
Journal of Computational Mathematics, Vol.22, No.6, 2004, 895–904.

A BRANCH AND BOUND ALGORITHM FOR SEPARABLE
CONCAVE PROGRAMMING ∗1)

Hong-gang Xue
(Department of Mathematics, Faculty of Science, Xi’an Jiaotong University,

Xi’an 710049, China)
(Department of Mathematics, Faculty of Science, Xi’an University of Technology,

Xi’an 710049, China)

Cheng-xian Xu Feng-min Xu
(Department of Mathematics, Faculty of Science, Xi’an Jiaotong University,

xi’an 710049, China)

Abstract

In this paper, we propose a new branch and bound algorithm for the solution of large
scale separable concave programming problems. The largest distance bisection (LDB)
technique is proposed to divide rectangle into sub-rectangles when one problem is branched
into two subproblems. It is proved that the LDB method is a normal rectangle subdivi-
sion(NRS). Numerical tests on problems with dimensions from 100 to 10000 show that the
proposed branch and bound algorithm is efficient for solving large scale separable concave
programming problems, and convergence rate is faster than ω-subdivision method.

Mathematics subject classification: 49M37, 65K05, 90C30.
Key words: Branch and bound algorithm, Separable programming, Largest distance bisec-
tion, Normal rectangle subdivision, ω-subdivision.

1. Introduction

The nonconvex programming has come a long way from 60th years of last century (see[6],
[9], [4]). It is an important area of mathematical programming, and has many applications in
economics, finance, planning, and engineering design. The separable concave programming is
a kind of special problems in nonconvex programming. This paper studies the solution of the
separable concave programming over a polytope in the form

max{f(x)|x ∈ V, l ≤ x ≤ u}, (SCP)

where the objective function has the format

f(x) =
n∑

i=1

fi(xi), (1.1)

fi(xi), i = 1, 2, . . . , n are convex functions, x = (x1, x2, . . . , xn)T . The feasible region is the
intersection of the polytope V and the rectangle with low bounds l = (l1, l2, . . . , ln)T and upper
bounds u = (u1, u2, . . . , un)T .

Algorithms have been proposed to solve problems (SCP). Falk and Soland(1969) reported a
branch and bound algorithm in [1], Thai Quynh Phong et al(1995) proposed a decomposition
branch and bound method in [8] to find the global solution of indefinite quadratic programming
problems, and tests on problems with 20 concave variables and 200 convex variables show the
efficiency of the method. Konno (2001) proposed a branch and bound algorithm to solve large

∗ Received May 13, 2003; final revised December 11, 2003.
1) This work is supported by National Natural Key Product Foundations of China 10231060.

896 H.G. XUE, C.X. XU AND F.M. XU

scale portfolio optimization problems with concave transaction cost (see [2],[4]). The algorithm
is based on linear underestimations to objective functions, and is successively used to solve large
scale optimal portfolio selection problems with 200 assets and 60 simulated scenarios based on
the MAD model (see [2]).

In this paper, we will propose a new branch and bound method to solve the large scale
separable concave programming problems. A rectangular subdivision process (largest distance
bisection, LDB) is proposed. Linear overestimations to objective f(x) are employed to replace
f(x), and problems

max{gi(x)|x ∈ V, li ≤ x ≤ ui} (LOP)

are successively solved, where the objective function gi(x) =
∑n

j=1 gi
j(xj), and gi

j(xj), j =
1, 2, . . . , n, are linear overestimations to functions fj(xj) over the set Si = [li, ui].

Rectangle subdivision processes play an important role in branch and bound methods. As
will be seen later, the concept of ”normal rectangular subdivision” introduced in reference
(3) will be concerned in the method proposed in this paper. The class of normal subdivision
methods includes the exhaustive bisection, ω-subdivision and adaptive bisection (see [8]). A
new bisection technique will be proposed and it will be shown that the proposed bisection
method belongs to the class of normal rectangular subdivisions. Experiments on quadratic
functions with different dimensions show that the iterative process with the proposed bisection
technique can converge effectively. The quadratic function is a type concave function when
we set its second order coefficients negative. The dimensions of tested problems ranges from
100 to 10000, large scale problems. The coefficients of these tested problems are randomly
generated from uniform distribution. Tested functions are very important in economical and
financial field, and usually used to express utilities or costs (see [5]). These functions often
exhibit concave characteristics when they are used to denote cost functions or utility functions
under the rule of margin cost (utility) decrease. When net returns or expected utilities are
maximized, the resulting problem usually is a separable concave programming (see [7],[5],[2],).

A series of numerical experiments is presented and shows the efficiency of the proposed
bisection method. It also shows that the algorithm can solve problems of practical size in an
efficient way.

The rest of the paper is organized as follows. In Section 2, we will describe the new branch
and bound algorithm. In section 3, we discuss the construction of a normal rectangular sub-
division, and the largest distance bisection strategy will also be presented in this section. In
section 4, we conduct a series of numerical tests, and present comparisons with some different
bisection methods. Conclusions are given in section 5.

2. A Branch and Bound Algorithm

In this section, we describe the branch and bound method which bases upon a chosen normal
rectangular subdivision process.

Let S0 = {li ≤ xi ≤ ui, i = 1, 2, . . . , n} be a rectangle. We replace the convex functions
fi(xi) in f(x) by an overestimated linear function g0

i (xi) over S0(see Figure 1),

g0
i (xi) = δixi + ηi, i = 1, 2, . . . , n (2.1)

where

δi =
fi(ui) − fi(li)

ui − li
, ηi = fi(li) − δili, i = 1, 2, . . . , n. (2.2)

Let

g0(x) =
n∑

i=1

g0
i (xi),

then g0(x) is the convex envelope of the function f(x) over the set S0. We solve the linear

A Branch and Bound algorithm for Separable Concave Programming 897

�

�

�
�

�
�

�
�

�
��

cj

0

fi(xi)

xili ui

fi(xi)

g0
i (xi)

Figure 1: The overestimated linear function

overestimated approximation to (SCP),

max{g0(x) =
n∑

i=1

g0
i (xi)|x ∈ V, l ≤ x ≤ u} (Q0)

(Q0) is a linear programming problem. We use an interior point method to solve (Q0) with
large scale. Let x̄0 be an optimal solution of (Q0), then we obtain an upper bound g0(x̄0) and a
lower bound f(x̄0) of the optimal value f(x∗) of the problem (SCP) according to the following
theorem.

Theorem 2.1. Let x̄0 be an optimal solution of problem (Q0) and x∗ be a global optimal solution
of problem (SCP). Then the following relation holds

g0(x̄0) ≥ f∗ ≥ f(x̄0) (2.3)

where f∗ = f(x∗).

Proof. It follows from g0(x) ≥ f(x), ∀x ∈ [l, u] that

g0(x̄0) = max{g0(x)|x ∈ V, l ≤ x ≤ u}
≥ max{f(x)|x ∈ V, l ≤ x ≤ u}
= f∗ ≥ f(x̄0).

This gives the conclusion.

Rectangular subdivision processes can be used to subdivide a rectangle into a series of sub-
rectangles by means of hyperplane parallel to certain facets. The generation of the family of
sub-rectangles can be represented by a tree with root S0 and nodes. A node is a successor of
another one if and only if it represents an element of the latter node. An infinite path in the
tree corresponds to an infinite nested sequence of rectangles Sk, k = 0, 1,

Definition 2.1. (Horst and Tuy [3]) Suppose gk(x) =
∑n

i=1 gk
i (xi) is the linear approximation

to f(x) over Sk = {x | lki ≤ xi ≤ uk
i } such that gk

i (lki) = fi(lki) and gk
i (uk

i) = fi(uk
i), x̄k is the

optimal solution of the problem that maximizes the function gk(x) over the intersection of V
and Sk. A nested sequence Sk is said to be normal if

lim
k→∞

|gk(x̄k) − f(x̄k)| = 0 (2.4)

A rectangular subdivision process is said to be normal if any nested sequence of rectangles
generated from the process is normal.

We shall discuss some variants of a normal rectangular subdivision(NRS) process in the
next section.

898 H.G. XUE, C.X. XU AND F.M. XU

Theorem 2.1 indicates that if
g0(x̄0) − f(x̄0) ≤ ε, (2.5)

is satisfied with a given tolerance ε, then x̄0 is an approximate solution of (SCP) with error
less than ε. If (2.5) does not hold, we will use an NRS process to divide the problem (SCP)
into two subproblems:

max{f(x) =
n∑

i=1

f(xi)|x ∈ V, x ∈ S1} (Q1)

and

max{f(x) =
n∑

i=1

f(xi)|x ∈ V, x ∈ S2} (Q2)

where the sub-rectangles S1 and S2 are generated from S0,

S1 = {x|ls ≤ xs ≤ hs, lj ≤ xj ≤ uj, j = 1, 2, . . . , n, j �= s}, (2.6)

S2 = {x|hs ≤ xs ≤ us, lj ≤ xj ≤ uj , j = 1, 2, . . . , n, j �= s}, (2.7)

Using a similar way, we can get an overestimated linear programming to each of the branched
subproblems (Q1) and (Q2) by replacing the function f(x) with new overestimated linear func-
tions g1(x) and g2(x), where

g1(x) =
∑
i�=s

g0
i (xi) + g1

s(xs) (2.8)

and
g2(x) =

∑
i�=s

g0
i (xi) + g2

s(xs). (2.9)

The following is the overestimated linear programming to problem (Q1),

max{g1(x)|x ∈ V, x ∈ S1} (Q1)

If problem (Q1) is infeasible, then problem (Q1) is also infeasible, and we will delete problem
(Q1). Otherwise, let x̄1 be an optimal solution of (Q1), then we obtain an upper bound g1(x̄1)
and a low bound f(x̄1) for the optimal value f(x1) of problem (Q1) where x1 is an optimal
solution of (Q1),. If g1(x̄1) < f(x̄0), then f(x1) ≤ g1(x̄1) < f(x̄0) (according to theorem 2.1),
and problem (Q1) will be deleted from further consideration. Otherwise, if g1(x̄1)− f(x̄1) < ε,
then problem (Q1) is solved with x̄1 being an approximate solution, if f(x̄1) ≥ f(x̄0), x̄1 will
replace x̄0 as an approximation to the optimal solution. If g1(x̄1) − f(x̄1) ≥ ε, the set S1 will
further be divided into two subsets to generate two subproblems using above NRS process as
(2.6) and (2.7), Repeat this process until no subproblems exists.

Now we give the detailed description of the proposed branch-and-bound algorithm.

Algorithm 1. The Branch-and-Bound Algorithm
Step 0. Set k = 0, l0 = l, u0 = u, give ε > 0.

Solve (Q0) to get the optimal solution x̄0, and set Q = φ.
If g0(x̄0) − f(x̄0) ≤ ε, then x̃ = x̄0, f̃ = f(x̄0), go to Step 6; otherwise go to Step 5;

Step 1. Select a problem from Q and set it as (Qk):

max{f(x)|x ∈ V, x ∈ Sk} (Qk)

Q = Q\(Qk); and solve the linear overestimated problem (Qk):

max{gk(x)|x ∈ V, x ∈ Sk}. (Qk)

If Qk is infeasible, go to Step 6, else let the optimal solution be x̄k.
Step 2. If gk(x̄k) ≤ f̃ , go to Step 6.

A Branch and Bound algorithm for Separable Concave Programming 899

Step 3. If gk(x̄k) − f(x̄k) > ε, go to Step 5;
Step 4. If f(x̄k) ≥ f̃ , set x̃ = x̄k, f̃ = f(x̃);
Step 5. Divide Sk into Sk,1 and Sk,2 according to a chosen NRS process, generate two

subproblems and place them into Q;
Step 6. If Q �= φ then set k = k + 1 and go to Step 1, else terminate with x̃ being an ε

optimal solution of (Q0).

Theorem 2.2. The sequence x̃ generated by the algorithm above converges to an optimal solu-
tion of (SCP) as k → ∞.

The proof of this theorem is similar to the proof of Theorems 3.18 in [6] and the proof of
Theorem 3 in [4] and hence is omitted here.

3. Normal Rectangle Subdivisions

Various NRS processes for rectangle subdivision are available (see [8]). In this section, we
present at first three bisection strategies which are often used, and then propose a new bisection
technique called the largest distance bisection(LDB). Suppose that a rectangle Sk = {x | lki ≤
xi ≤ uk

i , i = 1, 2, · · · , n} is selected for further division in Alg 1. For simplicity, we will denote
the two sub-rectangles obtained from a bisection method as S+1, S+2, that is

S+1 = {x | lks ≤ xk
s ≤ hs, lkj ≤ xk

j ≤ uk
j , j = 1, 2, . . . , n, j �= s}, (3.1)

S+2 = {x | hs ≤ xk
s ≤ uk

s , lkj ≤ xk
j ≤ uk

j , j = 1, 2, . . . , n, j �= s}. (3.2)

Different choices of the index s and the point hs gives different bisection techniques.
Exhaustive bisection
When the bisection index s is determined using the following rule

(uk
s − lks)2 = max{(uk

i − lki)2, i = 1, 2, . . . , n},
and hs = (lks + uk

s)/2, we get the well-known exhaustive bisection technique (see [8],[9]). That
is, the middle point of the longest edge of the rectangle is selected to divide the rectangle into
two sub-rectangles. It has been shown that any nested sequence of rectangles generated with
the exhaustive bisection converges to a single point.
ω-subdivision
With the ω-subdivision technique, the bisection index s is determined using the following rule

gk
s (x̄k

s) − fs(x̄k
s) = max{gk

i (x̄k
i) − fi(x̄k

i), i = 1, 2, . . . , n}, (3.3)

hs = x̄k
s (see [8],[2]), where x̄k is the optimal solution of problem (Qk). The index s gives the

greatest difference between gk
i (x̄k

i) and fi(x̄k
i).

Adaptive bisection
In the adaptive bisection technique, the index s is determined from

|νk
s − x̄k

s | = max
i

|νk
i − x̄k

i |,
hs = (νk

s + x̄k
s)/2, where x̄k is the optimal solution of problem (Qk) and νk

i ∈ argmin{fi(lki),
fi(uk

i)}.
It has been shown in [8],[9] that all the exhaustive bisection, ω-subdivision rules and adaptive

bisection are normal rectangular subdivision processes.
At the rest of this section, we will propose the largest distance bisection (LDB) method

and show that the proposed bisection is also a NRS process.
In the ω-subdivision technique, the index s is determined from the largest distance between

gk
i (x̄k

i) and fi(x̄k
i) at the point x̄k that is the optimal solution of problem (Qk). With the

largest distance bisection, the index s is determined by the largest difference between gk
i (xi)

and fi(xi) over the subrectangle Sk. In order to determine such an index, we need to find the

900 H.G. XUE, C.X. XU AND F.M. XU

largest distance between gk
i (xi) and fi(xi) over the interval [lki , uk

i] for all i = 1, 2, · · · , n and
then find the index s from the n largest distance. Based on this idea, the largest bisection can
be described as follows.

Algorithm 2. Largest Distance Bisection(LDB)
Step 1. Calculate the slope of line of the overestimation function gk

i (xi)

δi =
fi(uk

i) − fi(lki)
uk

i − lki
, i = 1, 2, . . . , n

Express the distance between gk
i (xi) and fi(xi) for xi ∈ [lki , uk

i]

di(xi) = gk
i (xi) − fi(xi) = δixi + ηi − fi(xi), i = 1, 2, . . . , n.

Step 2. Maximize the distance function di(xi) to get the solution hk
i . Let di(hk

i) be the
maximum.

Step 3. Determine the index s from

ds(hk
s) = max{di(hk

i), i = 1, 2, . . . , n}. (3.4)

Step 4. Determine the bisection point hk
s . One method is to set hk

s = x̄k
s , the other is to

set hk
s as the point calculated at Step 2.

In first case in Step 4, ω-subdivision is a special case of the largest distance bisection; In
second case, the bisection point hk

s is the tangent point of the line parallel to the line of the
linear overestimate function gk

s (xs) (see Figure 2).

�

�

�
�

�
�

�
�

�
��

cs

0

fs(xs)

xslks uk
s

�
�

�
�

�
�

�
��

hk
s

������
�

�
��

�
gk,1

s
���

gk,2
s � fs(xs)

�
gk

s

Figure 2: New bisection scheme

We give following lemma 3.3 to insure that the bisection point hk
s is neither near left edge

nor near right edge.

Lemma 3.3. Suppose Sk is an infinite nested sequence of rectangles, k = 0, 1, 2, . . ., hk
j is

the tangent point of the line parallel to the line of the linear overestimate function gk
j (xj),

j = 1, 2, . . . , n, hk
s is the bisection point calculated by the second method at Step 4 in Alg 2,

then
hk

s ≥ lks + ε
′
(uk

s − lks), (3.5)

and
hk

s ≤ uk
s − ε

′
(uk

s − lks), (3.6)

holds. Where 0 < ε
′ ≤ ε

2nLsηs
, ε is the tolerance given at Step 0 in Alg 1, Ls is given by (3.7)

and ηs is the positive constant.

A Branch and Bound algorithm for Separable Concave Programming 901

Proof. Suppose (3.5) is not hold, then

hk
s − lks < ε

′
(uk

s − lks),

Since fs(xs) is Lipschitzian in any bounded interval([10], Theorem 10.4), then

|gk
s (hk

s) − fs(hk
s)| = |fs(lks) +

fs(uk
s) − fs(lks)
uk

s − lks
(hk

s − lks) − fs(hk
s)| ≤ 2ηs(hk

s − lks),

where ηs is a positive constant. Let hk = (hk
1 , hk

2 , . . . , h
k
n)T ,

Ls = hk
s − lks , (3.7)

then
|gk

s (hk
s) − fs(hk

s)| < 2Lsηsε
′ ≤ ε

n
.

Since gk
s (hk

s) − fs(hk
s) = max

i
{gk

i (hk
i) − fi(hk

i)}, then we have

|gk(hk) − f(hk)| ≤ ε.

This show that hk is the approximate solution of the subproblem Qk according to Alg 1, so
rectangles Sj , j > k does not exist. This result contrary to lemma’s suppose that Sk is a
infinite nested sequence of rectangles, so (3.5) hold.

Similarly, we also can show that (3.6) hold.
This lemma shows that when the algorithm LDB is used to determine the bisection point

hk
s , then (3.5) and (3.6) will hold with ε′ > 0 sufficiently small. The following lemma will be

used in the proof of the theorem 3.3 that shows LDB a NRS process.

Lemma 3.4. Suppose Sk is an infinite nested sequence of rectangles, k = 0, 1, 2, . . ., and hk
j

is the tangent point of the line parallel to the line of the linear overestimate function gk
j (xj),

j = 1, 2, . . . , n. Let
dk

max = max
i

{dk
maxi

}, (3.8)

and
dk

maxi
= max

xi∈[lki ,uk
i]
{di(xi)} = gk

i (hk
i) − fi(hk

i). (3.9)

If we select the bisection index s and bisection point hk
s according to LDB method, then exist a

subsequence dkt
max of dk

max convergence to zero when t → ∞.

Proof. Because the nested sequence of rectangles is infinite and the edges of any rectangle
are finite (n), there is an edge of the rectangle Sk that is divided infinitely. Thus we obtain
an infinite nested interval sequence, say [lkt

s , ukt
s], t = 1, 2, Suppose the bisection point

of [lkt
s , ukt

s] is hkt
s at ktth iteration, and consider the subinterval [lkt+1

s , u
kt+1
s] with l

kt+1
s =

lks , u
kt+1
s = hk

s (see Figure 3). Let h
kt+1
s be the bisection point at the kt+1th iteration. Let

M1, M2, N1, N2, N3 and P be points given in Figure 3. Since M1M2 = dkt
max, we have

N1N3 ≤ M1M2, and

dkt+1
max = N1N2 = N1N3 − N2N3 ≤ M1M2 − N2N3.

From the triangle PM1M2 we have

N2N3

M1M2
=

h
kt+1
s − lkt

s

hkt
s − lkt

s

i.e.

N2N3 = M1M2
h

kt+1
s − lkt

s

hkt
s − lkt

s

.

Then from (3.5) and (3.6) we obtain

hkt+1
s − lkt

s ≥ ε
′
(hkt

s − lkt
s).

902 H.G. XUE, C.X. XU AND F.M. XU

�

�

�
�

�
�

�
�

�
�

�
�

�

cs

0

fs(xs)

xslkt
s ukt

s
�

�
�

�
�

�
�

�
�

�
�

hkt
s

�������
�

�
�

��

��������M1

M2

N1

N2

N3

P

h
kt+1
s

Figure 3: Largest Distant Bisection

Hence, we got
dkt+1

max ≤ N1N2 − N2N3 ≤ (1 − ε
′
)M1M2 = (1 − ε

′
)dkt

max,

where ε′ > 0 is a small constant. This inequality holds for all t = 1, 2, · · · , and we have

dkt
max → 0, when t → ∞.

This completes the proof.
The following theorem shows that the largest distance bisection also is an NRS process

whenever the bisection point is given from these two possibilities.

Theorem 3.5. The largest distance bisection process is a normal rectangular subdivision pro-
cess.

Proof. Suppose Sk, k = 1, 2, ..., is a nested sequence of rectangles generated by the largest
distance bisection process. Let the bisection index be s, and the bisection point hs ∈ [lks , uk

s].
If we select the bisection point as hk

s = x̄k
s , then LDB is a NRS process (see [3], Proposition

VII 17).
For the another choice of the bisection point, it is clear that {dk

max} is a monotone decreasing
sequence. Lemma 3.4 indicates that there is a subsequence dkt

max of dk
max that converges to zero,

thus we have
dk

max → 0, and gk
i (x̄k

i) − fi(x̄k
i) → 0, when k → ∞. (3.10)

which shows
|gk(x̄k) − f(x̄k)| → 0, when k → ∞.

This show that the largest distance bisection is a NRS process, and the proof is completed.

4. Numerical Tests

We conducted numerical experiments of the proposed algorithm on the following quadratic
functions with dimensions from 100 to 10000, large scale problems. As we pointed out that these
problems occurs very often in economics and financial fields. We compare the proposed largest
distance bisection with the available normal subdivision process. Because the ω-subdivision is
more efficient than the exhaustive bisection and adaptive bisection (see[8]), we only compare the
largest distance bisection (LDB) with the ω-subdivision. The program was coded by MatLab
and tested on Pentium Pro 1794MHZ with 256 Mbyte memory. The parameter value ε = 10−8

is used to terminate the iteration for tests on both the subdivisions. We used the breadth first
rule for choosing subproblems in step 1 at Alg 1.

A Branch and Bound algorithm for Separable Concave Programming 903

Because the quadratic function is a type concave function when we set the coefficient of
the second-order negative, tests are made on the following quadratic function with different
dimensions,

f(x) =
n∑

i=1

fi(xi),

with constraints

V = {x|x1 + . . . + xn = 1}, and li ≤ xi ≤ ui, li = 0, ui = 1, i = 1, 2, . . . , n, (4.1)

where
fi(xi) =

1
2
aix

2
i + bixi + ci, i = 1, 2, . . . , n.

The coefficients ai(> 0), bi and ci are randomly generated in regions [1, 2], [−1, 1], [0, 1] respec-
tively in uniform distribution. The function f(x) is convex, and the problem with maximizing
f(x) is a concave type optimization problem.

Table presents the numerical results for the problem with dimension n = 1000. In the table,
the row titled with ω-subdivision gives the result obtained using the ω-subdivision technique
to divide rectangles. LDB denotes the largest distance bisection (LDB) with ’Meth1’ being
hk

s = x̄k
s , and ’Meth2’ denoting that hk

s is the second case given in Step 4 of Alg 2. Every
problem is tested in 10 times, and the numbers of minimal, maximal, average iterations (Min
iter, Max iter, Avg iter) and mean CPU times (Time) are given in tables. It can be observed
from Table 1 that the proposed largest bisection technique is efficient.

Table 1. Quadratic function numerical results
Bisection rule Min iter Avg iter Max iter Time(seconds)

ω -subdivision 1 3.8 37 35.0816

Meth1 1 2.6 18 18.4734
LDB

Meth2 1 1.8 5 16.5971

Table gives the numerical results for different dimensions with the largest distance bisection
and the bisection point being determined by Meth2.

Table 2. Different dimension numerical tests using LDB-Meth2
Dimension Min iter Avg iter Max iter Time(seconds)

100 1 4 19 12.2735
500 1 2.6 17 12.1770
1000 1 1.8 5 11.9957
2000 1 8.4 47 27.5518
3000 1 3.2 9 28.6567
4000 1 10 41 102.1004
5000 1 7.8 29 82.8255
6000 1 5 31 70.2896
7000 1 11 49 389.3896
8000 1 19.2 137 342.4349
9000 1 3.2 5 153.6293
10000 1 3.4 9 204.2293

Figure 4 plots the maximal, minimal and average CPU time for different dimension problems,
where the average CPU time is plotted by the symbol ”*”, the CPU time from minimal to
maximal is plotted by the vertical lines. It can also be observed from the figure that the proposed
bisection technique is efficient for large scale separable concave programming problems. At the
same time, we also test different dimension problems using ω-subdivision method and plot the
average time on Figure 4. The efficiency of the LDB process can be observed from the figure.

904 H.G. XUE, C.X. XU AND F.M. XU

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

dimension

C
P

U
tim

e(
S

ec
on

ds
)

CPU time for different dimension problems

LDB
LDA average time
ω−subdivision
ω−average time

Figure 4: CPU time for different dimension problems

5. Conclusion

In this paper, we proposed a new branch and bound algorithm for large scale separable
concave programming problems. The largest distance bisection(LDB) process is proposed to
branch rectangles, and it is proved that LDB is a normal rectangular bisection (NRS) process.
Numerical tests show that the new branch and bound algorithm is an effective method for large
scale problems, and comparisons show that LDB process is more efficient than ω-subdivision.
In practice, global optimization of a difference of two convex functions is also an important
problem, which be named D-C programming in literature. We will show that the proposed
bisection technique can also solving large scale D-C programming problems effectively when
the convex parts of the objective function is quadratic and feasible region is a polytope with
rectangular constraints. We will present this application in later paper.

References

[1] Falk J.E. and Soland R.M., An algorithm for separable nonconvex programming problems, Manage.

Sci., 15 (1969), 550-569.

[2] Hiroshi Konno, and Annista Wijayanayake, Portfolio Optimazation Problem under Concave Trans-

action Costs and Minimal Transaction Unit Constrains, Math. Program., Ser.B, 89 (2001), 233-250.

[3] Horst R. and Tuy H., Global Optimization Deterministic Approaches, 3nd Edition, Springer,

Berlin, 1997.

[4] Konno H., Thach P. T. and Tuy H., Optimization on Low Rank Nonconvex Structures, Kluwer

Academic Publishers, 1997.

[5] Markowitz H. M., Portfolio Selection, Jounal of Finance, 7:1 (1952), 77-79.

[6] Reiner Horst, Panos M. Pardalos and Nguyen V. Thoai, Introduction to Globle Optimization,

Kluwer Academic Publishers, London, 1995.

[7] Steinbach M.C., Markowitz Revisited: Single-Period and Multi-Period Mean-Variance Models,

working Paper, Konrad-Zentrum für Informationstechnik Berlin, Preprint SC-99-30, Aug, 1999.

[8] Thai Quynh Phong, Le Thi Hoai An, and Pham Dinh Tao, Decomposition Branch and Bound

Method for Globally Solving Linear Constrained Indefinate QPP, Operations Research Letters, 17

(1995), 215-220.

[9] Tuy H., Convex Analysis and Global Optimization, Kluwer Academic Publishers, 1998.

[10] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

