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Abstract

In this paper, some effective cascadic multigrid methods are proposed for solving the
large scale symmetric or nonsymmetric algebraic systems arising from the finite volume
methods for second order elliptic problems. It is shown that these algorithms are optimal
in both accuracy and computational complexity. Numerical experiments are reported to
support our theory.
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1. Introduction

The finite volume methods or covolume methods have become powerful tools for numerically
solving PDEs. They can also be termed as box methods [1], generalized finite difference methods
[15]. These methods have a simplicity for implementation comparable to the finite difference
methods; on the other hand, they have a flexibility similar to that of finite element methods for
handling complicated geometries and boundary conditions. Another important advantage of
these methods is that the numerical solutions usually have certain conservation property, which
are very desirable in many applications, especially in CFD. For a comprehensive presentation
and more references of existing results in this direction, we refer to the monographs [15],[13],
for details.

The algebraic systems resulting from the finite volume methods are sparse and ill-conditioned.
So we should construct some effective methods like multigrid methods or domain decomposition
methods for solving such kind of large scale systems. Although the convergence behavior of
multigrid algorithms for standard finite element methods is by now well understood, much less
is known for the finite volume element method. Recently, a V-cycle multigrid for the finite vol-
ume element method was proposed in [10] by Chou and Kwak. They show that the multigrid is
optimal, which means that the convergence rate of this method is independent of the mesh size
and mesh level. The aim of this paper is to present some cascadic multigrid algorithms for the
discretization systems of the finite volume methods. Compared with usual multigrid, the main
advantage of the cascadic multigrid method is its simplicity[2][17]. It requires no coarse grid
corrections at all and may be viewed as a ”one-way” multigrid method. In recent years, there
have been several theoretical analysis and the applications of these methods, cf. [17][19]for non-
conforming element methods and plate bending problems, [18] for parabolic problems, [14][20]
for nonlinear problems, [5] for Stokes problems, [6] for mortar element methods.

∗ Received August 23, 2003.
1) This work was supported by the National Science Foundation (NSF) of China (No. 10471144).



906 Z.C. SHI, X.J. XU AND H.Y. MAN

In this paper, we shall first propose a cascadic multigrid algorithm for the symmetric sys-
tems resulting from finite volume method approximation of some special second order elliptic
equations. In this case, the quadratic forms in different mesh levels are noninherited. We
shall show that the cascadic multigrid algorithm holds optimal accuracy and computational
complexity. Second, it is known that the algebraic equations arising from the finite volume
methods are usually nonsymmetric, which brings us many difficulties for designing an optimal
cascadic multigird algorithms. But note that the nonsymmetric equations are a small pertur-
bation of the usual finite element discretization equations. Based on this observation, we shall
construct an efficient cascadic multigrid algorithm for this large scale nonsymmetric system. In
this algorithm, we shall first solve a small nonsymmetric problem on the coarsest grids which is
associated with low frequencies of the discretization system, and then solve symmetric positive
definite (SPD) finite element problems on the fine levels. Under this construction, we shall also
prove that the cascadic multigrid is optimal in both the accuracy and computational complexity.

The rest of our paper is organized as follows: In Section 2, we give some notations used in
this paper and formulate the finite volume element schemes. In Section 3, the cascadic multigrid
methods for the symmetric and nonsymmetric systems are analyzed respectively. In the last
section, numerical experiments are reported to support our theory.

2. A Model Problem and Finite Volume Methods

We consider the following self-adjoint elliptic problem{
−∇ · (A∇u) + qu = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a polygonal domain; f ∈ L2(Ω), q ∈ L∞(Ω) and q ≥ 0 almost everywhere in Ω are
two given real-valued functions; A = (aij)2×2 ∈ (W 1,∞(Ω))4 is a given real symmetric matrix-
valued function. We assume that A satisfies the following ellipticity condition: there exists a
constant α1 > 0 such that

α1ξ
T ξ ≤ ξT A(x)ξ, ∀ ξ ∈ R2 and x = (x, y) ∈ Ω̄. (2.2)

In what follows we shall adopt the standard definitions of Sobolev spaces and their norms and
semi-norms as presented in [11].

The variational formulation associated with (2.1) is to find u ∈ V = H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ V, (2.3)

where

a(u, v) =
∫

Ω

(A∇u · ∇v + quv)dx,

(f, v) =
∫

Ω

fvdx.

Under the above assumptions, it is known that (2.3) holds a unique solution u ∈ H2(Ω)∩H1
0 (Ω).

Define the energy norm as:

‖v‖a = a(v, v)
1
2 , ∀v ∈ H1

0 (Ω).

It is easy to check that this norm is equivalent to the usual norm ‖ · ‖1 over the space H1
0 (Ω).

In order to present the cascadic multigrid algorithm for finite volume methods, we first
construct a sequence of nested triangulations of Ω as follows. Suppose that a coarse triangulation
T0 of Ω is given, we define the finer triangulation Tl for l ≥ 1 by subdividing a triangle in
Tl−1 into four subtriangles by connecting the midpoints of the edges. Assume that the coarse
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triangulation T0 is regular and quasi-uniform, then every Tl, (l >)1 is regular and quasi-uniform
too. Let hl denote the maximum mesh size of Tl, then hl = hl−1

2 . Let L be an integer greater
than or equal to zero, and for l = 0, 1, · · · , L, construct the usual piecewise linear conforming
finite element space Vl on Tl as

Vl = {v ∈ C0(Ω̄) : v|K is linear, ∀ K ∈ Tl, v = 0 on ∂Ω}

Since the triangulations are nested, it follows that

V0 ⊂ V1 ⊂ · · · ⊂ VL.

Then the standard finite element approximation of (2.3) is to find ūl ∈ Vl such that

a(ūl, v) = (f, v), ∀ v ∈ Vl. (2.4)

Next, we describe the finite volume methods. First, associated with the primal partition
Tl, we define its dual partition T ∗

l as follows: choose any interior point or median, ZK of
K ∈ Tl. Let P0 be an interior node and Pi be its adjacent nodes, Mi = M0i be the midpoint
of P0Pi. There are two well-known duals, i.e., the so called Voronoi meshes (ZK chosen as
the circumcenters) and the barycentric dual (Donald dual) in which ZK are barycenters of K.
In Figure 2.1, we choose ZK as the circumcenter of K, then connect successively the points
M1, Z1, M2, Z2, · · · , M7, Z7, M1 to obtain the dual polygonal element K∗

P0
. The dual element

K∗
P2

based at a typical boundary node P2 is defined by restricting the dual element to the
interior of Ω. Then

T ∗
l = {K∗

Pi
: Pi is the vertex of Tl},

which constitutes a dual partition of the domain Ω.
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Associated with the partition T ∗
l we define the test function space Wl as the piecewise

constants over every dual element and which vanish on ∂Ω. Let χP be the characteristic
function of the dual element K∗

P , all the characteristic functions on T ∗
l form a basis of the

space Wl. Then the finite volume methods of (2.3) is to find ul ∈ Vl such that

b∗l (ul, wl) = (f, wl) ∀ wl ∈ Vl, (2.5)
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where
b∗l (vl, wl) =

∑
P∈Ωo

l

wl(P )b∗l (vl, χP ),

and

b∗l (vl, χP ) = −
∫

∂K∗
P

(A∇vl) · nds +
∫

K∗
P

qvldx,

where n is the unit outward normal to ∂K∗
P . It should be noted that the above formulation is a

way of stating that we have an integral conservation form on dual domains using the divergence
theorem.

Define a one-to-one operator rl: Vl → Wl such that for vl ∈ Vl

rlvl =
∑

p∈Ω0
l

vl(P )χP ,

where Ω0
l is the set of interior nodes of Tl, and it is easy to check that the operator has the

following approximation property

‖vl − rlvl‖0,q ≤ Chl|vl|1,q. q > 1 (2.6)

Employing the above defined operator rl, set

a∗
l (ul, vl) = b∗l (ul, rlvl), ∀ ul, vl ∈ Vl,

then the finite volume scheme (2.5) can be rewritten as: Find ul ∈ Vl such that

a∗
l (ul, vl) = (f, rlvl), ∀vl ∈ Vl. (2.7)

For the bilinear form a∗
l (·, ·), we have that there exist β0, β1 > 0 such that [7][12]

β0‖v‖a ≤ a∗
l (v, v) ≤ β1‖v‖a. (2.8)

On the other hand, it holds that[12][9]

Lemma 2.1. There exists a constant C independent of the mesh size hl and the level l such
that for any ul, vl ∈ Vl,

|a(ul, vl) − a∗
l (ul, vl)| ≤ Chl‖ul‖a‖vl‖a. (2.9)

From this lemma, we can see that the bilinear form a∗
l (·, ·) is a perturbation of the form a(·, ·).

As a corollary of this result, we have the coerciveness and boundedness of the form a∗
l (·, ·).

Moreover, it is proved in [12][9][8] that the following error estimates are true.

Theorem 2.1. Let ul, u be the solutions of (2.7) and (2.3) respectively, then

‖u − ul‖a ≤ Chl‖f‖0. (2.10)

Moreover if f ∈ W 1,p(Ω) p > 1, it holds

‖u − ul‖0 ≤ Ch2
l (‖f‖0 + ‖f‖1,p), (2.11)

where the constant C is independent of the mesh size hl and the level l.

Define the operator A∗
l : Vl → Vl with respect to the bilinear form a∗

l (·, ·) as:

(A∗
l u, v) = a∗

l (u, v) ∀ u, v ∈ Vl. (2.12)
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Then (2.7) can be rewritten in operator form as

A∗
l ul = fl, (2.13)

where fl ∈ Vl, (fl, v) = (f, rlv) ∀v ∈ Vl.

3. The Cascadic Multigrid Algorithms

We know that the algebraic system derived from the finite volume scheme is nonsymmetric
in general even if the underlying PDE is symmetric, but there are two exceptions below:

• Case 1. A is a constant symmetric matrix,

• Case 2. A = c(x)I, and the point ZK is chosen to be the circumcenter of K.

In Case 1, the bilinear form a∗
l (·, ·) is equivalent to a(·, ·), the discussion of its cascadic

multigrid scheme reduces to the finite element case. So we only need to discuss the Case 2.
The general nonsymmetric case will be discussed in Section 3.2.

3.1. The symmetric case
In this case the bilinear form a∗

l (·, ·) is symmetric, the cascadic multigrid algorithm for this
problem can be written as follows:
Algorithm I.

(1) Let u0
0 = u∗

0=̂u0 be the exact solution of (2.7).
(2) For l = 1, 2, · · · , L, let

u0
l = Ilu

∗
l−1.

Do iterations for (2.7):
uml

l = Kml

l u0
l .

(3) Set u∗
l =̂uml

l ,
where in the above algorithm, Il : Vl−1 → Vl is the natural injection operator, Kl denotes
the smoothing operator on the level l, such as the Richardson, Jacobi, Gauss-seidel, or CG
iteration. ml is the number of iteration steps on the level l.

Similar as in the finite element case, we call a cascadic multigrid for the finite volume
methods optimal in the energy norm on the level L, if we obtain both the accuracy

‖uL − u∗
L‖a ≈ ‖u − uL‖a,

which means that the iterative error is comparable to the approximation, and the multigrid
complexity

amount of work = O(nL), nL = dimVL.

Moreover, define the norm
‖v‖2

l =̂a∗
l (v, v), ∀v ∈ Vl.

By (2.8), we know that this norm is equivalent to the usual energy norm ‖ · ‖a.
It is known that for the smoothing operator mentioned above, there exists a linear operator

Tl : Vl → Vl such that
ul − Kml

l u0
l = T ml

l (ul − u0
l ), (3.1)

and for the symmetric operator A∗
l it holds that

‖T ml

l v‖l ≤ C
h−1

l

mγ
l

‖v‖0, ∀v ∈ Vl, (3.2)

‖T ml

l v‖l ≤ ‖v‖l, ∀v ∈ Vl, (3.3)
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where γ is a positive number depending on the given iteration. Using fully same arguments as

in [2],[3],[4], we can show that (3.2), (3.3) are valid with γ = 1 for the CG iteration and γ =
1
2

for the other three standard iterations.
Note that in the finite volume methods the test function spaces are not nested because a

dual element K∗
l ∈ T ∗

hl
is not a subset of a dual element K∗

l−1 ∈ T ∗
hl−1

. Then the associated
quadratic form a∗

l (·, ·) is noninherited in nature, i.e,

a∗
l (Ilv, Ilv) �= a∗

l−1(v, v), v ∈ Vl−1. (3.4)

In the following, we will give an example to show that the bilinear form a∗
l (·, ·) is indeed

noninherited and give an explicit difference between these two quadratic forms.
Example. Consider the problem (2.1) on the domain Ω = [0, 1] × [0, 1] with q = 0 and
A = a(x, y)I, where a(x, y) = x2 + y2 + 1.

(I,J) 

(I+1,J+1) 

(I+1,J) 

(I+1,J) 
(I−1,J−1) 

(I−1,J−1)

(I−1,J−1) 

(I,J−1) (I+1,J−1) 

( 2I, 2J ) ( 2I+1, 2J ) 

(2I+1,2J+1) (2I,2J+1) 

(2I−1,2J−1) 

(2I−1,2J) 

(2I,2J−1) (2I+1,2J−1) 

(2I−1,2J+1) 

Figure 3.1 

First decompose the domain Ω into N2 equal-size squares with the edge length h = 1/N ,
then each square is divided into two right triangles in the same direction. We denote this
partition as Tl−1. Based on this partition, as in Figure 3.1 we construct the dual partition by
connecting the medians of all K ∈ Tl−1. Refine the mesh once we get Tl and its dual partition
T ∗

l . Note that vl−1 is piecewise linear on Tl−1, and

a∗
l−1(vl−1, vl−1)

=
∑

KI,J∈Tl−1

∑
K∗

i
∈T ∗

hl−1

vl−1(Pi)
∫

∂K∗
i
∩KI,J

a(x)∇vl−1 · nds

=
∑

K2I,J

{VI,J+1 (
∫

m0m1

a(x)∇ul−1 · nds +
∫

m4m0

a(x)∇ul−1 · nds)

+VI,J

∫
m4m0

a(x)∇vl−1 · nds + VI+1,J+1

∫
m0m1

a(x)∇vl−1 · nds}

+
∑

K2I+1,J

{VI+1,J (
∫

m3m0

a(x, y)∇vl−1 · nds +
∫

m0m2

a(x, y)∇vl−1 · nds)

+VI,J

∫
m3m0

a(x, y)∇l−1 · nds + VI+1,J+1

∫
m0m2

a(x, y)∇l−1 · nds}
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=
N−1∑
I=0

N−1∑
J=1

{
∫ x

J+ 1
2

x
J− 1

2

a(x, yI+ 1
2
)dx

(VI+1,J − VI,J)2

h
} (3.5)

+
N−1∑
I=1

N−1∑
J=0

{
∫ y

I+ 1
2

y
I− 1

2

a(x, yJ+ 1
2
)dy

(VI,J+1 − VI,J )2

h
}

=
N−1∑
I=0

N−1∑
J=1

{(I2 + J2 + I +
1
3
) ∗ h2 + 1}(VI+1,J − VI,J)2

+
N−1∑
I=1

N−1∑
J=0

{(I2 + J2 + J +
1
3
) ∗ h2 + 1}(VI,J+1 − VI,J)2,

where xJ = J · h, yI = I · h and VI,J = vl−1(xJ , yI).
On the other hand, in a similar way

a∗
l (Ilvl−1, Ilvl−1) =

2N−1∑
i=0

2N−1∑
j=0

{
∫ x̂

j+ 1
2

x̂
j− 1

2

a(x̂, ŷi+ 1
2
)dx̂

(V̂i+1,j − V̂i,j)2
h
2

}

+
2N−1∑
i=0

2N−1∑
j=0

{
∫ ŷ

j+ 1
2

ŷ
j− 1

2

a(x̂j+ 1
2
, ŷ)dŷ

(V̂i,j+1 − V̂i,j)2
h
2

},
(3.6)

where x̂j = j · h

2
, ŷi = i · h

2
and V̂i,j = Ilvl−1(x̂j , ŷi).

Since vl−1 is piecewise linear on Thl−1 , we have that for I, J = 0, 1, · · · , N ,

V̂2I,2J = VI,J , V̂2I+1,2J+1 =
VI,J + VI+1,J+1

2
,

V̂2I+1,2J =
VI+1,J + VI,J

2
, V̂2I,2J+1 =

VI,J+1 + VI,J

2
.

Substituting these equalities into (3.6) to get

a∗
l (Ilvl−1, Ilvl−1)

=
N−1∑
I=0

N−1∑
J=0

{
∫ x̂2J+ 1

2

x̂2J− 3
2

a(x̂, ŷ2I+ 1
2
)dx̂ +

∫ x̂2J+ 3
2

x̂2J− 1
2

a(x̂, ŷ2I+ 3
2
)dx̂} (VI+1,J − VI,J)2

2h

+
N−1∑
I=0

N−1∑
J=0

{
∫ ŷ2J+ 1

2

ŷ2I− 3
2

a(x̂2J+ 1
2
, ŷ)dŷ +

∫ ŷ2I+3
2

ŷ2I− 1
2

a(x̂2J+ 3
2
, ŷ)dŷ} (VI,J+1 − VI,J )2

2h

=
N−1∑
I=0

N−1∑
J=0

((I2 + J2 + I +
11
24

)h2 + 1)(VI+1,J − VI,J )2

+
N−1∑
I=0

N−1∑
J=0

((I2 + J2 + J +
11
24

)h2 + 1)(VI,J+1 − VI,J )2.

(3.7)

Comparing (3.7) with (3.5), we have

a∗
l (Ilvl−1, Ilvl−1) − a∗

l−1(vl−1, vl−1)

=
1
8
h2 (

N−1∑
I=0

N−1∑
J=0

(VI+1,J − VI,J)2 +
N−1∑
I=0

N−1∑
J=0

(VI,J+1 − VI,J)2)

≥ 1
8
h2 · 1

5
a∗

l−1(vl−1, vl−1),
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and

a∗
l (Ilvl−1, Ilvl−1) − a∗

l−1(vl−1, vl−1)

≤ 1
8
h2a∗

l−1(vl−1, vl−1).

Finally, based on the above two inequalities, we get

a∗
l (Ilvl−1, Ilvl−1) ≥ (1 +

1
40

h2)a∗
l−1(vl−1, vl−1), (3.8)

and
a∗

l (Ilvl−1, Ilvl−1) ≤ (1 +
1
8
h2)a∗

l−1(vl−1, vl−1). (3.9)

From (3.8) and (3.9), we know that a∗
l (·, ·) are noninherited for the special model problem, but

are just a small perturbation in different mesh levels. In general, the difference between these
two terms can be estimated as follows:

Lemma 3.1. There exists a constant C independent of the mesh size hl and the level l, such
that

|a∗
l (Ilvl−1, Ilvl−1) − a∗

l−1(vl−1, vl−1)| ≤ Chl‖vl−1‖2
l−1. (3.10)

Proof. Using the fact
a(Ilvl−1, Ilvl−1) = a(vl−1, vl−1),

we have

|a∗
l (Ilvl−1, Ilvl−1) − a∗

l−1(vl−1, vl−1)|
≤ |a∗

l (Ilvl−1, Ilvl−1) − a(Ilvl−1, Ilvl−1)|
+|a∗

l−1(vl−1, vl−1) − a(vl−1, vl−1)|.

Then an application of Lemma 2.1 completes the proof of this lemma.
Let ml, 0 ≤ l ≤ L, be the smallest integer satisfying

ml ≥ βL−lmL (3.11)

for some fixed β > 1, where mL be the number of the iterations on the finest level L.

Theorem 3.1. Let ul be the solution of (2.7) and u∗
l be the iteration solution of Algorithm

I, then

‖uL − u∗
L‖L ≤ C0

L∑
l=1

hl

mγ
l

(‖f‖0 + ‖f‖1,p) p > 1. (3.12)

Proof. It follows from Lemma 2.1, Lemma 3.1, Theorem 2.1 and (3.2) that

‖ul − u∗
l ‖l = ‖T ml

l (ul − u∗
l−1)‖l ≤ ‖T ml

l (ul − ul−1)‖l + ‖T ml

l (ul−1 − u∗
l−1)‖l

≤ C
h−1

l

mγ
l

‖ul − ul−1‖0 + ‖ul−1 − u∗
l−1‖l

≤ C
hl

mγ
l

(‖f‖0 + ‖f‖1,p) + (1 + Ch
1
2
l )‖ul−1 − u∗

l−1‖l−1.

(3.13)

Recurrently, we get

‖uL − u∗
L‖L ≤ C

L−1∑
l=0

l−1∏
i=0

(1 + Ch
1
2
L−i)

hL−l

mγ
L−l

(‖f‖0 + ‖f‖1,p) (3.14)
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Note that hl = 2−lh0, we obtain

L−1∏
i=0

(1 + Ch
1
2
L−i) ≤ exp(C

L−1∑
i=0

h
1
2
L−i) ≤ exp(C

h
1
2
1

1 −
√

1
2

) ≤ C0. (3.15)

Inserting (3.15) into (3.14) proves (3.12).
A similar argument of Lemmas 1.3 and 1.4 in [2] leads to

Lemma 3.2. If ml, the number of iterations on level l is given by (3.11), then the accuracy of
the cascadic algorithm I is

‖uL − u∗
L‖L ≤

⎧⎪⎪⎨
⎪⎪⎩

C
1

1 − ( 2
βγ )

hL

mγ
L

(‖f‖0 + ‖f‖1,p) for β > 2
1
γ , p > 1,

CL
hL

mγ
L

(‖f‖0 + ‖f‖1,p) for β = 2
1
γ , p > 1.

Lemma 3.3. The computational cost of the cascadic algorithm I is proportional to

L∑
l=0

mlnl ≤

⎧⎨
⎩

C
1

1 − β
2d

mLnL for β < 2d,

CLmLnL for β = 2d,

where d is the dimension of the domain Ω.

Based on Lemmas 3.2 and 3.3, we have the following

Theorem 3.2. It holds that
(1). If γ = 1

2 , d = 3, then the cascadic multigrid I is optimal.
(2). If γ = 1, d = 2, 3, then the cascadic multigrid I is optimal.
(3). If γ = 1

2 , d = 2, and the number of iterations on the level L is

mL = [m∗L
2],

then the error is

‖uL − u∗
L‖L ≤ C

hL

m
1
2∗
(‖f‖0 + ‖f‖1,p), p > 1,

and the complexity of computation is

L∑
l=0

mlnl ≤ cm∗nL(1 + lognL)3.

It means that the cascadic multigrid is nearly optimal in this case.

3.2. The nonsymmetric case
It is known that the bilinear form associated with finite volume methods for the self-adjoint

problem is nonsymmetric in general. To our knowledge, there is no any cascadic multigrid
algorithm for nonsymmetric systems, in this section, based on the special property of the fi-
nite volume method, i.e., the finite volume quadratic form is a small perturbation of the finite
element quadratic form, we shall propose an effective cascadic multigrid algorithm for the non-
symmetric system.

Algorithm II
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(1) let u0
0 = u∗

0=̂u0 be the exact solution of (2.7).

(2) for l = 1, 2, · · · , L, let ûl be the exact solution of the following problem

a(ûl, v) = (f, rlv) − Nl(u∗
l−1, v) ∀v ∈ Vl, (3.16)

where Nl(u, v) = a∗
l (u, v) − a(u, v), ∀u, v ∈ Vl.

Let u0
l = Ilu

∗
l−1, for (3.16), do iterations

uml

l = Gml

l u0
l (3.17)

(3) Set u∗
l =̂uml

l ,
where Gl : Vl → Vl is the iterative operator on the level l. Note that this iterative operator is
based on the finite element equation (3.16).

Similar as in the above subsection, it is known that for the smoothing operators such as
Richardson, Jacobi, Gauss-seidel, or CG iteration, there exists a linear operator Sl : Vl → Vl

such that
ul − Gml

l u0
l = Sml

l (ul − u0
l ), (3.18)

and for the symmetric operator Al it holds that

‖Sml

l v‖a ≤ C2
h−1

l

mγ
l

‖v‖0, ∀v ∈ Vl, (3.19)

‖Sml

l v‖a ≤ ‖v‖a, ∀v ∈ Vl, (3.20)

where γ is a positive number depending on the given iteration, and Al is defined by

(Alu, v) = a(u, v), ∀u, v ∈ Vl.

For the convenience of the following analysis, we denote the constants in (2.10),(2.11) as
C1, and the constant in (2.9) as C3 respectively.

In order to get the main result of this section, we first give two lemmas.

Lemma 3.4. Let ul, ûl be the solutions of (2.7) and(3.16) respectively, then

‖ul − ûl‖a ≤ 3C1C3h
2
l (‖f‖0 + ‖f‖1,p) + C3hl(‖ul−1 − ûl−1‖a + ‖ûl−1 − u∗

l−1‖a). (3.21)

Proof. Since

a(ul − ûl, v) = a(ul, v) − (f, rlv) + a∗
l (u

∗
l−1, v) − a(u∗

l−1, v)
= a(ul − u∗

l−1, v) − a∗
l (ul − u∗

l−1, v)
≤ C3hl‖ul − u∗

l−1‖a‖v‖a, ∀v ∈ Vl,

we get

‖ul − ûl‖a ≤ C3hl‖ul − u∗
l−1‖a

≤ C3hl(‖ul − ul−1‖a + ‖ul−1 − ûl−1‖a + ‖ûl−1 − u∗
l−1‖a),

which, together with Theorem 2.1, completes the proof of (3.21).

Lemma 3.5. For the solutions ûl and u∗
l in Algorithm II, we have

‖ûl − u∗
l ‖a ≤ 3C1C2

hl

mr
l

(‖f‖0 + ‖f‖1,p) + ‖ûl−1 − u∗
l−1‖a

+C2
h−1

l

mr
l

(‖ul − ûl‖a + ‖ul−1 − ûl−1‖a)
(3.22)
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Proof. Since

‖ûl − u∗
l ‖a = ‖Sml

l (ûl − u∗
l−1)‖a

≤ ‖Sml

l (ûl − ûl−1)‖a + ‖Sml

l (ûl−1 − u∗
l−1)‖a

≤ C2
h−1

l

mr
l

(‖ul − ul−1‖0 + ‖ul − ûl‖0 + ‖ul−1 − ûl−1‖0)

+‖ûl−1 − u∗
l−1‖a

As in Lemma 3.4, an application of Theorem 2.1 gives (3.22).
Based on these two lemmas, we can get the optimal error estimation between the finite

volume solution ul and the cascadic multigrid solution u∗
l .

Theorem 3.3. Assume that the coarse partition is small enough such that

4C3h0 < 1 (3.23)

and the number of the iteration step mL on the last level L satisfies

mγ
L ≥ 3C2 · (1 + 7C3) ·

4
βγ − 2

if βγ > 2, (3.24)

mγ
L ≥ 3C2 · (1 + 7C3) · 2L if βγ = 2, (3.25)

then

‖uL − u∗
L‖a ≤ C∗ · (h2

L +
L∑

l=1

hl

mγ
l

) (‖f‖0 + ‖f‖1,p), p > 1, (3.26)

where C∗ = max { 4C1C3, 3C1C2(1 + 7C3) }.
Proof. We first prove the following two inequalities inductively,

‖ul − ûl‖a ≤ 4C1C3h
2
l · (‖f‖0 + ‖f‖1,p), (3.27)

‖ûl − u∗
l ‖a ≤ 3C1C2(1 + 7C3) ·

l∑
i=1

hl

mγ
l

(‖f‖0 + ‖f‖1,p) (3.28)

(1) For l = 0, by the definition of Algorithm II,

‖u0 − û0‖a = ‖û0 − u∗
0‖a = 0,

so (3.27), (3.28) hold.
(2) For l = 1, by (3.21), (3.22)

‖u1 − û1‖a ≤ 3C1C3h
2
1(‖f‖0 + ‖f‖1,p),

and

‖û1 − u∗
1‖a ≤ (3C1C2

h1

mγ
1

+ C2
h−1

1

mγ
1

· 3C1C3h
2
1) (‖f‖0 + ‖f‖1,p)

≤ 3C1C2(1 + C3)
h1

mγ
1

(‖f‖0 + ‖f‖1,p),

which are (3.27), (3.28) with l = 1.
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(3) Assume that (3.27),(3.28) hold for l − 1, l, then by (3.21), we have

‖ul+1 − ûl+1‖a ≤ { 3C1C3h
2
l+1 + C3hl+1 · 4C1C3h

2
l

+C3hl+1 · 3C1C2(1 + 7C3)
l∑

i=1

hi

mγ
i

}(‖f‖0 + ‖f‖1,p)

≤ {3C1C3h
2
l+1 +

1
2
C1C3h

2
l+1 · 16C3hl

+ C1C3hl+1hL · 3C2(1 + 7C3)
l∑

i=1

2L−i

mr
i

}(‖f‖0 + ‖f ||1,p),

(3.29)

Since l < L,

l∑
i=1

2L−i

mγ
i

=
1

mγ
L

l∑
i=1

2L−i

βγ(L−i)
≤

⎧⎪⎨
⎪⎩

1
mγ

L

2
βγ − 2

βγ > 2,

L

mγ
L

βγ = 2,
(3.30)

and l ≥ 2, by (3.23), we know
16C3hl ≤ 1.

Combining above equalities with (3.24), (3.25), we have that (3.27) holds for l + 1. On the
other hand, by (3.22)

‖ûl+1 − u∗
l+1‖a ≤ { 3C1C2

hl+1

mγ
l+1

+ C2

h−1
l+1

mγ
l+1

· 4C1C3(h2
l+1 + h2

l )

+3C1C2(1 + 7C3)
l∑

i=1

hi

mγ
i

} (‖f‖0 + ‖f‖1,p)

≤ 3C1C3(1 + 7C3)
l+1∑
i=1

hi

mγ
i

(‖f‖0 + ‖f‖1,p).

(3.31)

Then (3.28) holds for l + 1. By induction we know that (3.27) and (3.28) hold for any l =
0, 1, · · · , L.

Finally,

‖uL − u∗
L‖a ≤ ‖uL − ûL‖a + ‖ûL − u∗

L‖a

≤ {4C1C3h
2
L + 3C1C2(1 + 7C3)

L∑
i=1

hi

mγ
L

} (‖f‖0 + ‖f‖1,p)

≤ C∗(h2
L +

L∑
i=1

hi

mγ
i

)(‖f‖0 + ‖f‖1,p),

(3.32)

which completes the proof of this theorem.
Based on Theorem 3.3, and using a similar argument of Lemmas 1.3 and 1.4 in [2] leads to

Lemma 3.6. If ml, the number of iterations on level l is given by (3.11), and the h0 and mL

satisfy the assumptions of Theorem 3.3. Then the accuracy of the cascadic multigrid algorithm
II is

‖uL − u∗
L‖a ≤

⎧⎪⎪⎨
⎪⎪⎩

C∗(hL +
1

1 − ( 2
βγ )

1
mγ

L

)hL(‖f‖0 + ‖f‖1,p) for β > 2
1
γ , p > 1,

C∗(hL + L
1

mγ
L

)hL(‖f‖0 + ‖f‖1,p) for β = 2
1
γ , p > 1.
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Lemma 3.7. The computational cost of the cascadic multigrid algorithm II is proportional to

L∑
l=0

mlnl ≤

⎧⎨
⎩

C
1

1 − β
2d

mLnL for β < 2d,

CLmLnL for β = 2d,

where d is the dimension of the domain Ω.

Based on Lemmas 3.6 and 3.7, we have the following

Theorem 3.4. Let h0 and mL satisfy the assumptions of Theorem 3.3. Then
(1). If γ = 1

2 , d = 3, then the cascadic multigrid algorithm II is optimal.
(2). If γ = 1, d = 2, 3, then the cascadic multigrid algorithm II is optimal.
(3). If γ = 1

2 , d = 2, and the number of iterations on the level L is

mL ≥ L2,

then the error in the energy norm is

‖uL − u∗
L‖a ≤ ChL(‖f‖0 + ‖f‖1,p), p > 1,

and the complexity of computation is

L∑
l=0

mlnl ≤ CnL(1 + lognL)3.

4. Numerical Experiments

In this section we will give two examples to test the Algorithm I and Algorithm II
respectively.
Example 1. We use the Algorithm I to solve the following problem:

{
−∇ · (a(x, y)∇u) = f, in Ω = (0, 1) × (0, 1),

u = 0, on ∂Ω,
(4.1)

where a(x, y) = exp(x + y) and let f be chosen as 2π2 exp(x + y) sin(πx) sin(πy) − π exp(x +
y)(sin(πx) cos(πy) + cos(πx) sin(πy)) such that the exact solution of the problem is u(x, y) =
sin(πx) sin(πy).

Z
K

 

P 

K
P
*  

0 1 x 

y 

1 

P
0
∈∂Ω 

K
P

0

*  

Figure 4.1 
h

l
=1/4 
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Partitioning the domain [0, 1] × [0, 1] into the uniform triangular mesh as in Figure 4.1,
choosing ZK as the circumcenter of the triangular, we can get the dual partition correspondingly.
Using the Gauss-Seidel and CG iterations as the smoothing operators respectively, we list the
energy norm of the error between the cascadic multigrid solution and the exact solution on the
last level L in Tables 1-2, We can see from these tables that for both of the smoothers, if the
mesh is refined once, the energy error is decreasing by half independent of the coarse mesh.
It means that the convergence rate of the Algorithm I is one independent of the refinement
level.

Algorithm I with G − S smoother
Mesh # level (L) ‖u∗

L − u‖1 CPU time
3 6.827557e-03 204(s)
4 6.866367e-03 45(s)
5 6.853683e-03 48(s)

512 × 512

6 6.844400e-03 70(s)
3 3.415217e-03 2908(s)
4 3.421522e-03 343(s)
5 3.424024e-03 222(s)

1024 × 1024

6 3.418322e-03 332(s)
4 1.716457e-03 3311(s)
5 1.714659e-03 1040(s)
6 1.710306e-03 1329(s)

2048 × 2048

7 1.708597e-03 2044(s)
mL = 2L2, β = 5.0

Table 1.

Algorithm I with CG smoother
Mesh # level (L) ‖u∗

L − u‖1 CPU time
3 6.826660e-03 31(s)
4 6.848449e-03 28(s)
5 6.848575e-03 29(s)

512 × 512

6 6.848575e-03 29(s)
3 3.410303e-03 158(s)
4 3.418454e-03 117(s)
5 3.418599e-03 116(s)

1024 × 1024

6 3.418578e-03 118(s)
4 1.706217e-03 511(s)
5 1.708165e-03 479(s)
6 1.708200e-03 488(s)

2048 × 2048

7 1.708201e-03 498(s)
mL = 10, β = 3.0

Table 2.

Example 2. The problem will be computed is
{

−∇ · (A∇u) = f, in Ω = (0, 1) × (0, 1),
u = 0, on ∂Ω,

(4.2)

where

A =
(

2x2 + y2 + 1 x2 + y2

x2 + y2 x2 + 2y2 + 1

)

and
f = −2π(2x + y) cos(πx) sin(πy) + π2(3x2 + 3y2 + 2) sin(πx) sin(πy)

−2π(x + 2y) sin(πx) cos(πy) − 2π2(x2 + y2) cos(πx) cos(πy).

Then the exact solution can be expressed as u = sin(πx) sin(πy).
Using the same partition as in Example 1, since the coefficient A is a matrix function

with full entries, the system deriving from the finite volume discretization of this problem is
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nonsymmetric. We use the Algorithm II to solve the discrete systems.
Algoritm II with G − S smoother

Mesh # level (L) ‖u∗
L − u‖1 CPU time

3 6.824011e-03 203(s)
4 6.838624e-03 55(s)
5 6.831931e-03 55(s)

512 × 512

6 6.827161e-03 69(s)
3 3.412430e-03 2526(s)
4 3.415616e-03 350(s)
5 3.417416e-03 234(s)

1024 × 1024

6 3.413925e-03 286(s)
4 1.711151e-03 3144(s)
5 1.709525e-03 1078(s)
6 1.707189e-03 1176(s)

2048 × 2048

7 1.706368e-03 1513(s)
mL = 2L2, β = 4.0

Table 3.

Algorithm II with CG smoother
Mesh # level (L) ‖u∗

L − u‖1 CPU time
3 6.820292e-03 187(s)
4 6.823242e-03 50(s)
5 6.823173e-03 42(s)

512 × 512

6 6.823173e-03 42(s)
3 3.411521e-03 2754(s)
4 3.411351e-03 347(s)
5 3.410722e-03 190(s)

1024 × 1024

6 3.410723e-03 183(s)
4 1.709745e-03 2917(s)
5 1.704839e-03 843(s)
6 1.704851e-03 705(s)

2048 × 2048

7 1.704851e-03 705(s)
mL = 10, β = 3.0

Table 4.

The error of energy norm between the cascadic multigrid solution u∗
L and the exact solution

u on the last level L is given in Table 3-4 respectively for the Gauss-seidel and CG smoother.
Similar results as in Example 1 can be seen from these tables. The above numerical experiments
show that the convergence rate of the energy error is indeed of order one as proved by the
theoretical analysis for the two cascadic multigrid algorithms we propose for the finite volume
method.

Finally, in table 5, we list the error of the usual full multigrid method developed in [10].
It can be seen that the cascadic multigrid and usual full multigrid hold same computational
accuracy. But it seems that convergence speed of the usual multigrid method is a little bit
faster than the cascadic multigrid. Due to no coarse grid corrections, it is obvious that the
computational code of the cascadic multigrid is simper than the usual multigrid methods.

Full Multigrid with G − S smoother
Mesh # level (L) ‖u∗

L − u‖1 CPU time
3 6.816698e-03 217(s)
4 6.816763e-03 51(s)
5 6.816832e-03 37(s)

512 × 512

6 6.816882e-03 36(s)
3 3.410086e-03 2390(s)
4 3.408419e-03 324(s)
5 3.408338e-03 159(s)

1024 × 1024

6 3.408346e-03 147(s)
4 1.707871e-03 2859(s)
5 1.704383e-03 749(s)
6 1.704163e-03 599(s)

2048 × 2048

7 1.704153e-03 595(s)
Table 5.
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