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Abstract

In this paper, a kind of partial upwind finite element scheme is studied for two-
dimensional nonlinear convection-diffusion problem. Nonlinear convection term approx-
imated by partial upwind finite element method considered over a mesh dual to the tri-
angular grid, whereas the nonlinear diffusion term approximated by Galerkin method. A
linearized partial upwind finite element scheme and a higher order accuracy scheme are
constructed respectively. It is shown that the numerical solutions of these schemes preserve
discrete maximum principle. The convergence and error estimate are also given for both
schemes under some assumptions. The numerical results show that these partial upwind
finite element scheme are feasible and accurate.
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1. Introduction

Convection-diffusion processes appear in many areas of science and technology. For example,
fluid dynamics, heat and mass transfer, hydrology and so on. This is the reason that the numer-
ical solution of convection-diffusion problem attracts a number of speciality. From an extensive
literature devoted to linear problems, let us mentioned some papers [2], [3], monographs[1], and
the references therein, few approaches to the solution of nonlinear problems mentioned in the
papers [4], [10] and [11].

It is a well-known fact that the use of a classical Galerkin method with continuous piecewise
linear finite elements leads to spurious oscillations when the local Péclet number is large. To
obtain an effective scheme in the case of that convection term is dominate or the Peclét number
is large, it is required to consider a suitable approximate for the convection term V - b(u). The
partial upwind finite element scheme is known as the method solve convection-diffusion problem
when the convection term is dominated [3]. In [10], the partial upwind finite element scheme
for two-dimensional nonlinear Burgers equation is studied. In [4] and [11], M. Feistauer and
his fellows investigates a combined finite volume-finite element methods for two-dimensional
nonlinear convection-diffusion problem which the convection term only is nonlinear, and the
convection term is explicit scheme. The purpose of this paper is to present an partial upwind
finite element scheme for a more general type of two-dimensional nonlinear convection-diffusion
problem which approximate the diffusion term by standard Galerkin method and approximate
the convection term by partial upwind finite element method on the mesh dual to the triangular
grid of weakly acute type.
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1) Supported by NSFC Grant 10171052 and by Cooperative Foundation of Nankai University and Tianjin
University supported by Education Ministry of State.
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The method is easy to be carried out and it is applicable in multi-dimensional problem.
Especially, it preserve maximum principle of original problem. Under some assumptions on
the regularity of the exact solution of the continuous problem, we prove error estimates of
the scheme. The numerical computations for the system of compressible viscous flow have
demonstrated that the partial upwind finite element scheme is feasible and produces numerical
results which are very promising.

This paper consists of seven sections. In Section 2, the notation and the nonlinear problem
is given. In Section 3, the finite element space is defined, and the partial upwind finite element
scheme. The discrete maximum principle and the convergence of the scheme is shown in Section
4 and Section 5 respectively. On the base of above work, a higher order accuracy scheme is
studied in Section 6. In Section 7, we give another partial upwind finite element scheme, and
prove its discrete maximum principle and convergence. To test above schemes, we give some
numerical examples in Section 8, these numerical results show that these partial upwind finite
element schemes are feasible and accurate.

2. Formulation of the Problem and Some Notations

Throughout this paper, we will use C (with or without subscript or superscript) to denote
generic constant independent of discrete parameter. W"?(Q) denotes usual Sobolev spaces,
where ) C R? is a convex polygon domain, m, p are nonnegative integer. The corresponding
norm and semi-norm are || - ||;m.p.0 and | - |;mp.0 [6]. Particular, for p = 2, H™(Q) = W™2(Q),
the corresponding norm and semi-norm are || - ||, and | - |, respectively. Let (-,-) denotes
the inner product of Ly(2), then

(u,v) = / wvdz, ||ullo,o = (u,u).
Q

As usual Hj () = {v € H'();v|so = 0} denotes the subspace of H' ().
We consider the following two-dimensional nonlinear convection-diffusion initial boundary
problem (P)

%—V-(a(u)VU)—FV-g(u):f(u) z,1) € O x 0,T] = D (2.1)
u(z,t) =0 z,t) € I'x [0,T7];
u(z,0) = u(z) x € Q.

where T is the boundary of Q, z = (z1,x2).
We define the bound set on R:

G={u:|ul <Ko}

where K is a positive constant which will be fixed later.
We assume the coefficient of problem (P) satisfied the following condition:
(A1) There exist constants m, M,, C; and Cy which depend on Ky such that

0<m<a(u) <M, ¥Y(z,t)eQx(0,T],ued.
|f(u)] < Cilul + C2, V(z,t) € @ x (0,T],u € R.

bu) = (b (), b® () € Wi (G)x Wi (G), f(u) € Wi (Gxx(0,T]), u’(z) € C(Q) N Hy(Q).

)
(A2) a(u), b(u) and f(u) are locally Lipschitz continuous

la(u) —a(v)| < Llu —v|, Yu,v € G.
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15(u) — b(v)|| < Liu—v|, Yu,v € G.
|f(u) — f(v)] < Llu —v|, Yu,ve€QG.

-

where L is constant related to Ko and ||b(u) — b(v)|| is defined as

1B(u) = B(0) ]| = {[b1(w) = b1 (0)]* + [ba(u) = ba(v)*}/2.
The weak form of problem (P) is, find u : [0, T] — Hg () such that

{ (Ut,’U) + (a(u)vu) V’U) + (v : g(“‘))“) = (f(u),’l)), Vv € H[% (Q) (24)
u(0) = o (2.5)

and we assume that the weak solution u of problem (P) satisfies the following regularity:
(A3) u € L>®(0,T; H*(Q)) N L>(0,T; Wy ™(Q)), |u(z,t)] < Ko,¥(z,t) € Q x [0,T], uy,
Ugg € L2 (0, T, HQ(Q))

3. The Finite Element Space and Partial Upwind Finite Element
Scheme

Let us consider a family of regular triangulation {T}} in Q ( see [9]). For a fixed triangulation
Th, we define a closed triangulation set {e;}Y<, and node set {p;}!<, where p;(1 < i < N) are
inner nodes of Q, p;(N +1 < j < K) are boundary nodes on I'. Let h. denotes the diameter
of element e, k. denotes the minimum altitude length of e. We denote the mesh parameter:

h=max{he}, &= min{s.}

We assume that the triangulation family {T},} is regular and weakly acute type, i.e.
(A4) There exists ap € (0, %) independent of h, such that all interior angles a of the
triangles are bounded as follows:
™
a € [ag, 5]
For a given triangulation T} with nodes {p;} € Q we construct a secondary partition.

Namely, we introduce regions
Qf ={p:p€elp—pl| <Ip—pjl.Vp; €€},

where |p — pi| is the distance of node p and node p;. We consider the dual decomposition

Ty = {Q;}, where €; is circumcentric domain associated with nodal point P;: Q; = |J Qf.
ecTy,

We define the area of ; and Qf by |Q;] = meas2(€;) and |Q5| = meas2(Q¢) respectively,
and associate the index set A; = {j : j # i, p; is adjacent to p;}. We say that nodes p;, p; are
adjacent iff I';; = 0Q; N 0Q; # 0. The set of indices of all interior nodes p; € Q is denoted by
A, Ty(i) ={e:p; €e,e € Ty}.

For T},, we define the mass lumping operator “: C'(Q) — L>(Q).

K

&(p) =Y w(pi)pi(p)

i=1

where p; is the characteristic function defined on the circumcentric domain €2; associated with
nodal point p;. For e € T}, we define the adjacent node set index of node p;: Af = {j|j #
i,pj € e}, I'; denotes the boundary of Q;, and |['§| is the length of I'{. T'§ =T'Ne. Let

Vi = {v|v € C°(Q); v is linear function on e,Ve € Ty} = span{pi, -+ ,on+K}
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be the subspace of H'(Q), where {p;} Y15 is the nodal basis of two dimensional linear finite
element space V},, and the subspace of Hg(f):

Vor = {v|v € Vi, vlaq = 0} = span{p1, ¢2, -, N}

It is clear that dimV}, = K, dimVp, = N
Then we have some important lemmas:
Lemma 1. For all node p; (1 <i < K),

T3] < 41971/ ke

Lemma 2. For all w € V}

(Vw, Vi) ==Y (w(p;) —wp)[Tyl/Ipi —psl, 1<i<K
JEA;

where @; is the basis of the finite element space of Vi, |Ti;| is the length of Ty;.
Lemma 38!, There are constants C,, C*,C** > 0 such that

Cullwllo,e < l@llo,0 < C*lwlloe,  Yw € Vi,
and

(6,%) = (6, < C1[|gllu,allxlle, Vo, x € Vi

Lemma 40!, There is a constant C' such that

lw — dlloe < Chlwha, Vwe CE)NHY(Q).

Let 7 > 0 is time step and N, = T'/7, then the partial upwind finite element scheme (P})
of problem (P) is that for n =0,1,--- , N, — 1, find U"™! € V{, such that

{ (D.U™,8) + (a(U")VU™ 2, V) + R(B™, U™, v) = (fu(U™),d),Vv € Vo
UO = Ihuo

where

D.U" = (@™ =0 [r, U™ =@+ U")/2,  fu(U") = I f(UT)

N
R(B",U",v) = > v(p:) > (oL Ul + ofsUS — UM B
i=1

Ji-J
JEA;
n n n PN = 0 E(Un)_g(Un)
U =U" (), ij=/ By -diijds, B =
ij J i

?(U?’) it Ur = Up.

In scheme (P,), the partial upwind parameter o7; and of; in convection term R(B",U",v)
could be chosen as

In numerical computation, we define B}’ =

R L if B
Pis +1 el ) pi >0
n __ M n _—
o = 5 if ﬂij =0
1 1 H n
_1 _ _ if gn
Py e Pl —1’ ﬁ” <0
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where pj’; is local Péclet number defined as:

26, | |
o = o = @UM)Ver, V) (1= 1,2, K € A
ij

It is easy to see that

< L,if B >0
- <on <if g1 >0

4. The Discrete Maximum Principle

At first, we introduce an important lemma:
Lemma 5. Let m x k (m < k) matrices A = (ai;), C = (ci5) and D = (di;) satisfy the
conditions:

k k k k k

(Z) Zai]- > Zcij >0, Z Qij > Zdlj >0 and Zai]- >0 (izl,--- ,m);

j=1 j=1 j=1 j=1 j=1
(iv) a;i; <01 <i<m,1<j<k,j#i).

if the vector @ = (uy,us, -+ ,ur)’ satisfy

Aii = C1 + 7D§ (4.1)

where W,§ is k dimensional vectors, T > 0, then each component u; (1 < i < m) can be estimated
by:
max |u;| < max{ max |w;| + 7 max |g;|, max |uj|}. (4.2)
1<i<m 1<j<k 1<j<k m+1<j<k

Proof. Take i such that |u;| =  max {|u]|} if Ju;| < +1111%2L)(<k{|uj|} equation (4.2) holds;

Then we only need consider the cases |ul| > J£1f11;<3ux<k{|uj|} The i-th component of equation

(4.1) is written as:

QiU = Z aiju; + Z Cijwj + T Z d”g]

J#i

It is clear that a;; > 0 from conditions (i) and ( v), from triangle—inequality and conditions (ii),
(iii) and (iv) we have

aiilui| < — Za”|u,| —FX:CZJ max |w]| —|—72:d,J max |g]
J#i

then

-
&
LY

k
> Cij
-t

ui| <2

max |wj| + 7l
1<5<k

Q5
i=1

lrg]agk ;]

M=
S
<

<.
Il
-
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From (i), we get

juil < max |w;| +7 max |g;]

then equation (4.2) hold.
For the Banach space X and a function ¢(¢) defined on discrete set: {0, 7,27, -+, N,7}
— X, let ¢" = ¢(n7),we define new norm:

- — n
Illz=x) =, max, [167]lx.

Lemma 6. Let 7 > 0 is time step and N, =T/7, ¢(t) is a discrete function defined as above,
if ¢(t) satisfy:

6" HIx <@+ Cin)[I¢"]Ix + Cor, n=0,1,--- ,N; - 1. (4.3)
where C1,Cy > 0 is constant independent of 7. Then forn=1,2,--- N, —1

18l ) < €T (1601 + CoT).

proof. From (4.3), we get forn =1,2,--- , N,

n—1

1¢"lx < (1+Cin)"[[¢%]1x + Y Ca(1 + Cir)'r.
i=0

1

For z > 0, by (1+z)= <e, we get
(1+C17)" < (1 +Cir)N < et
Hence
19" 1x < e N16°)x + N-Coe™T'r = eT ([|¢°]|x + CoT) .

Then, we can get the following discrete maximum principle:
Theorem 1. Suppose the conditions (A1),(A2) and (A4) be satisfied and time step T satisfies

the condition: 5

K
< — .
0<7< oM rarn (44)

then the solution U of scheme (Py) is bounded and is estimated by
U1 oo (poo @)y < €T ([16°]]0,00,0 + CoT) - (4.5)

where C1 and Cs is defined in assumption (A1).
Remark. With the Theorem 1 the constant K related the set G' can be fixed by

Ko =max {e”" (|u’lo,c0.2 + CoT) 5 [|ull oo 0,7, 1 (0)) } (4.6)

proof of theorem. We prove the theorem by mathematics induction. It is clear that at n = 0,
10°ll0,00.2 = [11nt°[lo,00,2 < [[u°llo,00,2 < Ko.
Let M = (my;), A = (af;), B = (b}};), where

—

mij = (P, %i). aj; = (a(U")Ve;, Vi), bi; = R(B",¢j,¢i).

then we can write the equation (Py) in the matrix form:

(M + %A) Ul = [M - %(A + 23)] U™ + M f(U™).
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where vectors U™ = (U, Ug -+ ,U)T and f(U") = (f1*, 3, , f)T with f = (f(U™), &s).
It is clear that

K K

n
E mi; = Mi; > 0, E Gy = 0.
j=1 j=1

K
2By = VA D b= D (ol ~ DB+ D ofif =0
Jj=1 JEA; JEA; JEA;
. K K K )
(1) E (mij + %(J,Z) = E [mij — %(az + QbZ)] = ;1 ms; = My; > 0, (]. <1< N),

Jj=1 Jj=1 J
(ii) If B > 0, because

oj; =1 -0 <1/pi; = lag;|/(285),
a%+2b?j=a%+2o§§ Z <0 (5 #19).
then

mij—%(a%+2b§;-)20,(1§i§N,1§jSK,j7éi)-

We can get the same result if 3% <0.
From lemma 1, lemma 2 and the assumption of theorem, we can get

mi; — 5(af; + 2b7)

= |- % (a(U™) Vi, Vi) + 2 ZA (UZ -1 Z]
JEN;
= Q] = 5(aU")Vei, Vi) — 7 EZI:\ (035 = 1) Jp,, B - fiijds
J i
T Lij
> |- Y ﬁ — Lt 3 |yl
JEA; JEA:
> 5 {0l Maltg —arrlon)
e€Th (i) c ‘
= » (12 o) o]

e€Th (1)

Hence if 7 satisfy the condition (4.4), then

23

mi; — =(alk +2b1) >0, (1 <i < N).

[\)

(iv) if i # j, my + Saly = Sa% <0, (1<i < N,1<j < K).
Then by lemma 5 we get

max U < max |[U?|+7 max |f?]., n=0,1,---.N, — 1.
1§i§N| ! |—1§j§K| il 1§j§K|ff . T
With Upt] =--- = U =0 that is

1T |z () < U |pos () (1 + Ci7) + Cor.
From lemma 6, we get

WUz o0 (0,71 (2)) < e ([[ulo,00,0 + CT)
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5. The Error Analysis

For error analysis we need the following assumption:
(A5) There is a constant C3 and C4 independent of h and 7, such that

C3h2 S T S C4h2.

Lemma 7. Let U be the solution of scheme (Py,), if ||[U™ —u"||o,o < Cs5(h + 7), where Cs is a
constant independent of h and 7. then

IVU" |0, < Cé,

where Cg is a constant independent of h and 7.
Proof. Choose the function ¢ € Vp p, such that ||¢ — u™||1,o < Ch, then

IVU lo.0 < IVU™ = ¢+ ¢ —u")llo.e + [[Vu"[lo,c

< [IVU™ = d)llo.a + V(e = u")llo,o + IVu"llog

From (A3), we know ||[Vu"™||o,0is bounded. Notice the choice of ¢, ||[V(¢ — u™)||o,0 also is
bounded. To estimate the first term in the last inequality, we use the inverse estimate

V(U™ = ¢)llo < CHHIU™ = dllo,e < CR7H(IUT = u"llo,g + [[u™ = dllo,e)

Hence
IVU"[lo.2 < Cé.
Lemma 8. Under assumptions (A3), for t; € [0,T) we have

1
(W —uk v) — r(ub T2 v)| < O ollo., Vv € Vi,

where C is a constant independent of T and h.

Theorem 2. Let u be the exact solution of problem (P) which is sufficient smooth, conditions
(A1), (A2), (A3), (A4), (A5) hold, and T be the time step which is sufficient small, U be the
solution of problem (Py), then we have

1U = wllgeeo,1502()) < C(h+7)

where C is a constant independent of h and 7.
Proof.Let w = Ipu, we set

U-u=U-w)+(w—u)=0+p
Use well-known estimatel®!, we get
1llo,0 = nu — ulloo < Ch*|uls,0

where C' is a constant independent of u, h and 7.

We proof the theorem by mathematics induction. It is clear that at n =0, ||U® — u®(|p o
Ch. We assume ||U™—u™|g o < C(h+7),0 <m < n. Then we must proof [|[U ! —u"t||g o
C(h + 7). From equation (P}) and equation (2.4)

(D6, 8) + (a(U™)VH" 2, Vo)

= (fh(Un)>ﬁ) - (DTUA)n)ﬁ) - (a(Un)vwn+%,v,U) - R(Ea Un)v)

INIA

= [(fa(U™),0) = (Fu"3),0)] — (D", 5) — (u] 2, 0)] = [(@(U™) Vw3, Vo)
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—(a(u™t2)Vu"t3 V)] — [R(B™,U",v) — (V- bu""2),0)], Vv € Vor

1 .
put v = §"Fz, since

. R N én+1 _ én énJrl + én
n n+§ =
(D07, 8744 ( — )

1 ~
= 3D R g (aU™)VEE, T ) > mlgm .

thfn
A 1
S D" g+ mlo™

< [Fa@m),073) = (pr ), 0m08)] = [(Dram, 674%) — (2, 0m4)] - (a(Um) Ve
4

—a(u"+%)vun+%,van+%) - [R(EH,U",W%) - (V-E(un+%),9n+%)] =340 (5.)

i=1

We start with the estimation of AM):

AW = (Fu(U™) = fa(U™),6753) + (fu(U™) = FU™),673) + (F(U™), 075 —6m3)

4
HAU™) = f@r ), 07 = AN
i=1
From Lemma 4 and assumption (A1), and notice that || - ||7 ¢, is equivalent to [|*||3 o,

AW < (U™) = fuU™)lo,all0™F 2 |lo,0 < ChII§™ 2[00 < Ch2 + C|I0"|2 o + C|I0" 112

A2 < 70 = U0l % oo < ChII™ 2]l < Ch? + C[107(2 o + C|I8"+ (2 g
By Young’s inequality,

AT < FU™ loallf™ 2 =™ 2[lon < CRIE™ 210 < OF® +el6™ 27
From condition (A2),

AU IFO™) = Fu™)]o.all0" 2 0.0

LIU™ = w2 [logll0"2 log

L([T™ = u™{lo,0 + llu™ — u*#lo.0) 107+ [lo,0
L(llp™lo.e + 16" llo.c + llu™ = w2 [lo,0)]16™* #||o,0
C2 +110™3. + 1073 0 + llu™ = um+2 13 o)

INIAININIA

Hence
1 1
AW < OB+ 10750 + 10" G o + [[u" —u" 2[5 o) + 210" 2|7 g (5.2)

To estimate A2,

A® = (D", §"F3) = (Dyw”, 04 2)| + |(Drw” = Dou”,6773))|

3
FI(Dpur —ufth ) =37 4@
i=1
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By Lemma 3 , the Cauchy inequality and conditions (A3), (A5), we get

A< CRVD,w" o0l V6" o0
Ch?||D-Vu"|lo,l V" 20,0

Ch2r=t [ | Tyl 0dt| VO™ [lo.0
1
_1 tn 2 1
O ([ a3 gdt) ™ (196744 o0

Chllurllz2(o, 73111 (@ 1V 2 [lo.0
Ch* +-¢l0"t= ]

INININ

ININ TN

AR < OR2|Du||a,0107 (o0
CR||7= [} wydt||2,0]107F 2|00

CR27 Y [ ||y o,0dt]|875 |00
" 1
O ([0 fuel3 odt) " 1672 lo.0
Ch||ut||L2(0,T;11‘IZ(Q)) 16" 2]lo.0
Ch? + Cll9"3 |12 ¢

IN IN A

VA VAN VAN

From Lemma 8, 1 3
A < Orfl0m g < C72 + 0" 2 g

then ) )
A® <O + 72+ 10" 2|2 ) + el 2] (5.3)

To estimate A(?),

. n+1 n .
A®) < <a(U”) <vwn+z — w> ,V0n+2>‘

n+1 n N .
+ <a(Un) <7Vu 2+ Vur _ Vu”“) ,V&”*Z)‘

+ ((a(Un) - a(u”+%)) Vu"+%)v9n+%)‘ _ XB:A(Bi)
i=1

where
AGY < M, (V™ oo + V5" lo.0) 11967+ lo0 < CHIE™ |10 < OB +<lf™* 42
From conditions (A3)
A2 < MaTZHUttHLQ(O,T;HQ(Q))||V9n+% log < CT* +lo*2 o
From condition (A2), (A3)

ABY IVamHlo,00.lla(U™) = au™2)[lo2l| V"2 [lo.0

OIU™ = w3 ||o,0l6" 2|10

(U™ = uMlo, + lu™ — u™ 2 lo.0) 0" |10
oo + 1187 llo.a + lu™ — u*+3[lo0)|0" 2|1 0
C(h* + (107112 o + lu™ — w22 ) + el +3 2

ININAININIA

then
AB < OB + 74+ (10712 + lu™ — w32 o) + 32|07 22 (5.4)
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To estimate A4
AW < |(V - Bu2) = V- B(U™), 67 5)| 4 (V- BU"), 07 — §7F3))]
~ 1 1 3 .
H(V-BU™),67HE) — R(B™, U™, 67 = Y AU
=1

By Green theorem and boundary condition, we get
AW < | (B = BUm). Vo) | < O + 1187 2 g + llu” = wH [ o) + <l
By (Al), Lemma 4 and Lemma 7
AU < OB el

Next we consider A(43). Notice that

— ~ 1 N N 1 —
(VU675 = 3 fo, 074V BU7)da

- E "+zf9 V- b(UM)d
1E1 -

= SOV n) — B(UP)]da
zN - . .

= 20,7 X [, i [bUT) = bUP)]ds
i=1 JEA;
N N . . .

= SO Y [ [B%(U}‘—Ug’)er(U”)—b(UJT‘) ds
=1 JEA;

Since VU |, = const for each e € T}, we easily find that

1

U@ -Gl < VUL <C ([I0L ) =CINUI., i pupyeery,
|Ui - Uj| < he |VU|6| <C </|VU|6|2 dl’) = CHVUHO,e: if pi,pj €€
It follows from [1] and (A2),
AU3) = |(v bU™),6n3) — R(B™, U™, 97t 3)|
n+2 n -n n n
= |ze S Jr, i [Bron U - Up) + 5O - BUp)] as
JEA;
= | S X 6T -6 iy [Bronup —UR) + BU™) — BUp)] ds
e€Ty, pi,pj Ee,i<j *
”Jr% n+% e n n n n
< S ety (1Bnllonlup - upl+ Lun - up)
e€Ty pi,pj€e,i<lj
< ¥ 3¢ ‘VW%  h2CL(VU,

ecTh

Furthermore, by the Cauchy inequality and Lemma 7, we have

AU < Oh||VE™ 2 (|00l VU |lo.0 < Chl§™F 3|10 < Ch® +elf™F22



710 7.Y.ZHAO AND J.W. HU

Hence ) ) )
AW <0 (B2 + 10" E B o + 0" — w3 o) + 360" g (5.5)

By substituting of equations (5.2), (5.3), (5.4) and (5.5) in equation (5.1), taking e small
enough such that ¢ < g, we get

1
SDAB"IE 0 < C (B + 72+ 10" 3 o + 110" 1 o + llu” —u""F |3 q)

Notice that
1
lu™ = u"* 2|00 < Cllutllo,0-

then

142 2
0"+ 30 < ToacT W)

1-— QCT| 1-2C
This implies that if 7 is small enough such that 1 — 2C'7 > 0, then

10" 115. +

10" l50 < (L +CDE"5 0 + CT(h* +7°)
By induction over n = 0,1,---, N, — 1, this easily deduce that
10" 5.0 < (1 +CT)"HIE°5 o + [+ Cn)" = 1] (8% + %)
Since (1 + C7)" < (1+ C7)Nr < €T it follows that
107415 0 < e“TNE°NE o + [97 = 1] (A* + %)

That is
||0”+1||0,Q < C(h+T).

and also
o™ oo < CR2.

Hence the theorem is complete.

6. A Higher Order Accuracy Scheme

In this section, we will introduce a higher order of 7 scheme (6.2). To simplify the theoretical

analysis, we consider the predictor-corrector scheme at first.

A ~ n+1k n . .
For convenience, we denote U™* = Y"Z__+£U" "then the predictor-corrector scheme is: for

n=0,1,---,N; — 1, find U0, U»+tLl U»+1 ¢ V;, such that

(F2 )ty (575) 50 (50%0) = (30708) o€V 610

T

(F o (0m) (00) o) (000 = (5 (077 5) o v

(6.10)

(u) #(a (@) 9 (T w0 (00,00 0)

- ( Ah (U"J) v) . Vo€ Von (6.1c)
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U° = I’ (6.1d)

where

R(B",0mv) = 3 vl) 3 (U8 + of U ~UFM)BEY, k=01 fu=1Iuf

=1 ]EAZ

ok U (p) £ U () " 2 OO = BO)
n,k __ [ % n,k __ nk - n,k __ J
U = > ,ﬂij = /F Bij -i;ds, BY = — —

In Numerical Computing we define B‘Zk = g—Z(Uf’k)if UJ"k =Umk
Theorem 3. Suppose the conditions (A1), (A2) and (A4) be satisfied and time step T satisfies
the condition (4.4), then the solution U of problem (6.1) is bounded and is estimated by

Uz o0 (0,715 (02)) < e ([[u’llo,00,0 + CoT) -

where C1 and Cs is defined in assumption (A1).
Proof. Tt is clear that ||U0||LOO(Q) < Ky. We suppose U™ (0 < m < n) is bounded. From

(6.1a), as the proof of Theorem 1, we get [[U"+10||pw(q) < Ko, then U™ is bounded by Ko,

Un+1,0 + Un»

<K
5 0

||Un’0||L°°(Q) = H <
L>=(Q)

Also, from (6.1b) we have U™ is bounded by K.

Finally, as the analysis of Theorem 1, we get U™*! is bounded.

To get the error estimation, we need the following assumption:

(A6) Uttt € LOO(O,T, H2(Q))
Theorem 4. Let u be the exact solution of problem (P) which is sufficient smooth, condi-
tions(A1), (A2), (A8), (A4), (A5), (A6) hold, and T be the time step which is sufficient small,
U be the solution of problem (6.1), then we have

U = ullfoe 0,712y < C(h+ 7°)

where C is a constant independent of h and 7.

Proof. We proof the theorem by mathematics induction. It is easy to proof ||[U" — u™|p,0 <
Ch if n = 0. We assume that ||[U™ — u™||o,o < C(h+ 72), 0 < m < n holds. Then we go on
to proof that [|[U™ — u"t|jg o < C(h + 72) is still true. First, we discuss the estimation of
(6.1a). (6.1a) is equivalent to (Pp). From the proof of Theorem 2, we get

1+2CT

0n+1,0 2 <
167410l o < 55

20T (h2 N Tz)
-

" 2
1671 6 + T

For (6.1b), Notice that in a(u), b(u) and f(u), we use U™k = W in (6.1b) instead
of U™ in (Py), which is different in (6.1b) and (P,). Then we need to estimate A, A() A®)
and A® again. To estimate A1),

AG4) 1F(T™F) = F(@*2)lo.ll0" 20,0

~ 1 1
LIU™F —umtz g o0 2]o.o 1 . .
%(HU”H’O—U”H||0,Q+||U"—U"||0,Q+2||%—“n+§||0,Q)||‘19n+5||0,9
(16" 0.0 + [1p" ™o, + 187 llo,2 + lo" o0 + CT2) 072 |3 o,
C(h* + 74+ [10™15.0 + 1167150 + 16770115 o)

INININ N IA
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The estimations of A1V, 412 and A13) are similar to that in Theorem 2, then
AW <O + 7+ 10713 + 107 5.0 + 1167013 o) +clomt =] o
As the estimation of A', we can get the estimations of A®) and A®,
AP <O + 7" + 110750 + 11670018 0) + 3el6™ 2 7
AW <0 (B4t 40" g + 1070 o) + 32107 g
To estimate A(®) from condition (A6), we get

ACD < 0|02 flog < O 4+ O3l o
The estimations of A" and A2 are similar to that in Theorem 2, then

AP < OW + 7" + 1102 ) +elo™ 21

Finally, we get

1+2CT 2CT
0n+1,1 2 < " 2 h2 3
67 g < TS 67 g + e (2 + 1)
As the estimation of ||§" 11| o, we get
1+2CT 2CT
0n+1 2 < 0n 2 h2 4
16743 g < T 073 + T (B + )
As the proof of Theorem 2, we get
10" oo < C(h +17).
and
10" o0 < CH®.
Hence the theorem is complete.
Then we give a three time level scheme : for n = 1,2,--- , N, — 1, find U"*! € Vj, such
that
nt+l _ . B Untl L pyn ~n S AN L
(7,11) + (a (U) v <f> ,w) +R (B ,U,v) - (fh (U) ,v) Yo € Von
(6.2)
Where U°, U' is given by (6.1),
- 3U" — Un—l -n  _ N ~ ~ ~ ~ ~ ~
U=——F—, R (B ,U,v) => wp) Y (olUr+orUr~UMBE,  fu(U) = Inf(U)
i=1 JEA;
o _ 30D ~ U™ () 5 5 s B < 0D — B0
Uit = 5 » Bij :/F Bjj -iijjds, By = ﬁ

i j i

~n -
In Numerical Computing we define éij = %(U{‘) if U]” = 0.
To get the discrete maximum principle and the error estimate of this scheme, we need define
the set on R:
G ={u: |u| <2K{}
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and modify conditions (Al) and ( 2):
(A1") There exist constants m’, M,, C1, C} which depend on K|, such that

0<m <a(u) <M, |fu)]<Cllul+Ch Y(zt)eQx(0,T],ucq"

B(u) = (b (u),b® (u)) € WL(G') x WL(G"), f(u) € WL(G' x Q x (0,T]),u’(z) € C(Q).
(A2")a(u),b(u),

la(u) — a(v)]

where L is constant related to K.

Then we have following theorems:
Theorem 5. Suppose the conditions (A1'), (A2 ) and (A4) be satisfied and time step T satisfies
the condition

f(u) are locally Lipschitz continuous
<

Llu = v|-||b(u) = b@)|| < Lju — || f(u) — f(v)| < Llu — v|-Yu,v € G-

I<L2

0<7< ———+—
2M, 4+ 4Lk

then the solution U of problem (6.2) is bounded and it is estimated by
Uz o0 (0,710 (02)) < e (J|u’llo,00,0 + C5T) .

where C| and C} is defined in assumption (A1').
Then, K, is fixed by

K = max {7 (|u°lloo0 + CST) 5 [ull = 0.7,0 () }

Theorem 6. Let u be the exact solution of problem (P) which is sufficient smooth, conditions
(A1), (AZ), (A3), (A1), (A5), (A6) hold, and T be the time step which is sufficient small, U
be the solution of problem (6.2), then there exits a constant C independent of h and T, such
that

U = ullgoo 0,120 < C(h+ %)

The proof of discrete maximum principle and the error estimate of this scheme are similar
to that of predictor-corrector scheme. It is clear that the theoretical analysis of this scheme
is more complicated than that of predictor-corrector scheme. But it is more practicably than
predictor-corrector scheme because it is one step scheme.

7. Another Partial Upwind Finite Element Scheme

In the above schemes, the convection term is explicit. In this section we will give a scheme
which the convection term is implicit.

Let 7 > 0 is time step and N, = T'/7, then the partial upwind finite element scheme of
problem (P) is (Py1): for n =0,1,---, N, — 1, find U™ € Vp, such that

{ (DU, %) + (a(UM)VU™ 2, Vo) + R(B", U™ 2, v) = (fo(U™),d),Yv € Vou
UO = Ih’LLO

where

DO = (@~ U™ fr,  UME = O UM/2, (U7 = IO

N
R(B™,U™3,0) =S o(p) S (0p U] % +onU7 2 — U 0
i=1 JEA;
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- . T =, _ WU} —BUr)
Uit =U"(pi), i = Bjj -mijzds,  Bj; = TUur_pur

ij j i
In numerical computation, we define E{; = g—Z(U{‘) if U = U". And here p}; is mesh Péclet
number defined as:

n

pl =L alh = (UMY, V) (i = 1,2, K3 j € Ay).

gl

Then, we can get the following discrete maximum principle:
Theorem 7. Suppose the conditions (A1),(A2) and (A4) be satisfied and time step T satisfies

the condition: N

K
<" 1
0<7< M raLn (7.1)

then the solution U of problem (Py1) is bounded and is estimated by
U oo (0,72 (2)) < e (J1ullo,c0,2 + C2T) - (7:2)
where Cy and Cs is defined in assumption (A1). Then, Ky is fived by

Ky = max {eclT (||UO||0,o<>,Q + C2T) 5 ||U||L°°(0,T,L°°(Q))}

Proof. We only need check four conditions in Lemma 5.

K K K
() 22 (maj + 5 (aly +0) = 2 [mij = Flajj + )] = 32 myj =mai >0
J= j= j=
(i)If Bf; > 0, because
U]T'li =1- g’?j S ]-/pz] |azj|//81j7
ai; + b = ajy + 03B <0 (j #19).
then

T .. . .
mij — §(GZ +075) > 0.(1<i,j <N,j#1i)

We can get the same result if 3% <0.
From lemma 1, lemma 2 and the assumption of Theorem, we can get

mi; — 5 (af; + bjy)

= -3 [( (U")Vei, Vi) + 3 (o — 1) ’3]

JEA;

= || = 3(a(U") Vs, Vi) — 2§< = 1) Jy,, Bl - itiyds
Jj€

> Il- g e DR
JEA;

v
r—H

Moz yll — ot}

Kl— S o) il

Hence if 7 satisfy the condition (7.1), then

eGTh (2)

eeTh

Z(am +2b7) >0

mii = 5
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(iv) if i # j, mi; + 3(afy +03) = 5(a; + b)) <0

The remains proof is the same as that of Theorem 1.
Theorem 8. Let u be the exact solution of problem (P) which is sufficient smooth, conditions
(A1), (A2), (A3), (A4), (A5) hold, and h be the space step and T be the time step which are
sufficient small, U be the solution of problem (Py1), then we have

1U = wllgoeo,7502()) < C(h+7)

where C is a constant independent of h and 7.
Proof. The theorem will be proved by the same process as Theorem 2 with one minor
change. Only the estimation (A4) has to be insert one term : If h is small enough, we get

|R(B™, U™, 6m3) — R(B", U™+, 67 %)]

N _
|26 % op [y~ Up) = @ U] [, By s
1=

ji i i
JEA;

< XX 16T =g o (JUp - U U - U7 T 1B
e€Th, pi,pj€e,ilj

< ChIVE+E oo (VU llog + VU™ lo.0)

< Ch?+elfmt3)2 o+ Chlg™32

< Ch? 4260752, ’

8. Numerical Tests

Example 1. First, we test a problem on the unit square Q = (0,2)%, with a(u) = ¢ = 0.01,
b(u) = (0.4u?,0.4u?), and choose the right-hand side f in such way that

£ = —[(2—0.8t—0.5)2+(y—0.8t—0.5)2] /[ (4t+1)] 8.1
u(e,,) = e (5.1)
is the exact solution. The initial condition and the boundary values are obtained directly from

(8.1). The solution at t=0.0025, t=0.5 and t=1.25 are illustrated in Figure 1.

Figure 1. The solution (8.1) at t=0.0025, t=0.5 and t=1.25

We choose space step h = 0.025 as [12], time step 7 = 0.0025 which satisfied the condition
(4.4) and (7.1). As [2], we define norm:

lell- := \/elZuu = UP g + lTnu = Ulloa

When T = 0.0025 tests are presented in tabular form:

scheme Maximum |error| | Average |error| | Maximum [u] llelle
Py 0.016725 0.000165 0.500000 0.003102
Scheme (6.2) 0.013289 0.000170 0.500000 0.002859
GFEM 0.013772 0.000179 0.500000 0.002993
Pyl 0.023869 0.000230 0.500000 0.004341
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where GFEM denotes the standard Galerkin Finite Element Method.

Test final results when 7' = 1.25 are presented in tabular form:

7.Y.ZHAO AND J.W. HU

scheme Maximum |error| | Average |error| | Maximum [u] llelle
(Pr) 0.001078 0.000114 0.166667 0.000538
Scheme (6.2) 0.001923 0.000151 0.166667 0.000710
GFEM 0.001349 0.000129 0.166667 0.000589
(Py1) 0.002831 0.000209 0.166667 0.001057

This tabular says, our schemes can compute general example as well as the standard Galerkin

finite element method.

Example 2. Q = (0,1)%, with a(u) = ¢ = 0.01, b(u) = (0.5u?, 0.5u?), and choose the right-hand

side f in such way that

is the exact solution. The initial condition and the boundary values are obtained directly from

U’(wayat) =2- 6_(

z+y)*(t+0.01) /e

(8.2). The solution at t=0.01, t=0.1 and t=1.0 are illustrated in Figure 2.

We choose space step h = 0.1, time step 7 = 0.01 which satisfied the condition (4.4) and

7

Figure 2. The solution (8.2) at t=0.01, t=0.1 and t=1.0

(7.1). At this time, the standard Galerkin finite element method got oscillation.

Test results when 7" = 1.0 are presented in tabular form:

scheme Maximum |error| | Average |error| | Maximum [u] llelle
(Py) 0.000873 0.000092 2.000000 0.000228
Scheme (6.2) 0.000873 0.000092 2.000000 0.000228
GFEM 0.587784 0.062196 2.000000 0.175511
(Py1) 0.001071 0.000109 2.000000 0.000278

Example 3. Q = (0,1)?, a(u) = e = 0.01, b(u) = (0.5u?,0.5u?), and choose the right-hand
side f in such way that

u(z,y,t) =xy (1 - e(w_l)/s_t) (1 - e(y_l)/g_t) (8.3)

is the exact solution. The initial condition and the boundary values are obtained directly from
(8.3). The solution at t=0.01, t=0.5 and t=1.0 are illustrated in Figure 3.
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A

Figure 3. The solution (8.3) at t=0.01, t=0.5 and t=1.0

We choose space step h = 0.05, time step 7 = 0.01 which satisfied the condition (4.4) and
(7.1). At this time, the standard Galerkin finite element method gets oscillation.
Test results when T' = 1 are presented in tabular form:

scheme Maximum |error| | Average |error| | Maximum |u| llell<
(Py) 0.021100 0.002462 0.898031 0.008910
Scheme (6.2) 0.021097 0.002461 0.898031 0.008904
GFEM 0.221252 0.005373 0.898031 0.050288
(Pp1) 0.021220 0.002466 0.898031 0.008987

We test by a(u) = e = 0.001,0.0001,0.000001. We find when ¢ is lower, the error of the
partial upwind schemes are lower, and the standard Galerkin finite element method gets more
oscillation. The ||e]|. of these tests results when T' = 1 are presented in tabular form:

scheme €=20.01 | e=0.001 | € =0.0001 | € =0.000001
(Pr) 0.008910 | 0.007597 | 0.007851 0.007826
Scheme (6.2) | 0.008904 | 0.007583 0.007836 0.007811
GFEM 0.050288 | 0.172671 0.231119 0.235908
(Py1) 0.008987 | 0.007585 0.007845 0.007820

Test results when 7' =1, ¢ = 0.000001 using (P, 1) are presented in tabular form:

scheme | Maximum |error| | Average |error| | Maximum |u] llell<
h=0.1 0.027163 0.010205 0.810000 0.014223
h=0.05 0.014120 0.006282 0.902500 0.007845

h=0.025 0.007185 0.003488 0.950625 0.004099

Example 4. Q = (0,1)2, a(u) = e = 0.000001, b(u) = (0.5u?,0.5u?), and choose the right-hand

side f in such way that

z+y—t—0.5
0.1

is the exact solution. The initial condition and the boundary values are obtained directly from
(8.4). The solution at t=0.01, t=0.5 and t=1.0 are illustrated in Figure 4.

We choose space step h = 0.025, time step 7 = 0.01 which satisfied the condition (4.4) and
(7.1). At this time, the standard Galerkin finite element method got oscillation.

u(z,y,t) = arcty (8.4)

Figure 4. The solution (8.4) at t=0.01, t=0.5 and t=1.0
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Test results when 7' = 1 are presented in tabular form:

scheme Maximum |error| | Average |error| | Maximum [u] llelle
(Py) 0.082885 0.014508 1.373401 0.020481
Scheme (6.2) 0.051696 0.031305 1.373401 0.035792

GFEM NAN NAN 1.373401 NAN
(Pp1) 0.095585 0.021565 1.373401 0.030143

where NAN denotes that the compute is overflow.
From Example 2-4, we can see that when the solution has a abrupt slope, our schemes is

more accurate than the standard Galerkin finite element method.
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