 5.9836 44.245 437 0.9663

1.1 0.8 7.739 79 0.8247 103.896 > 1000 1.1684

1.1 0.9 3.728 39 0.6768 101.211 > 1000 1.1658

1.1 1 11.900 105 0.8811 122.312 > 1000 1.1628

Table 4.2.2 (n = 10, q = 1)

ω γ t1 IT1 R1 t2 IT2 R2

1 0.9 4.561 44 0.7061 45.549 436 0.968917

1 0.91 5.021 40 0.6789 79.224 436 0.968662

1 0.92 3.507 35 0.6461 44.977 436 0.968403

1 0.93 3.004 31 0.6056 43.795 436 0.968140

1 0.94 5.869 27 0.5547 95.876 436 0.967874

1 0.95 2.159 22 0.5433 43.796 436 0.967605

1 0.96 1.915 20 0.5704 42.238 436 0.967333

1 0.97 2.792 22 0.6039 55.393 436 0.967058

1 0.98 2.728 26 0.6481 44.353 436 0.966780

1 0.99 3.839 37 0.7102 47.774 436 0.966499

1 1 10.631 59 0.7958 81.192 436 0.966216

1 1.01 12.449 131 0.8955 41.733 436 0.966221

1 1.02 NaN NaN 2.6246 42.052 436 0.966226

1 1.03 NaN NaN 8.0909 55.647 436 0.966231

1 1.04 NaN NaN 3.1230 41.971 437 0.966236

1 1.05 NaN NaN 2.3553 44.982 437 0.966241

1 1.06 NaN NaN 6.7334 44.559 437 0.966245
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Table 4.2.3 (n = 10, q = 10)

ω γ t1 IT1 R1 t2 IT2 R2

0.9 0.8 NaN NaN 8.0652 26.039 192 0.9175

0.9 0.9 NaN NaN 14.5706 39.737 195 0.9185

1 0.9 NaN NaN 16.1432 19.372 201 0.9358

1 0.92 NaN NaN 27.7726 18.099 186 0.9305

1 0.94 NaN NaN 9.1147 16.416 178 0.9253

1 0.95 NaN NaN 9.0488 19.236 177 0.9228

1 0.96 NaN NaN 13.8846 17.661 176 0.9203

1 1 NaN NaN 8.9481 17.629 177 0.9106

1 1.1 NaN NaN 11.6271 17.523 179 0.9117

Table 4.2.4 (n = 10, q = 100)

ω γ t1 IT1 R1 t2 IT2 R2

0.98 0.98 NaN NaN 35.7764 5.094 51 0.6846

0.98 1 NaN NaN 171.7967 5.176 50 0.6877

0.99 0.98 NaN NaN 36.1517 7.658 53 0.6814

0.99 0.99 NaN NaN 32.9507 4.942 52 0.6830

0.99 1 NaN NaN 173.5395 5.010 51 0.6845

1 0.99 NaN NaN 33.2834 8.625 55 0.6895

1 1 NaN NaN 175.2823 5.587 53 0.6813

1 1.01 NaN NaN 32.3496 5.521 52 0.6829
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