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Abstract

For the system of linear equations arising from discretization of the second-order self-
adjoint elliptic Dirichlet-periodic boundary value problems, by making use of the special
structure of the coefficient matrix we present a class of combinative preconditioners which
are technical combinations of modified incomplete Cholesky factorizations and Sherman-
Morrison-Woodbury update. Theoretical analyses show that the condition numbers of the
preconditioned matrices can be reduced to O(h−1), one order smaller than the condition
number O(h−2) of the original matrix. Numerical implementations show that the resulting
preconditioned conjugate gradient methods are feasible, robust and efficient for solving this
class of linear systems.
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1. Introduction

Consider the two-dimensional second-order self-adjoint elliptic partial differential equation
−∇ · (a(ξ, η) · ∇u) + θ(ξ, η) · u = f(ξ, η) (1.1)

in the unit square Ω = (0, 1) × (0, 1) with the boundary conditions{
u(0, η) = g

(1)
0 (η), u(1, η) = g

(1)
1 (η),

u(ξ, 0) = g
(2)
0 (ξ), u(ξ, 1) = g

(2)
1 (ξ),

where a(ξ, η) is a positive and piecewise differentiable function, θ(ξ, η) is a nonnegative bounded
function, and g(1)

0 (η), g(1)
1 (η), g(2)

0 (ξ), g(2)
1 (ξ) and f(ξ, η) are bounded functions. The case that

a(ξ, η) = 1, θ(ξ, η) = 0 and g
(1)
0 (η) = g

(1)
1 (η) = g

(2)
0 (ξ) = g

(2)
1 (ξ) = 0 has been extensively

studied in literatures, e.g., [1, 12, 15, 16]. In this paper, we will study the case that

g
(1)
0 (η) = g

(1)
1 (η) ≡ g(1)(η), (1.2)

i.e., the boundary conditions are periodic on the ξ-direction and Dirichlet on the η-direction,
respectively. Moreover, for simplicity but without loss of generality, we assume that θ(ξ, η) = 0
and g(2)

0 (ξ) = g
(2)
1 (ξ) ≡ 0 in the sequel.
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When the second-order self-adjoint elliptic Dirichlet-periodic boundary value problem (1.1)-
(1.2) is discretized by the five-point central difference scheme with mesh size h = 1

N+1 , associ-
ated with the interior mesh point (ih, jh) we have the difference equation

si,jui,j − ai− 1
2 ,j
ui−1,j − ai+ 1

2 ,j
ui+1,j − ai,j− 1

2
ui,j−1 − ai,j+ 1

2
ui,j+1 = h2fi,j ,

where
si,j = ai− 1

2 ,j
+ ai+ 1

2 ,j
+ ai,j− 1

2
+ ai,j+ 1

2
,

and for j = 1, 2, . . . , N , we stipulate that a(N+i)+ 1
2 ,j

= ai− 1
2 ,j

in the light of the periodicity of
the boundary condition (1.2). By arranging the unknowns {ui,j}1≤i≤N+1,1≤j≤N according to
the natural ordering and letting n = (N + 1)N , we obtain the system of linear equations:

Ax = b, A ∈ R
n×n symmetric positive definite, and b ∈ R

n, (1.3)

where

A =

⎛⎜⎜⎜⎜⎜⎝
A1 B1

B1 A2 B2

. . . . . . . . .
BN−2 AN−1 BN−1

BN−1 AN

⎞⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎜⎝
h2f1,1
h2f1,2

...
h2fN+1,N−1

h2fN+1,N

⎞⎟⎟⎟⎟⎟⎠ , (1.4)

and for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

Ai =

⎛⎜⎜⎜⎜⎜⎜⎝
a
(i)
1 d

(i)
1 σ(i)

d
(i)
1 a

(i)
2 d

(i)
2

. . . . . . . . .
d
(i)
N−1 a

(i)
N d

(i)
N

σ(i) d
(i)
N a

(i)
N+1

⎞⎟⎟⎟⎟⎟⎟⎠ , Bj =

⎛⎜⎜⎜⎜⎜⎜⎝
b
(j)
1

b
(j)
2

. . .
b
(j)
N

b
(j)
N+1

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.5)

The sub-matrices Ai ∈ R
(N+1)×(N+1)(i = 1, 2, . . . , N) are symmetric positive definite whose

elements are defined by

a
(i)
j = sj,i, d

(i)
j = −aj+ 1

2 ,i
, σ(i) = −ai− 1

2 ,i
;

and the sub-matrices Bi ∈ R
(N+1)×(N+1)(i = 1, 2, . . . , N − 1) are diagonal whose elements are

defined by
b
(i)
j = −aj,i+ 1

2
.

Clearly, A ∈ R
n×n is an irreducibly diagonally dominant Z-matrix. Therefore, it is an M -

matrix. And so are the sub-matrices Ai (i = 1, 2, . . . , N). We refer the readers to [17, 18] for
details.

The preconditioned conjugate gradient (PCG) method[11, 7, 10] is one of the most powerful
methods for getting an accurate approximation to the solution x∗ ∈ R

n of the system of linear
equations (1.3). As a matter of fact, if a symmetric positive definite matrix M ∈ R

n×n is
employed as a preconditioner to the coefficient matrix A ∈ R

n×n, then the corresponding PCG
iteration converges to x∗ within a relative error ε in at most 1

2

√
κ(M−1A) ln 2

ε + 1 number of
iteration steps[2], where κ(M−1A) represents the Euclidean condition number of the precondi-
tioned matrix M−1A. See also [9, 10, 4, 6]. Therefore, a good preconditioner is the key factor
to considerably improve the convergence behaviour of the PCG iteration.

As we know, standard preconditioners to a symmetric positive definite matrix may be con-
structed by the incomplete Cholesky (IC) factorization[2, 10] and the symmetric successive
overrelaxation (SSOR) iteration[17, 18, 1] techniques. See also [3, 5, 8, 15, 16]. However, these
two classes of preconditioners are only applicable and efficient for a special class of symmetric
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positive definite matrix, e.g., a diagonally dominant or an irreducibly weakly diagonally domi-
nant one[14, 12]. Moreover, the IC factorization may break down even for a symmetric positive
definite matrix[13].

Considering the special structure of the system of linear equations (1.3)-(1.5), in this paper
we present a class of combinative preconditioners to the coefficient matrix A ∈ R

n×n by techni-
cally combining modified incomplete Cholesky (MIC) factorizations[12] and Sherman-Morrison-
Woodbury (SMW) update[9]. Theoretical analyses show that with these new preconditioners,
the condition numbers of the preconditioned matrices can be reduced to O(h−1), one order
smaller than the condition number O(h−2) of the original matrix A. The feasibility, robustness
and efficiency of the new preconditioners are further confirmed by numerical implementations
of several examples of the second-order self-adjoint elliptic Dirichlet-periodic boundary value
problem (1.1)-(1.2).

The organization of this paper is as follows: In Section 2 we define the combinative precon-
ditioners, In Section 3 we establish several lemmas which are essential for discussing theoretical
properties of the new preconditioners. The existence of the new preconditioners and the con-
dition numbers of the preconditioned matrices are studied in Section 4. Finally, in Section 5,
several numerical examples are implemented to show the feasibility, robustness and efficiency
of the resulting preconditioned conjugate gradient iterations.

2. New Preconditioners

Let e = (1, 0, . . . , 0, 1)T ∈ R
N+1. Then for i = 1, 2, . . . , N we have

Ai = Ai + σ(i)eeT ,

where

Ai =

⎛⎜⎜⎜⎜⎜⎜⎝
a
(i)
1 − σ(i) d

(i)
1

d
(i)
1 a

(i)
2 d

(i)
2

. . .
. . .

. . .
d
(i)
N−1 a

(i)
N d

(i)
N

d
(i)
N a

(i)
N+1 − σ(i)

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.1)

If we introduce a matrix

A =

⎛⎜⎜⎜⎜⎜⎝
A1 B1

B1 A2 B2

. . .
. . .

. . .
BN−2 AN−1 BN−1

BN−1 AN

⎞⎟⎟⎟⎟⎟⎠ ∈ R
n×n (2.2)

and N vectors

ui = e(i−1)(N+1)+1 + ei(N+1), i = 1, 2, . . . , N,

where
ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

n,

then the coefficient matrix A ∈ R
n×n can be expressed as a rank-N update of the matrix A,

i.e.,

A = A+
N∑
i=1

σ(i)uiu
T
i . (2.3)

Evidently, the matrix A is a symmetric positive definite M -matrix. From [14, 12] we know
that it possesses MIC factorizations of the form A = LLT −R, which is a regular splitting[17].
Here, R = D + R̂, R̂ = (r̂i,j) ∈ R

n×n is a negative semidefinite matrix (i.e., (R̂x, x) ≤ 0 for
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any x ∈ R
n) satisfying

∑
j r̂i,j = 0, ∀i ∈ {1, 2, . . . , n}, and D ∈ R

n×n is a positive diagonal
matrix whose choice depends on the boundary conditions. Now, the structured expression (2.3)
immediately leads to an approximate matrix

M = M +
N∑
i=1

σ(i)uiu
T
i , where M = LLT , (2.4)

to the coefficient matrix A. When the matrix M ∈ R
n×n is symmetric positive definite and is

employed to precondition the system of linear equations (1.3), we need to solve a generalized
residual equation of the form Mz = r, for a given right-hand side r ∈ R

n, at each of the PCG
iteration steps, or equivalently, to compute the generalized residual vector z = M−1r. This can
be efficiently realized by the well-known SMW formula (see Lemma 2.1). In this way, a class
of combinative preconditioners based on the MIC factorizations and the SMW updates for the
second-order self-adjoint elliptic Dirichlet-periodic boundary value problem (1.1)-(1.2) is well
defined.

More precisely, in the following we will further describe the processes of both MIC factor-
izations of the matrix A ∈ R

n×n and SMW inversions of the matrix M ∈ R
n×n.

2.1. The MIC factorizations
Consider the second-order self-adjoint elliptic Dirichlet-periodic boundary value problem(1.1)

- (1.2). For simplicity, in the following we use difference stencils to show which grid points are
involved, and coefficient notations for the matrices A, L, LLT and R̂, regarded as operators (or
corresponding matrices) applied to grid functions. In this notation, the matrix A is defined in
Figure 2.1, where m = N + 1 is the band width of the matrix, and

α(�−1)m+j =

{
a
(�)
j − σ(�), for j = 1 or m,
a
(�)
j , otherwise,

1 ≤ � ≤ m− 1, 1 ≤ j ≤ m,

β(�−1)m+j = −d(�)
j , 1 ≤ �, j ≤ m− 1,

γ(�−1)m+j = −b(�)j , 1 ≤ � ≤ m− 2, 1 ≤ j ≤ m.

� �

�

�

�

αi

−γi

−βi−1

−γi−m

−βi

Figure 2.1. The five-point difference stencil of A

2.1.1. The MIC(0) formula
In this method, the matrix L has nonzero entries in positions where the lower part of

the matrix A has nonzero entries. The involved matrices L, LT , LLT and R̂ are defined in
Figures 2.2-2.5. This then results in the MIC(0) factorization A = M − R, where M = LLT ,
R = D + R̂, D = ψh2 · diag(A) (ψ > 0), with R̂ = (r̂i,j) being negative semidefinite and∑

j r̂i,j = 0, ∀i.
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� �

�

aibi−1

ci−m

Figure 2.2. The difference stencil of L

� �

�

ai

ci

bi

Figure 2.3. The difference stencil of LT

���

�

��

a2
i + b2i−1 + c2i−m

aici

ai−1bi−1

ci−mai−m

aibi

bi−1ci−1

bi−mci−m

Figure 2.4. The difference stencil of LLT

�

�

−ri − ri−m+1

ri

ri−m+1

Figure 2.5. The difference stencil of R̂

According to [12], from Figures 2.1-2.5 we know that the entries of the matrices L and R̂
satisfy the following recursive formulas:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a2
i = αi(1 + δ) − ri − ri−m+1 − b2i−1 − c2i−m,
bi = −βi

ai
,

ci = − γi

ai
,

ri = bi−1ci−1,
δ = ψh2, ψ > 0,

(2.5)

where entries not defined should be replaced by zeros.
2.1.2. The MIC(1) formula
A natural step to get a more accurate factorization is to allow the matrix L to have nonzero

entries in the positions where the matrix R̂, in the MIC(0), has nonzero entries. This leads to
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the MIC(1) factorization defined in Figures 2.6-2.8. In specific, we have A = M − R, where
M = LLT , R = D+ R̂, D = ψh2 · diag(A) (ψ > 0), with R̂ = (r̂i,j) being negative semidefinite
and

∑
j r̂i,j = 0, ∀i.

�

�

�

�

ai

ci

bi

di

Figure 2.6. The difference stencil of LT

� � �

� �

bi−1di−1 aidi + ci−1bi−1 ciai

a2
i + b2i−1+
c2i−m + d2

i−m+1

aibi+
ci−m+1di−m+1

Figure 2.7. The difference stencil of LLT

According to [12] again, from Figures 2.1 and 2.6-2.8 we know that the entries of the matrices
L and R̂ satisfy the following recursive formulas:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a2
i = αi(1 + δ) − ri − ri−m+2 − b2i−1 − c2i−m − d2

i−m+1,

bi = −βi+ci−m+1di−m+1
ai

,

ci = − γi

ai
,

di = − bi−1ci−1
ai

,

ri = bi−1di−1,
δ = ψh2, ψ > 0,

(2.6)

where entries not defined should be replaced by zeros.
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Continuing in this way we first come to the MIC(2) factorization, and then to the MIC(4)
factorization, and so on.

�

�

�

−ri − ri−m+2

ri−m+2

ri

Figure 2.8. The difference stencil of R̂

2.1.3. The general MIC formula
For more general structured problems, the idea to obtain an MIC factorization is to let L

have nonzero entries in the same positions as the matrix A, form the product LLT to see where
R̂ has nonzero entries, and extend L to have nonzero entries in these positions to get a more
accurate factorization, and possibly continue in this manner for a few steps more.

2.2. The SMW inversions
We now turn to discuss how to efficiently invert the preconditioning matrix M ∈ R

n×n

defined in (2.4) by making use of its structure. One basic tool is the Sherman-Morrison-
Woodbury formula which expresses the inverse of a rank-k update of a matrix A ∈ R

n×n into
the inverse of the matrix A itself.

Lemma 2.1. (Sherman-Morrison-Woodbury formula (SMW-formula) [9]).
Let A ∈ R

n×n, and U, V ∈ R
n×k be matrices such that both A and (I + V TA−1U) are nonsin-

gular. Then A+ UV T is nonsingular and it holds that

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1.

In particular, when k = 1, i.e., U = u ∈ R
n and V = v ∈ R

n are two vectors, and
1 + vTA−1u �= 0, the Sherman-Morrison-Woodbury formula reduces to the so-called Sherman-
Morrison (SM) formula:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

2.2.1. The SMW version
Let {

U = (u1, u2, . . . , uN) ∈ R
n×N ,

Σ = −diag(σ(1), σ(2), . . . , σ(N)) ∈ R
N×N ,

(2.7)

and V = UΣ
1
2 , here we have applied the fact that σ(i) = −ai− 1

2 ,i
< 0. Then according to (2.3)

and (2.4) we can rewrite the matrices A and M as follows:{
A = A− UΣUT = A− V V T ,
M = M − UΣUT = M − V V T ,

(2.8)
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where M = LLT .
For a known residual vector r ∈ R

n, to compute the generalized residual vector z = M−1r at
each of the PCG iteration steps, by straightforwardly applying the SMW formula in Lemma 2.1
to the matrix M ∈ R

n×n we obtain

z = (M − V V T )−1r
=

(
M−1 +M−1V (I − V TM−1V )−1V TM−1

)
r

= (I + ZW )y,

where we have assumed that the matrix I − V TM−1V ∈ R
N×N is nonsingular, and used the

notations

y = M−1r, W = (I − V TM−1V )−1V T , Z = M−1V. (2.9)

Denote G = L−1V ∈ R
n×N , i.e., the matrix G satisfies the linear system LG = V . Then

I − V TM−1V is nonsingular if and only if I − GTG is nonsingular. Moreover, from (2.9) we
equivalently have

y = M−1r, W = (I −GTG)−1V T , Z = L−TG.

In addition, if we introduce the vector s = LTy, then computing y = M−1r is equivalent to
solving the triangular sub-systems of linear equations

Ls = r and LTy = s.

In summary, we obtain the following SMW version for computing the generalized residual vector
z = M−1r.

The SMW version:

1. Solve s from Ls = r;

2. Solve y from LTy = s;

3. Solve G from LG = V , where V = UΣ
1
2 ;

4. Compute t by t = V T y (or t = GT s);

5. Solve u from (I −GTG)u = t;

6. Compute v by v = Gu;

7. Solve w from LTw = v;

8. Compute z by z = y + w.

2.2.2. The recursive SM version
The inverse of the matrix M in (2.4) can also be computed recursively by applying the

Sherman-Morrison formula a number of N steps. This results in another method for computing
the generalized residual vector z = M−1r at each of the PCG iteration steps, where r ∈ R

n is
a known residual vector.

In fact, by letting M0 = M ≡ LLT , and for i = 1, 2, . . . , N ,

Mi = Mi−1 + σ(i)uiu
T
i , (2.10)

we have M = MN . When σ(i)uTi M
−1
i−1ui + 1 �= 0(i = 1, 2, . . . , N), after application of the SM

formula we get

M−1
i = M−1

i−1 −
σ(i)

1 + σ(i)uTi M
−1
i−1ui

·M−1
i−1uiu

T
i M

−1
i−1, i = 1, 2, . . . , N. (2.11)
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For i = 1, 2, . . . , N , define vectors

zi−1 = M−1
i−1r, pi−1 = M−1

i−1ui,

and scalars

β(i−1) = pTi−1r = zTi−1ui, δ(k−1,i) = pTk−1ui (k = 1, 2, . . . , i), γ(i−1) = pTi−1ui+1.

Then it follows from (2.11) that

zi = zi−1 − σ(i)β(i−1)

1 + σ(i)δ(i−1,i)
· pi−1, i = 1, 2, . . . , N.

In addition, by introducing vector wi = M−1
i ui+2, we can obtain

wi = M−1
i ui+2

=
(
M−1
i−1 − σ(i)

1+σ(i)δ(i−1,i) pi−1p
T
i−1

)
ui+2

= . . .

=
(
M−1

0 − ∑i
k=1

σ(k)

1+σ(k)δ(k−1,k) pk−1p
T
k−1

)
ui+2

and
pi = M−1

i ui+1

=
(
M−1
i−1 − σ(i)

1+σ(i)δ(i−1,i) · pi−1p
T
i−1

)
ui+1

= wi−1 − σ(i)γ(i−1)

1+σ(i)δ(i−1,i) · pi−1.

In summary, we obtain the following recursive SM (RSM) version for computing the gener-
alized residual vector z = M−1r.

The RSM version:

1. Initialization.

1.1 Solve p0 and z0 from LLT p0 = u1 and LLT z0 = r;

1.2 Compute β(0) = pT0 r, δ
(0,1) = pT0 u1, and ω(0) = σ(1)

1+σ(1)δ(0,1) ;

1.3 Compute z1 = z0 − ω(0)β(0)p0.

2. Recursion. For i = 2, 3, . . . , N :

2.1 If i = 2 then solve w0 from LLTw0 = u2, else

2.1.1 Solve q from LLT q = ui;
2.1.2 Compute wi−2 = q − ∑i−2

k=1 ω
(k−1)δ(k−1,i)pk−1;

2.2 Compute γ(i−2) = pTi−2ui;

2.3 Compute pi−1 = wi−2 − ω(i−2)γ(i−2)pi−2;

2.4 Compute β(i−1) = pTi−1r;

2.5 Compute δ(i−1,i) = pTi−1ui;

2.6 Compute ω(i−1) = σ(i)

1+σ(i)δ(i−1,i) ;

2.7 Compute zi = zi−1 − ω(i−1)β(i−1)pi−1;

3. Output. z = zN .
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We remark that caution must be exercised in using this RSM version, however, because in
general there is no guarantee of numerical stability through successive updating formulas (2.11)
as the matrix changes. This phenomenon is confirmed by numerical results in Section 5.

3. Several Preparative Lemmas

To prove the positive definiteness and analyze the preconditioning properties of the new
preconditioners, in this section we establish several necessary lemmas.

Lemma 3.1. [14] Let A ∈ R
n×n be a symmetric M-matrix, and P ⊆ {(i, j) | i �= j, 1 ≤ i, j ≤ n}

the off-diagonal indices with the property that (i, j) ∈ P implies (j, i) ∈ P. Then there exist
unique lower triangular matrix L ∈ R

n×n with li,j = 0 for (i, j) ∈ P and zero-diagonal matrix
R ∈ R

n×n with ri,j = 0 for (i, j) /∈ P such that A = LLT − R. Moreover, this splitting is a
regular splitting.

This lemma describes the existence of the MIC(0) and the MIC(1) factorizations of the
matrix A ∈ R

n×n defined in (2.2). The following lemma presents a sufficient condition for
examining that the condition number of the preconditioned matrix is of order O(h−1).

Lemma 3.2. [12] Let Ã, M̃ ∈ R
n×n be two symmetric positive definite matrices, and M̃ =

Ã + R̃ = Ã + D̃ + R̂. Assume that R̂ is negative semidefinite having zero row-sums and
only local couplings, and D̃ is positive diagonal with diagonal elements of size O(h2). Then a
sufficient condition to obtain κ(M̃−1Ã) = O(h−1) is:

0 ≤ −(R̂x, x) ≤ 1
1 + τh

(Ãx, x), ∀x ∈ R
n,

where τ is a positive constant independent of the mesh size h.

Lemma 3.3. [12] Let Θ, Ξ and Υ be reals, and ζ, χ be positive reals. Then

(Θ − Ξ)2

ζ + χ
≤ (Θ − Υ)2

ζ
+

(Υ − Ξ)2

χ
.

The matrix A = (ai,j) ∈ R
n×n defined in (2.2) is a “local” matrix so that the distance

between two points in the mesh representing indices i and j is of order O(h) for ai,j �= 0, and
the number of indices j such that ai,j �= 0 is of order O(1) for each i. Without loss of generality,
we may assume that the elements ai,j are normalized to be of order O(1).

Because the matrices A, L and R̂ defined by (2.5) and (2.6) (see also Figures 2.1-2.8) are
associated with the matrix A (see (1.4)) which comes from the five-point central difference
discretization of the partial differential equation (1.1)-(1.2), it is reasonable for us to assume
that

αi ≥ α, 0 < ς ≤ βi ≤ β, 0 < ς ≤ γi ≤ γ, i = 1, 2, . . . , n (3.1)

and

2(β + γ) ≤ α. (3.2)

This readily implies that the matrices A and A are both symmetric positive definite Z-matrices,
and hence, they are also M -matrices.

Lemma 3.4. Let ri be defined by the MIC(0) formula (2.5). Then it holds that

ri ≤ α

8
· 1
1 + τh

,

where τ = 2
√

2ψ
α is a positive constant independent of the mesh size h.
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Proof. We first demonstrate the following universal bound for ai:

a2
i ≥

α

2
(1 + τh), i = 1, 2, . . . , n, (3.3)

where τ is a positive constant independent of the mesh size h.
When ψ = 0, we can straightforwardly derive the estimates

a2
i ≥

α

2
, i = 1, 2, . . . , n,

from the recursive formula (2.5) and by induction on i. In fact, it is obvious that

a2
1 = α1 ≥ α >

α

2
.

In general, if we assume that

a2
i ≥

α

2
, i = 1, 2, . . . , p− 1,

then
a2
p = αp − bp−1(cp−1 + bp−1) − cp−m(bp−m + cp−m)

≥ α− β(β+γ)
a2

p−1
− γ(β+γ)

a2
p−m

≥ α− (β+γ)2

α/2

≥ α− α
2

= α
2 .

By induction, we obtain
a2
i ≥

α

2
, i = 1, 2, . . . , n.

In addition, we notice that for a sufficiently large N , the elements ai approaches a constant a
that satisfies

ϕ(a) ≡ a2 +
α2

4a2
− α = 0.

Analogously, when ψ > 0, we can derive the estimates (3.3) by solving the one-variable
quadratic equation

ϕ(a) − 4ψh2 = 0.

This immediately gives
a2 − α

2
= 2

√
ψh · a.

After simple computations, we have

a =
√
ψh+

√
ψh2 +

α

2

and

a2 = 2ψh2 +
α

2
+ 2

√
ψh

√
ψh2 +

α

2
≥ α

2
(1 + τh),

where τ = 2
√

2ψ
α . This shows the validity of (3.3).

It follows straightforwardly from

ri = bi−1ci−1, i = 1, 2, . . . , n

that

ri =
βi−1γi−1

a2
i−1

≤ 2βγ
α(1 + τh)

≤ (β + γ)2

2α(1 + τh)
≤ α

8
· 1
1 + τh

, i = 1, 2, . . . , n.
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Lemma 3.5. Let ri be defined by the MIC(1) formula (2.6). Then it holds that

ri ≤ βγ

β + 4γ
· 1
1 + τh

,

where τ = 2
√

ψ
β+4γ is a positive constant independent of the mesh size h.

Proof. For ψ = 0, we assert that

a2
i ≥

β + 2γ +
√
β(β + 4γ)

2
, i = 1, 2, . . . , n (3.4)

and

ri ≤ βγ

β + 4γ
, i = 1, 2, . . . , n. (3.5)

In fact, from the MIC(1) formula (2.6) we see that when ψ = 0, a bound for ai can be
obtained by solving the one-variable nonlinear equation ϕ(a) = 0, where

ϕ(a) =
(
a− γ

a

)2

+
β2(

a− γ
a

)2 − 2β. (3.6)

Because
(−bi)ai = βi + ci−m+1di−m+1

= βi − ci−m+1bi−mci−m

ai−m+1

= βi − γi−m+1γi−mbi−m

a2
i−m+1ai−m

≤ β + γ2(−bi−m)
a2

i−m+1ai−m
,

we have

(−b) · a ≤ β +
γ2(−b)
a3

,

where −b is an upper bound of −bi. By solving the equation

−ba+
γ2b

a3
− β = 0,

we obtain

−b ≤ βa3

a4 − γ2

and

ri = bi−1di−1 = −bi−1bi−2ci−2

ai−1
=
bi−1bi−2γi−2

ai−2ai−1
≤ γb2

a2
.

Therefore,

a2 ≥ αi − β2a6

(a4 − γ2)2
− γ2

a2
− γ2β2a2

(a4 − γ2)2
− 2γβ2a4

(a4 − γ2)2
.

As
β2a2

(γ − a2)2
=

β2a6

(a4 − γ2)2
+

γ2β2a2

(a4 − γ2)2
+

2γβ2a4

(a4 − γ2)2
,

it follows that

a2 +
γ2

a2
+

β2a2

(γ − a2)2
≥ αi.



Combinative preconditioners of MIC and SMW 845

Hence, (
a− γ

a

)2

+
β2(

a− γ
a

)2 ≥ αi − 2γ,

which directly results in the estimate

ϕ(a) ≡
(
a− γ

a
− β

a− γ
a

)2

≥ αi − 2(β + γ) ≥ 0.

This shows the validity of (3.6).
From (3.6) we immediately get⎧⎪⎪⎨⎪⎪⎩

a =
√
β+

√
β+4γ

2 ,

a2 = β+2γ+
√
β(β+4γ)

2 ,

a4 = β(β+4γ)+(β+2γ)
√
β(β+4γ)

2 + γ2,

(3.7)

and therefore, the estimate (3.4).
By (3.7) we can obtain

| ba | ≤ βa2

a4−γ2

= β(β+2γ+
√
β(β+4γ))

β(β+4γ)+(β+2γ)
√
β(β+4γ)

=
√

β
β+4γ .

Therefore,

ri ≤ γ

(
b

a

)2

≤ βγ

β + 4γ
, i = 1, 2, . . . , n.

This demonstrates the validity of (3.5).
For ψ > 0, we assert the following universal bounds for ai and ri:{

a2
i ≥ β+2γ+

√
β(β+4γ)

2 · (1 + τh),
ri ≤ βγ

β+4γ · 1
1+τh ,

(3.8)

where τ = 2
√

ψ
β+4γ is a positive constant independent of the mesh size h.

In fact, analogously to the case that ψ = 0, we can obtain the bound for ai by solving the
one-variable nonlinear equation ϕ(a) = 4ψh2, resulting in

a =

√
ψh+

√
ψh2 + β +

√
2ψh2 + β + 2

√
ψh

√
ψh2 + β + 4γ

2
.

It immediately follows that

2a2 = 2ψh2 + β + 2
√
ψh

√
ψh2 + β + 2γ

+(
√
ψh+

√
ψh2 + β)

√
2ψh2 + β + 2

√
ψh

√
ψh2 + β + 4γ.

(3.9)

Define a nonlinear function

f(t) =
(
t+

√
t2 + β

) √
2t2 + β + 2t

√
t2 + β + 4γ.

Then we have

f2(t) = 8t4 + 8(β + γ)t2 + β(β + 4γ) + 4t(2t2 + β + 2γ)
√
t2 + β

≥ 4(β + γ)t2 + 4(β + 2γ)
√
βt+ β(β + 4γ).
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Since
(β + 4γ)f2(t) ≥ 4(β + 2γ)2t2 + 4(β + 2γ)(β + 4γ)

√
βt+ β(β + 4γ)2,

we get
(β + 4γ)f2(t) ≥ [2(β + 2γ)t+

√
β(β + 4γ)]2.

Therefore,
f(t) ≥ 2(β+2γ)t+

√
β(β+4γ)√

β+4γ

≥
(√

β + 4γ + β√
β+4γ

)
t+

√
β(β + 4γ).

Now, letting t =
√
ψh, we obtain

(
√
ψh+

√
ψh2 + β)

√
2ψh2 + β + 2

√
ψh

√
ψh2 + β + 4γ

≥
(√

β + 4γ + β√
β+4γ

)√
ψh+

√
β(β + 4γ).

(3.10)

It follows from (3.9) and (3.10) that

2a2 ≥ β + 2γ + 2
√
ψh · √β +

(√
β + 4γ + β√

β+4γ

)√
ψh+

√
β(β + 4γ)

= (β + 2γ +
√
β(β + 4γ))(1 + τh),

where τ = 2
√

ψ
β+4γ . This demonstrates the validity of the lower bounds for ai in (3.8).

Noticing that
β + 2γ +

√
β(β + 4γ)

2
=

(√
β +

√
β + 4γ

2

)2

,

by making use of (3.5) we obtain

ri ≤ βγ

β + 4γ
· 1
1 + τh

, i = 1, 2, . . . , n,

where τ = 2
√

ψ
β+4γ . This demonstrates the validity of the upper bounds for ri in (3.8).

4. Conditioning

In this section, we will first demonstrate the well-definiteness of the preconditioner M, and
then estimate the condition number of the preconditioned matrix M−1A. To this end, we
further assume that the bounds in (3.1)-(3.2) satisfy

5βγ ≤ (β + 4γ)ς, α ≤ 4ς. (4.1)

Evidently, for the model problem that a(ξ, η) = 1 and θ(ξ, η) = 0 in (1.1), the assumptions
(3.1), (3.2) and (4.1) are automatically satisfied since when we have α = 4 and β = γ = ς = 1.

Theorem 4.1. Let A ∈ R
n×n be the matrix defined by (2.2) (see also Figure 2.1), and M =

LLT be its MIC factorization such that A = M −R, where R = D+ R̂, D = ψh2 · diag(A) and
R̂ is a negative semidefinite matrix of zero row-sums.

(i) If L and R̂ are defined by the MIC(0) formula (2.5) (see also Figures 2.2-2.5), then

0 ≤ −(R̂x, x) ≤ α
4ς · 1

1+τh · min{(Ax, x), (Ax, x)}
≤ 1

1+τh · min{(Ax, x), (Ax, x)},

where τ = 2
√

2ψ
α is a positive constant independent of the mesh size h. Moreover, by

Lemma 3.2, it holds that κ(M−1A) = O(h−1);
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(ii) If L and R̂ are defined by the MIC(1) formula (2.6) (see also Figures 2.6-2.8), then

0 ≤ −(R̂x, x) ≤ 5βγ
(β+4γ)ς · 1

1+τh · min{(Ax, x), (Ax, x)}
≤ 1

1+τh · min{(Ax, x), (Ax, x)},

where τ = 2
√

ψ
β+4γ is a positive constant independent of the mesh size h. Moreover, by

Lemma 3.2, it holds that κ(M−1A) = O(h−1).

Proof. Let A = (ai,j) and x = (x1, x2, . . . , xn)T . Then by an elementary summation by
parts we obtain

(Ax, x) = −
∑
i

∑
j>i

ai,j(xi − xj)2 +
∑
i

∑
j

ai,jx
2
i . (4.2)

In particular, by considering the structures of the matrices A (see Figure 2.1 or (2.2)) and A
(see (1.4)) we see that (4.2) leads to

(Ax, x) ≥ ∑
i[βi(xi − xi+1)2 + γi(xi − xi+m)2]

≥ ς
∑

i[(xi − xi+1)2 + (xi − xi+m)2] (4.3)

and

(Ax, x) = −∑
i

∑
j>i ai,j(xi − xj)2 +

∑
i

∑
j ai,jx

2
i

−∑m−1
i=1 a(i−1)m+1,im(x(i−1)m+1 + xim)2

≥ −∑
i

∑
j>i ai,j(xi − xj)2 +

∑
i

∑
j ai,jx

2
i

−2
∑m−1
i=1 a(i−1)m+1,im(x2

(i−1)m+1 + x2
im)

≥ ∑
i[βi(xi − xi+1)2 + γi(xi − xi+m)2]

≥ ς
∑
i[(xi − xi+1)2 + (xi − xi+m)2].

(4.4)

We first demonstrate (i). From (2.5) (see also Figure 2.3) we have

−(R̂x, x) =
∑
ri �=0

ri(xi − xi+m−1)2.

By applying Lemma 3.4 we get

−(R̂x, x) ≤ α

8
· 1
1 + τh

·
∑
ri �=0

(xi − xi+m−1)2.

It then follows from Lemma 3.3 with ζ = χ = 1 that

−(R̂x, x) ≤ α
4(1+τh)

∑
ri �=0[(xi − xi−1)2 + (xi−1 − xi+m−1)2]

= α
4(1+τh)

∑
ri+1 �=0[(xi+1 − xi)2 + (xi − xi+m)2].

(4.5)

Because ri+1 = βiγi

a2
i

, we know that ri+1 �= 0 if and only if βiγi �= 0. Therefore, by combining
(4.3)-(4.5) we obtain

−(R̂x, x) ≤ α

4ς
· 1
1 + τh

· min{(Ax, x), (Ax, x)} ≤ 1
1 + τh

· min{(Ax, x), (Ax, x)}.

According to Lemma 3.2, the conclusion (i) is true.
We now turn to prove (ii). From (2.6) (see also Figure 2.8) we have

−(R̂x, x) =
∑
ri �=0

ri(xi − xi+m−2)2.
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By applying Lemma 3.5, and Lemma 3.3 twice (first with ζ = 2, χ = 3 and then with ζ = 1
and χ = 2), we obtain

−(R̂x, x) ≤ 5βγ
(β+4γ)(1+τh)

∑
ri �=0

1
5 (xi − xi+m−2)2

≤ 5βγ
(β+4γ)(1+τh)

(∑
ri+1 �=0

[
1
2 (xi+1 − xi)2 + 1

3 (xi − xi+m−1)2
])

≤ 5βγ
(β+4γ)(1+τh)

(
1
2

∑
ri+1 �=0(xi+1 − xi)2

+ 1
3

[∑
ri−m+1 �=0

1
2 (xi−m − xi−1)2 +

∑
ri+1 �=0

1
2 (xi − xi+m−1)2

])
≤ 5βγ

(β+4γ)(1+τh)

(
1
2

∑
ri+1 �=0(xi+1 − xi)2

+
∑
ri−m+1 �=0

1
2

[
1
2 (xi − xi−1)2 + (xi − xi−m)2

]
+

∑
ri+1 �=0

1
2

[
(xi − xi+m)2 + 1

2 (xi+m − xi+m−1)2
])

= 5βγ
(β+4γ)(1+τh)

(
1
2

∑
ri+1 �=0(xi+1 − xi)2

+
∑
ri−m+1 �=0

1
2

[
(xi − xi−1)2 + (xi − xi−m)2

]
+

∑
ri+1 �=0

1
2 (xi − xi+m)2

)
≤ 5βγ

(β+4γ)(1+τh)

(∑
ri+1 �=0

[
1
2 (xi+1 − xi)2 + 1

2 (xi − xi+m)2
]

+
∑
ri−m+1 �=0

[
1
2 (xi − xi−1)2 + 1

2 (xi − xi−m)2
])
.

(4.6)

From (4.3) and (4.4) we have

min{(Ax, x), (Ax, x)} ≥ ∑
i βi−1(xi − xi−1)2 +

∑
i γi−m(xi−m − xi)2

≥ ς
∑
i(xi − xi−1)2 + ς

∑
i(xi−m − xi)2,

(4.7)

where elements not defined should be replaced by zeros.
In addition, from the formulas (2.6) it is clear that ri+1 = ri−m+1 = 0 for such an i that

βi = 0, βi−1 = 0, γi = 0 and γi−m = 0.
By comparing (4.6) and (4.7) we obtain

−(R̂x, x) ≤ 5βγ
β+4γ · 1

1+τh · [ 1
2ς min{(Ax, x), (Ax, x)} + 1

2ς min{(Ax, x), (Ax, x)}]
= 5βγ

(β+4γ)ς · 1
1+τh · min{(Ax, x), (Ax, x)}

≤ 1
1+τh · min{(Ax, x), (Ax, x)}.

According to Lemma 3.2 again, the conclusion (ii) is also true.
The following theorem describes the well-definiteness of the preconditioner M.

Theorem 4.2. Let A ∈ R
n×n be the matrix defined in (2.2), A = M −R, with M = LLT and

R = D+ R̂, be the MIC(0) or the MIC(1) factorizations defined by (2.5) or (2.6), respectively,
A ∈ R

n×n be the matrix defined in (1.4), M ∈ R
n×n be the preconditioner to A defined in

(2.4), U ∈ R
n×N and Σ ∈ R

N×N be the matrices defined in (2.7) with V = UΣ
1
2 , and {Mi}Ni=1

be the matrix sequence defined in (2.10). Then for both MIC(0) and MIC(1), it holds that

(i) M is symmetric positive definite;

(ii) M is symmetric positive definite;

(iii) I − V TM−1V is nonsingular;

(iv) σ(i)uTi M
−1
i−1ui + 1 �= 0, i = 1, 2, . . . , N .

Proof. (i) is obviously true from Lemma 3.1.
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From (2.3) and (2.4) (see also (2.8)), as well as the definitions of both MIC(0) and MIC(1)
factorizations, we have

M = M + (A −A) = A +R = A +D + R̂. (4.8)

According to Theorem 4.1 we get

0 ≤ −(R̂x, x) ≤ 1
1 + τh

(Ax, x) < (Ax, x), ∀x ∈ R
n \ {0}.

Hence, A + R̂ is a symmetric positive definite matrix. Noticing that D = ψh2 · diag(A) is
positive diagonal, we therefore know that the matrix M is symmetric positive definite. This
demonstrates the correctness of (ii).

To verify (iii), we recall from (2.8) that

M = M − V V T = LLT − V V T ,

and thereby,
L−1ML−T = I − (L−1V )(L−1V )T .

Because L−1ML−T is nonsingular, we know that 1 is not an eigenvalue of the matrix (L−1V )
(L−1V )T . It then follows that 1 is also not an eigenvalue of the matrix

(L−1V )T (L−1V ) = V TM−1V.

This immediately implies that the matrix I − V TM−1V is nonsingular. Therefore, (iii) is also
valid.

We now turn to (iv). Because M and M are both symmetric positive definite and

M ≡M0 
M1 
 . . . 
MN−1 
MN ≡ M,

by (2.4) and (2.10) we can inductively verify the validity of (iv) in a similar fashion to (iii).
Here, the ordering “
” is defined according to the symmetric positive semidefiniteness, i.e., for
two matrices B,C ∈ R

n×n, B 
 C if B − C is symmetric positive semidefinite.
For the condition number of the preconditioned matrix M−1A, we have the following esti-

mate.

Theorem 4.3. Let A ∈ R
n×n be the matrix defined in (1.4), and M ∈ R

n×n be the precondi-
tioner defined in (2.4). Then for both MIC(0) and MIC(1), it holds that κ(M−1A) = O(h−1).

Proof. From (4.8) and Theorem 4.2 (ii) we see that

M = A +D + R̂,

where A and M are symmetric positive definite matrices, D = ψh2 · diag(A), and R̂ is the
negative semidefinite matrix of zero row-sums. In addition, by Theorem 4.1 we know that

0 ≤ −(R̂x, x) ≤ 1
1 + τh

· (Ax, x), ∀x ∈ R
n

holds for both MIC(0) and MIC(1) factorizations, where τ is a positive constant independent of
the mesh size h. It then straightforwardly follows from Lemma 3.2 that κ(M−1A) = O(h−1).

5. Numerical Examples

We use several numerical examples from different choices of the coefficient functions a(ξ, η)
and θ(ξ, η) in the two-dimensional second-order self-adjoint elliptic partial differential equa-
tion (1.1)-(1.2) to show feasibility, robustness and effectiveness of the new preconditioners.
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In actual computations, all runs are started from the zero vector and terminated once the
current residuals r(k) = b − Ax(k) satisfy ‖r(k)‖2

‖r(0)‖2
≤ ε = 10−12, where x(k) is the current

iteration. The reduction factor of an iteration is denoted by ρ = log
(

‖x(k)−x∗‖2

‖x(0)−x∗‖2

)
, with x∗ the

exact solution of the system of linear equations (1.3).

The new PCG methods, RSMICCG(0), SMWICCG(0), RSMICCG(1) and SMWICCG(1),
are compared with the known PCG methods, ICCG(0) and ICCG(1), as well as the CG method
itself, respectively, for aspects of number of total iteration steps (denoted by “IT”) and elapsed
CPU time (denoted by “CPU”). In some tables, we use the symbol “–” to denote that the MIC
factorization involved breaks down.

Example 5.1. The coefficient functions are

a(ξ, η) =
{

1000, 0 < ξ < 0.5, 0 < η < 1,
1, 0.5 ≤ ξ < 1, 0 < η < 1, and θ(ξ, η) = 10.

For different discretization stepsizes, numerical results are listed in Table 5.1 and depicted
in Figures 5.1a-5.1d.

Table 5.1. Iteration numbers and CPUs for Example 5.1

h−1 16 32 40 48 64 80 100 128

IT 19 34 41 48 63 79 97 124
RSMICCG(0)

CPU 0.01 0.07 0.14 0.27 0.70 1.46 3.13 6.96

IT 13 21 25 29 36 45 55 68
SMWICCG(0)

CPU 0.01 0.04 0.07 0.15 0.36 0.76 1.65 3.61

IT 20 38 47 57 77 96 122 154
ICCG(0)

CPU 0.01 0.07 0.15 0.25 0.69 1.40 3.08 6.41

IT 18 30 36 42 54 65 80 101
RSMICCG(1)

CPU 0.01 0.07 0.14 0.26 0.64 1.40 2.83 6.46

IT 17 28 33 39 51 63 77 97
SMWICCG(1)

CPU 0.00 0.05 0.10 0.20 0.52 1.14 2.33 5.22

IT – – – – – – – –
ICCG(1)

CPU – – – – – – – –

IT 43 151 200 268 414 576 819 1178
CG

CPU 0.01 0.14 0.29 0.54 1.63 3.97 9.64 26.55

Evidently, the iterations with preconditioners considerably outperform the CG iteration
in iteration numbers and CPU times. For the preconditioned iterations based on MIC(0)
factorization, we see that the SMWICCG(0) is the fastest one. According to h, the iteration
numbers of the RSMICCG(0) are correspondingly smaller than those of the ICCG(0), and the
CPU times of both methods are roughly the same. For the preconditioned iterations based on
MIC(1) factorization, we see that the SMWICCG(1) is the fastest one. However, ICCG(1) fails
to deliver an approximate solution to x∗ due to break-down of the MIC(1) factorization. In
addition, RSMICCG(1) is faster than RSMICCG(0) in all cases, and SMWICCG(1) is slower
than SMWICCG(0) in most cases.
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Figure 5.1a: Curves of ρ versus IT for
Example 5.1 when h−1 = 64. The
preconditioner uses MIC(0).
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Figure 5.1b: Curves of ρ versus IT for
Example 5.1 when h−1 = 64. The
preconditioner uses MIC(1).
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Figure 5.1c: Curves of CPU versus h−1

for Example 5.1. The preconditioner uses
MIC(0).
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Figure 5.1d: Curves of CPU versus h−1

for Example 5.1. The preconditioner uses
MIC(1).

Example 5.2. The coefficient functions are

a(ξ, η) = 1, and θ(ξ, η) = 0.

For different discretization stepsizes, numerical results are listed in Table 5.2 and depicted
in Figures 5.2a-5.2d.
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Table 5.2. Iteration numbers and CPUs for Example 5.2

h−1 16 32 40 48 64 80 100 128

IT 22 39 47 55 72 88 110 127
RSMICCG(0)

CPU 0.01 0.08 0.16 0.30 0.78 1.59 3.48 7.20

IT 16 25 29 33 43 52 62 78
SMWICCG(0)

CPU 0.01 0.05 0.08 0.16 0.42 0.88 1.85 4.10

IT 29 58 72 86 114 141 177 219
ICCG(0)

CPU 0.01 0.11 0.21 0.38 1.02 2.02 4.32 9.52

IT 18 29 35 40 49 57 63 77
RSMICCG(1)

CPU 0.01 0.06 0.13 0.26 0.59 1.27 2.42 5.30

IT 16 26 32 36 44 53 64 73
SMWICCG(1)

CPU 0.01 0.04 0.09 0.18 0.44 0.95 1.95 3.95

IT 15 25 30 33 42 50 56 69
ICCG(1)

CPU 0.01 0.05 0.09 0.15 0.40 0.78 1.43 3.24

For the preconditioned iterations based on MIC(0) factorization, we see that the SMWICCG(0)
is the fastest one, then the RSMICCG(0), and the ICCG(0) is the slowest one, in both iteration
numbers and CPU times. For the preconditioned iterations based on MIC(1) factorization, we
see that the ICCG(1) is the fastest one, then the SMWICCG(1), and the RSMICCG(1) is the
slowest one, in both iteration numbers and CPU times. However, the numerical behaviour of
the SMWICCG(1) is comparable to that of the ICCG(1). In addition, the iteration numbers
and CPU times of the SMWICCG(1) are comparable to those of the SMWICCG(0), and the
other iterations with preconditioners based on MIC(1) factorization outperform those based on
MIC(0) factorization, correspondingly.
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Figure 5.2a: Curves of ρ versus IT for
Example 5.2 when h−1 = 64. The
preconditioner uses MIC(0).

0 5 10 15 20 25 30 35 40 45 50
−6

−5

−4

−3

−2

−1

0

IT

R
h
o

RSMICCG(1)
SMWICCG(1)
ICCG(1)

Figure 5.2b: Curves of ρ versus IT for
Example 5.2 when h−1 = 64. The
preconditioner uses MIC(1).
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Figure 5.2c: Curves of CPU versus h−1

for Example 5.2. The preconditioner uses
MIC(0).
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Figure 5.2d: Curves of CPU versus h−1

for Example 5.2. The preconditioner uses
MIC(1).

Example 5.3. The coefficient functions are

a(ξ, η) =
{

10000, 0 < ξ < 0.5, 0 < η < 1,
0.1, 0.5 ≤ ξ < 1, 0 < η < 1, and θ(ξ, η) = 10.

For different discretization stepsizes, numerical results are listed in Table 5.3 and depicted
in Figures 5.3a-5.3b.

Table 5.3. Iteration numbers and CPUs for Example 5.3

h−1 16 32 40 48 64 80 100 128

IT 17 31 37 43 58 71 89 111
RSMICCG(0)

CPU 0.01 0.07 0.14 0.26 0.66 1.38 3.09 6.72

IT 13 20 23 26 33 40 48 61
SMWICCG(0)

CPU 0.01 0.03 0.07 0.13 0.33 0.70 1.30 3.24

IT 18 35 44 52 70 87 110 142
ICCG(0)

CPU 0.01 0.06 0.13 0.23 0.62 1.29 2.68 6.21

IT 19 – – – – – – –
RSMICCG(1)

CPU 0.01 – – – – – – –

IT 18 – – – – – – –
SMWICCG(1)

CPU 0.00 – – – – – – –

IT – – – – – – – –
ICCG(1)

CPU – – – – – – – –

IT 67 224 345 471 818 1210 1944 3136
CG

CPU 0.01 0.20 0.49 0.97 3.15 7.94 22.46 67.22

Obviously, ICCG(1), and most cases of RSMICCG(1) and SMWICCG(1) fail to deliver an
approximate solution to x∗ due to break-down of the involved MIC(1) factorization. However,
the iterations with preconditioners based on MIC(0) factorization succeed to produce an ap-
proximate solution in all cases, and they also outperform the CG in both iteration numbers
and CPU times. For the preconditioned iterations based on MIC(0) factorization, we see that
the SMWICCG(0) is the fastest one. The iteration numbers of the RSMICCG(0) is smaller
than those of the ICCG(0), but the CPU times of the RSMICCG(0) are somewhat larger than
those of the ICCG(0), correspondingly. Roughly speaking, the numerical behaviour of the
RSMICCG(0) is comparable to that of ICCG(0).
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Figure 5.3a: Curves of ρ versus IT for
Example 5.3 when h−1 = 80. The
preconditioner uses MIC(0).
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Figure 5.3b: Curves of CPU versus h−1

for Example 5.3. The preconditioner uses
MIC(0).

Example 5.4. The coefficient functions are

a(ξ, η) = e
1

(ξ−0.5)2+(η−0.5)2+10 , and θ(ξ, η) = 1.

For different discretization stepsizes, numerical results are listed in Table 5.4 and depicted
in Figures 5.4a-5.4c.

Table 5.4. Iteration numbers and CPUs for Example 5.4

h−1 16 32 40 48 64 80 100 128

IT 22 38 46 55 71 88 111 143
RSMICCG(0)

CPU 0.02 0.07 0.16 0.30 0.78 1.60 3.56 7.95

IT 15 24 29 33 43 51 62 79
SMWICCG(0)

CPU 0.01 0.04 0.08 0.16 0.41 0.84 1.80 4.11

IT 29 56 69 83 110 138 174 223
ICCG(0)

CPU 0.02 0.10 0.20 0.37 1.00 2.00 4.20 9.24

IT 18 30 37 43 54 65 79 100
RSMICCG(1)

CPU 0.01 0.07 0.14 0.26 0.63 1.41 2.86 6.28

IT 16 27 32 37 45 55 69 88
SMWICCG(1)

CPU 0.01 0.05 0.09 0.18 0.44 0.96 2.04 4.62

IT 16 26 31 36 46 55 69 85
ICCG(1)

CPU 0.00 0.05 0.10 0.16 0.42 0.90 1.78 3.81

IT 36 69 86 104 137 171 213 274
CG

CPU 0.01 0.06 0.12 0.21 0.53 1.15 2.58 5.77

Analogously, we observe that the iterations with preconditioners outperform the CG itera-
tion in iteration numbers and CPU times. For the preconditioned iterations based on MIC(0)
factorization, we see that the SMWICCG(0) is the fastest one, then the RSMICCG(0), and the
ICCG(0) is the slowest one. For the preconditioned iterations based on MIC(1) factorization,
we see that the SMWICCG(1) is the fastest one. The iteration numbers and CPU times of
SMWICCG(1) are comparable to those of the ICCG(1). In addition, the RSMICCG(1) out-
performs the RSMICCG(0). SMWICCG(1) is somewhat slower, but is almost comparable to
SMWICCG(0).
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Figure 5.4a: Curves of ρ versus IT for
Example 5.4 when h−1 = 64. The
preconditioner uses MIC(0).
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Figure 5.4b: Curves of ρ versus IT for
Example 5.4 when h−1 = 64. The
preconditioner uses MIC(1).
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Figure 5.4c: Curves of CPU versus h−1

for Example 5.4. The preconditioner uses
MIC(0).
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Figure 5.4d: Curves of CPU versus h−1

for Example 5.4. The preconditioner uses
MIC(1).
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