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Abstract

The necessary and sufficient conditions for the existence of and the expressions for the
bisymmetric solutions of the matrix equations (I) A1 X1 B1+ A2X2Ba+- -+ Ay Xk By, = D,
(I1) A1 XB1 + A2 XBs + -+ + Ay XBy, = D and (III) (A1 XB1,A2XBa,--- , Ay XBy) =
(D1, D2, -+, Dy) are derived by using Kronecker product and Moore-Penrose generalized
inverse of matrices. In addition, in corresponding solution set of the matrix equations, the
explicit expression of the nearest matrix to a given matrix in the Frobenius norm is given.
Numerical methods and numerical experiments of finding the nearest solutions are also
provided.
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1. Introduction

Denote by R™ the set of all real n-component vectors, R™*™ the set of all m x n real
matrices and BSR"™™ ™ the set of all n x n real bisymmetric matrices (A symmetric matrix
A = (a;;) € R is called bisymmetric if a;; = apq1—jnt1—i for all 1 < i,5 < n). I,
represents the n x n identity matrix. |A||r, AT and AT stand for the Frobenius norm, Moore-
Penrose generalized inverse and transpose of a matrix A, respectively. On R™*"™ we define
inner product: (A, B) = trace(BT A) for all A,B € R™*" then R™*" is a Hilbert inner
product space and the norm of a matrix generated by this inner product is Frobenius norm.
For A = (a;;) € R™*", B = (b;j) € RP*?, let AQ) B € R™P*™ be the Kronecker product of A
and B.

Various aspects for the solution of linear matrix equations have been investigated. For
example, Baksalary and Kala [1], Chu [4], He [8], and Xu, Wei and Zheng [13] considered the
nonsymmetric solution of the matrix equation AXB + CXD = FE by using Moore-Penrose
generalized inverse and the generalized singular value decomposition of matrices, while Chang
and Wang [3], Jameson [9] and Dai [6] considered the symmetric conditions on the solution of
the matrix equations: AXAT + BYBT =(C, AX+YA=C, AX =YB and AXB = C. Zietak
[14, 15] discussed the I,-solution and chebyshev-solution of the matrix equation AX +Y B = C.
Dobovisek [7] discussed the minimal solution of the matric equation AX —YB = 0. Chu
[5], and Kucera [11] and Jameson [10] are, respectively, studied the nonsymmetric solution of
the matrix equation AXB + CXD = FE and its special case AX + XB = C. Mitra [12],
Chu [4] and the references therein studied the nonsymmetric solution of the matrix equation
(AXB,CXD)=(E,F).

In this paper, the following problems are considered
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Problem I. Given X € R"*™ A; € RP*™ B; € R"*7 (1 =1,2,--- ,k)and D € RP*9. Let

Hy ={[X1, X2, -+, Xi] : A1 X1B1 + Ao XaBo + -+ + Ay Xy By, = D, X; € BSR™ ™}, (1.1)
find [Xl,Xg, e ,)fk] € H; such that

X1, Xe] = (X7, X7l = (1X = X513+ X — X33+ + | Xe — X722
= min[X1,~~~,Xk]EH1 ||[X17 7Xk] - [Xfa aXI:]HF (1'2)

Problem II. Given X* € R"*" A; € RP*" B, € R"*9 (i=1,2,--- k) and D € RP*%. Let
Hy = {X € BSR™™ "™ . A1 XBy +AXBy +---+ AkXBk = D}, (13)

find X € Hs such that R
IX = X*||p = min | X — X*||p. (1.4)
X€eH,

Problem III. Given X* € R"*" A; € RPi*™ B, € R"*% and D; € RPi*% (i =1,2,--- k).
Let
H; = {X € BSR"*" . A1 XB = Dl,AQXBQ =Dy, ,AkXBk = Dk}7 (15)

find X € Hj such that
1% = X*llr = guig X = X"|r. (16)

Using Kronecker product and Moore-Penrose generalized inverse of matrices, the necessary
and sufficient conditions for the existence of and the explicit expressions for the solution of
Problem I, IT and III are derived. Numerical methods and numerical experiments of finding the
nearest solutions are also provided.

2. Solving Problems I, IT and III

For matrix A € R™*", denotes by vec(A) the following vector containing all the entries of
matrix A:

’UGC(A) = [A(]-a :)a A(Qv :)7 e 7A(na :)]T € Rmnv (21)

where A(4, 1) denote ith row of matrix A. For vector x € R™”, denote by vec;,*(x) the following
matrix containing all the entries of vector x:

vec, H(x) = : € R™", (2.2)
X[(n—1)n+1:n27

where x(i : j) denotes elements ¢ to j of vector x.
Let )
vec(BSR""™) = {vec(A) : A€ BSR"*"} C R™, (2.3)

then the dimension of the subspace vec(BSR™ ") is r = (n+1)?/4 when n is add or 7 = n(n+
2)/4 when n is even. Suppose wy,ws, -+ , w, is an orthonormal basis-set for vec(BSR"*"). For
example, suitable w; for n = 3 might be wy = [\%, 0,0,0,0,0,0,0, %]Ta w2 = (0,3,0,3,0,3,0,
2,017, wsy = [0,0, %,0,0,0, %,O,O]T, Wy =1[0,0,0,0,1,0,0,0,0]T. Consequently

W = [wy,wa, - ,w,] € R™ X" (2.4)
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is a basis-matrix for vec(BSR"*™) and
WTW = I,, RIW] = vec(BSR™"), RIW'] = R", (2.5)

where R[W] (or R[WT]) denotes the range of W (or WT).
For bisymmetric A, let véc(A) denotes the vector of coordinates of vec(A) with respect to

the basis-set wy, wa, - -+ , wy, i.e., with respect to the columns of W. Then, in view of (2.3),(2.4)
and (2.5),
vec(A) = Woec(A) € R”z,ﬁé“c(A) = Whvec(A) € R" (2.6)
and
vec, '(Wx) € BSR™" (2.7)

for any vector x € R".
The following lemma 2.1 and 2.2 are well known results, see, for instance, Baksalary and
Kala [1] and Ben-Israel and Greville [2].

Lemma 2.1. For any matrices A, B and X in suitable size, one gets
vec(AXB) = (A(RQ) B" Jvec(X). (2.8)

Lemma 2.2. The matriz equation AX = B, with A € RP*™ and B € RP*™, has a solution
X € R™*" if and only if AATB = B. In that case it has the general solution X = ATB +
(I, — AT A)G, where G € R™ " is arbitrary matriz.

Lemma 2.3. Given A € RP*™ and B € RP*", then the optimal approximation problem

i I, - ATA)X — B 2.9
huin | (Zm ) | F (2.9)

has a solution which can be expressed as X = B + ATG, where G € RP*"™ is arbitrary matriz.

Proof. Applying the properties of Moore-Penrose generalized inverse and the inner product
defined in space R"™*™, we have

H(Im - A+A)X - BH%‘ = ((Im — A+A)X =B, (In — A+A)X - B>
— (L — AT AY(X — B), (Im — ATA)(X — B)) + (A AB, A* AB)
= |(Im — A*A)(X = B)|I% + |A*AB|%.

Hence,

min  ||(Ln — AYA)X — B||p
XeR‘Ian

if and only if

i I, — AT A)(X — B)||r.
o (T )N iira

It is clear that X = B+ ATG, with G € RPX™ be arbitrary, is the solution of the above optimal
approximation problem. So, the solution of the optimal approximation problem (2.9) can be
expressed as X = B+ ATG.

The following theorems are the mainly results in this paper.

Theorem 2.1. Given X € R"*" A, € RP*" B; € R"*1 (i =1,2,---,k) and D € RP*1.
Assume W; € R" %™ is the basis-matriz for subspace vec(BSR™*™) et

Ao = ( (A QB)W1, (A Q B3 )Wa, -+, (A @ B )W ), (2.10)
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then the set Hy is nonempty if and only if
AgAfvee(D) = vee(D). (2.11)
When the condition (2.11) is satisfied, Hy can be expressed as
H, = { [vec;ll(Wla(l i71)), e ,vec;kl(Wkoz(rl +o e+ i+ rg)]

o = Afvec(D) + (I 4ryggr, — AJ Ao)G, G € RMFr24re 4

o ) (2.12)

In Hy, there exists an unique [X1, Xa, -+, Xi| that makes (1.2) held and
X, = vec;}[WioQ(rl drodd i+l Aot i=1,2,- K, (2.13)

where

Wilvee(X7)

Wlvec(X3)
a = Agvec(D) + (Iny4ry 4 tr, — Ay Ao) . (2.14)

Wlvec(X})

Proof. If the set H; is nonempty, then the matrix equation

A X 1By + A XoBos+ -+ A Xy B, = D (215)

has a solution X; € BSR(™>") (j =1,2,--- k). From Lemma 2.1, we have
(A1 Q) BY Jvee(X1) + (A2 Q) BY Jvee(Xa) + -+ - + (Ax (X) B Jvec(Xi) = vee(D),  (2.16)
which is, in view of (2.6), equivalent to
(A1 Q) BI )Wrvee(X) + (A2 Q) By ) Wavee(Xa) + (Ax Q) Bi ) Wivee(Xy) = vec(D),

ie.,

( (A QB)Wi, (A2 Q B3 )Wa, -+, (Ax @ B{)Wi ) : =wvece(D).  (2.17)

vee(Xi)

Hence, we have from Lemma 2.2 and (2.10) that (2.11) is held.
Conversely, if (2.11) is held, we have from Lemma 2.2 that (2.17) has a solution which has
explicit expression as

a= ) = Afwvec(D) + (Iry4rotir, — Ag A0)G, (2.18)

vee(Xr)

where G € R™ 72T F7% ig arbitrary. Hence, vec(X;) = Wyvee(X;) = Wia(ry +ra+---+ri—1+
liri+ra+--4r) (1=1,2,--- k), where the first equality gets from (2.6), are the general
solution of the equation (2.16), i.e., X; = vec, H{Wia(ri+ro+- - +ri1+1:ri+ro+-+1)] €
BSR™*™ which gets from (2.7), are the general solution of the matrix equation (2.15). This
implies that the set H; is nonempty.
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In addition, H; is a close convex set, so there is an unique [X'l, Xg, cee Xk] € H, that makes
(1.2) held. Choose W; such that (W;, W;) (i = 1,2,--- k) is an n2 x n2 orthogonal matrix.
Using the invariance of the Frobenius norm under orthogonal transformations, we have from
(2.6) and (2.18) that

11X, Xo, -, Xo] = [T, X5, X

2

vec(X1) vec(X7Y)
vec(Xz) vec(X3)
vee(Xk) vec(X7}) . 2
Wi 0 -~ 0 vee(Xq) vec(X7)
0 Wy -~ 0 vec(Xs) vec(X3)
0 0 - Wi vee(Xk) vec(X}) »
Wi 0 0 vec(XT) 2
0 UER 0 + + ’UeC(X;)
- : . . : [ AO vec(D) + (IT1+T2+---+rk - Ao AO)G ] — .
o 0 - W vec(X}) "
Wivec(X7) ? ElTvec(Xf)
W3 vee(X3) Wlvec(X3)
= ||(Ipy £rottrp — AF A0)G + A vee(D) — : + :
Wy vee(X) F Wlvee(X;) .

Hence, there exists [X1, Xo, -, Xi] € Hy such that ||[X1, Xo, -+, X3| = [ X7, X3, X}]|% =
min is equivalent to exist G € R™+"2+ "+ guch that

Wilvee(X3)
Wlvec(X3)

= min.

(Iry 4y ttr, — A Ao)G + Agvee(D) —
Wlvec(X}) »

From Lemma 2.3, we know that the solution of the above optimal approximate problem is

Wilvee(X3)
Wlvec(X3)
, — Afvec(D) + Af Go,

Wlevec(X})

where Go € R" T2+ ig arbitrary. Takeing G into (2.18) and furthermore using (2.6) and
(2.7) we know that the solution of Problem I can expressed as (2.13).
Similar to the proof of Theorem 2.1, we can prove the following theorems 2.2 and 2.3.

Theorem 2.2. Given X* € R"*™ A; € RP*™", B, € R"*? (i = 1,2,---,k) and D € RP*1.
Assume W € RV X" is the basis-matriz for subspace vec(BSR"™™ ™), let

Ap=( (AiQ®BT)+ (A2 ®B3)+ -+ (A, Q B[) ) W,
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then the set Ho is nonempty if and only if
ApAfvec(D) = vee(D).
Under this condition, Hy can be expressed as
Hy = {vec,"(Wa) € BSR™" : a = Afvec(D) + (I, — A Ayg)G,G € R"}.
In Hs, there exists an unique X that makes (1.4) held and
X = vec; WA vee(D) + W (I, — AF Ag)W T vec(X*)).

Theorem 2.3. Given X* € R"*" A; € RPi*" B; € R"*% (i=1,2,---,k) and D; € RPi*%,
Assume W € R™*" is the basis-matriz for subspace vec(BSR™™ ™), let

A ® BT vec(Dy)
Ay ® BT vec(D3)

A = ; W, Dy = . :
A, @ BY vec(Dyg)

then the set Hs is nonempty if and only if
Ao A§ Do = Dy.
Under this condition, Hs can be expressed as
Hjy = { vec,'(Wa) € BSR™" : = Aj Do + (I, — Aj A)G,G € R" }.
In Hs, there exists an unique X that makes (1.6) held and
X =wec, ' WAS Do + W (I, — AT Ag)W T vec(X™)].

3. The Algorithm Description and Numerical Examples

The discussion in section 2 provides us with a recipe for finding the solutions of Problem I,
II and III. In summary, the method, for example Problem I, is as follows.

(1). Taking an orthogonal basis-set &1,82, -+ , &, € R™ for vec(BSR™*™) (i=1,2,---,k),
then construction a basis-matrix W; = (1,8, -+, &) € R X7 for vec(BSR™*M).

(2). Lot Ay = ( (A4 @ BI Wi, (As @ BI)Wa. - . (Ax @ BI)W ).

(3). If Af Agvec(D) = vec(D), go to step (4), otherwise go to step (5).

@)

(5)

. According to (2.14) and (2.15) calculate X; (i =1,2,---,k).
. Stop.

Using the above compute steps for solving Problem I, we now give an example to illustrate that
the results obtained in this paper are correct.

Example 1. For Problem I, taking k =3,p=4,9g=3,n1 =3,n2 =4,n3 =5 and

3.1 -7 6 -2

-6 3 1 _‘3_2_‘32 55 7 5 =9
Xf=| 25 4], X3=| § . 5| X=-43 54 -1/,
17 =9 - 3 9 3 -5 4 31 38

-3 6 -1 7 -9
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4 -3 -2 2 2 3 —4 1 2 3 4 =5
-2 4 1 2 -1 2 3 -2 3 -4 5 1
A= 1 3 -2 A2 = 3 2 1 —4 As = 2 -3 2 4 5 |
-1 2 3 1 2 3 -1 1 2 2 -2 2
1 -2 -1
2s oy (PR )| (mep
Bi=| 2 3 -1 |,By= Bs=| 2 1 -1 |,D=
5 = 3 4 1 =2 5 3 9 75 6 60
3 2 -1 L1 33 19 32

It is easy to verify that these given matrices satisfy the conditions of the Theorem 2.1.
After calculating on the microcomputer through making program, we have an unique X; €
BSR3*3 X, € BSR** and X3 € BSR®*® as follow:

2.7080 —2.2338 2.2628 —0.1725
—2.2338 2.0599 —4.0876 2.2628

2.2628 —4.0876 2.0599 —2.2338 |’
—0.1725 2.2628 —2.2338 2.7080

R —2.5545 2.9599 —1.4397 .
X = 2.9599 1.4630 29599 |,Xy =
—1.4397 2.9599 —2.5545

—1.5011 1.1569 —1.4325 —2.0473 —1.4126

1.1569 1.3217 2.3337 —1.0599 —2.0473

X3=| —1.4325 2.3337 7.8856 2.3337 —1.4325
—2.0473 —1.0599 2.3337 1.3217 1.1569

—1.4126 —2.0473 —1.4325 1.1569 —1.5011

Conclusions. This paper considered the bisymmetric conditions on the solution of the matrix
equations: AleBl + AQXQBQ + -4+ AkaBk = D7 AlXBl + AQXBQ + 4 AkXBk =D
and (A1 X By, A2 X Bs, -+ , Ay XBy) = (D1,Ds,--- ,Dy). Using the ideal that any real n x n
bisymmetric matrix A can be described by an (n + 1)?/4-component vector when n is add or
an n(n + 2)/4-component vector when n is even, together with Kronecker product of matrices,
solve these equations can be transformed into solves equation Az = b. This method can also be
used to finding Toeplitz, Hankel, Circulant or Browian matrix solutions of these equations. Of
course, this method can only explore the small size of matrices because the size of the resulting
matrices will, in general, be very large by using Kronecker products.
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