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Abstract

This paper deals with the asymptotic stability analysis of 8 — methods for multi-
pantograph delay differential equation

, 1

w () =dult) + Y piul(git), 0<qg<q-1<--<q <1,
i=1

u(0) = uo.

Here A, p1, pi2, -+, p, uo € C.

In recent years stability properties of numerical methods for this kind of equation has
been studied by numerous authors. Many papers are concerned with meshes with fixed
stepsize. In general the developed techniques give rise to non-ordinary recurrence rela-
tion. In this work, instead, we study constrained variable stpesize schemes, suggested by
theoretical and computational reasons, which lead to a non-stationary difference equation.
A general theorem is presented which can be used to obtain the characterization of the
stability regions of § — methods.
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1. Introduction

Delay differential equations (DDEs) have a wide range of application in applied sciences. Re-
cent studies in diverse fields biology, economy, control and electrodynamics (see for examples|[1,
11]) have shown that DDEs play an important role in explaining many different phenomena.
In particular they turn out to be fundamental when ODEs-based model fail. DDEs have been
studied by many authors who have investigated both their analytical and numerical aspects
[2][4][8][12].

The general functional differential equation is given by

u'(t) = [t u(t), ular (t), u(az(t)), -, u(au(t)))-
A classical case that is the subject of a lot of papers is the following:
Cki(t) :t—Ti,i = 1,2,...,

where 7; is a positive constant [6] [7][10]. Another interesting case which is far different from
the previous is that the pantograph equation:

{ Z,((Ot)) ::1{0(::) u(t)v u(qlt)) U(QZt)a T 7u(qlt))7 t> 07 (11)

* Received December 25, 2001; Final revised December 12, 2003.
1) This work is supported by the NSF of P. R. of China (10271036).



382 D.S. LI AND M.Z. LIU

where f is a given function and 0 < ¢ < ¢—1 < --- < 1 < 1, whereas u(t) is unknown for
t>0.

There are many applications for (1.1), for instance, in number theory, in electrodynamics and
in the collection of current by the pantograph of an electric locomotive, in nonlinear dynamical
systems [5][11].

From a numerical point of view, it is important to study the potential of numerical methods
in preserving the qualitative behavior of the analytical solutions. In paper [3] A. bellen and N.
Guglielmi investigate the stability properties of § — method when it is applied to the following
pantograph test equation:

u'(t) = Au(t) + pu(gt),t >0,
_ (1.2)
{ U( )——Um
where A\, u,up € C'and 0 < ¢ < 1.

In this paper, we study the stability properties of § — methods when they are applied to the

multi-pantograph test equation:

!
u'(t) = Au(t) + 3 pu(git), 0<q <q-1<---<q <1, t>0,
i=1
u(0) = uo.
Here A, 1, pi2, - -+, pu, o € C.

In section 2 we provided the discretization scheme by applying 6 — methods, whose stepsize
increase geometrically, to the pantograph equation (1.3).

In section 3 we recall the results concerning the asymptotic stability for the analytical
solution of (1.3) and introduce the numerical stability framework. We present the results
concerning the stability analysis of 8 — methods.

In section 4 we give some numerical experiments to show the asymptotic stability and
convergencethe of § — methods .

(1.3)

2. 0-methods

A. Bellen, N. Guglielmi and L. Torelli described in detail the discretization scheme and
constrained global mesh in [3]. We quote their description in the present paper.

Since we are interested in the asymptotic behavior of numerical solution of Eq.(1.3), we
suppose to have the numerical solution available till the point Ty > 0.

Firstly we build a primary mesh based on the following relation:

T, = iTk,l,lc =12,....
a1
In this way we define the primary intervals
l{ktzijk —-Tk,12: l—jgl
a1

Observe that the sequence increases exponentially. So we define the global mesh H by par-
titioning every primary interval into a fixed number m of subintervals of the same size. We
set

To,k=1,2,.... (2.1)

_Hpmppn 1 1=qn
= o/ _qun/m]ﬂ,n_o,m,.... (2.2)

hn+1

Here [n/m] denotes integer part of n/m.
From (2.2) we have that
gihn = hp—m,n > m.
Here for simplicity (but without any loss of generality), we have assumed ¢ty = Tp = 1. With
k = n mod m, we are now in a position to define the grid points of constrained global mesh H,

by 1= T[n/m] +khn,n=1,2,.... (2.3)
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More directly, the global mesh point are defined by the recursion formulation
—1
tn i =q) tp—m,n >m. (2.4)

Since 0 < q; < g1 < --- < q1 <1, there exists s; € N, i =1,2,...,1, such that

G < <¢i=1,2,...,1 (2.5)
Furthermore

tn—(si+1)m < Qitn < tn—gim- (2.6)

Let

= e tewiin gt gl

e e (2.70)

and
vi=1-6;i=1,2,...,1 (2.7b)

Then §;, v;, i =1,2,...,1 are constants and 0 < ¢; < 1,0 < v; < 1.
Now we consider the adaptation of § — method to (1.1).

Untr = U+ Bngr (0F (bngt, Ungr, v (qutngn), - u" (@rtng)) 28)
+(1 - O)f(tn; Un, uh(qltn); T ;uh((ﬂtn))) :
Here u"(t) is the continuous extension of discrete numerical solution u,, and
uh(qitn) = 6iunfsim + 7iun—(si+1)m)i =12,... >l' (29)
Applying (2.8) and (2.9) to (1.3), we obtain that
!
Upt1 = Up + ehn—i-l <>\Un+1 + E lffi((siurH-l—sim + 'Yiun+1(si+1)m)>
i=1
(2.10)
!
+(1 - a)hn—l—l <>\Un + Z lffi((siun—sim + 'Yiun(siJrl)m)) -
i=1
From (2.10) we have
[
. 1+ (1 — Q)AhrH-l G,uiéihnH (1 — 0)ui6ihn+1
Un+1 = 1= O\ Up + ; 1— O\hpos Unt+1—s;m T 1— O\hpos Un—s;
Lo ( Buivihnga (1 =) pivibnga
+z§1 <1 _ 0>\hn+1 un+1_(3i+1)m + 1— 0>\hn+1 u —(si+L)m | -
(2.11)
For simplicity, we only consider the case that n + 1 —sym > n—sym > n+1—sam >
n—sm > --+>n+1—sm >n— sym. In other case the proof is analogous. Let U, =
(Up, Up—1,- -,un_(sl+1)m)T. From process (2.11) we have that

Upi1 = AnUn, (2.12)
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where A, = (afy) is ((s: + 1)m + 1) x ((s; + 1)m + 1) matrix and

1 1—0)\h,

PO O g =,

1= ONhnrs

B,ukékhnﬂ . .
1_0>\hn+1’ ¢ )J Sk, ) » Uy
(1 =0)prbphpyr . )

1 _0>\hn+1 ) ¢ )J sgm+ 1, ) 5 by

%=1 et 21)

_— =1, = 1 k=1,...,1
1 _ 9Ahn+1’ Z 7-] (Sk + )m7 ) 7Y
(1 —-0)pryihntr . .

1 _ 0Ahn+1 ) Z 7-] (Sk + )m + ) ) Y
17 Z:]+17]:15277(Sl+1)m7
0, others.

3. Stability Analysis

We shall assess the stability of process (2.8) by analyzing their stability behavior of the
numerical solution of test problem (1.3). Using the method of paper [9], we can prove that the
solution u(t) of equation (1.3) tends to zero as t — oo, for all up € C and all 0 < ¢ < g—1 <
o< q < 1, if

1

Re) < O,Z |k < |A]- (3.1)
k=1
We define
l
S= {(/\,Ml,ﬂz, T ,,LL[) € OlJrl Re) < 072 |Nk| < |>‘| } . (32)
k=1

Definition 3.1. Let 0 < ¢t < qi—1 < - < q1 < 1 and H = {to,t1, - ,tn, -} an assigned
mesh. The numerical method is called asymptotic stability at (X, p1, po, - -+, w) if any application
of the method to the problem (1.3) generates numerical approzimations u, that tend to zero
as n — oo. The subset S(H) C C'"*' consisting of all pairs (\, 1, s, -+, ) at which the
numerical method is asymptotically stable is called its H -stability region.

Definition 3.2. A numerical method is said to be H-stable if
S(H)2 S,

foranyto € RT,me ZT,0< q < q—1 < --- < q1 <1 and corresponding constrained mesh H
defined by (2.3).

In the following part, we denote the determinant of any matrix M by det(M), the set of
eigenvalues by (M) and the spectral-radius by p(M), let I, denote s x s identity matrix and
e=(1,1,---,1)T € R®.

In order to derive the conditions for the H-stability of § —method (2.8), we give the following
lemmas.

Lemma 3.1. Let the matriz A, be given by (2.13). Then there exists a matriz A = (a;;) such
that A, — A, as n — oco.
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Proof. Since
1+ (1—0)Mapsa 1-4

li =
noo 1 — O\ 9
. Oupdphpia PO
1 = - k=1,...,1
00 1 — ONpr1 X on
. (1= g hpya ppdy 1 —6
1 = - k=1,...,1 3.3
oo 1 Ay A6 e 33
. Oppyrhag Kk Yk
1 = - E=1,...,1
00 T — ONng s P oh
1—0)pryrhn Ve 1 — 6
lim (L= OB mhner Ck=1,....1,
n—oo 1 —6OAhpy1 A 0
let Lo
4 —
_Tv = ]-7] = ]-7
0
—%, i=1,j=spmk=1,...,1,
Or 1 —6
_Mk)\kT’ i=1,j=sim+1,k=1,....1, -
;i = L .
7 % i=1,j= (s +mk=1,....1,
e 1 — 6
Bk T i — 1= (e D)m ALk =1,...,1,
A0
]-7 Z:.7+1).7:1)277(51+1)m7
L 0, others.
The lemma 3.1 can be proved.
!
Lemma 3.2. Let matriz A be given by (3.4). If 0 > % and Y ;| < |A|, then p(A) < 1.
i=1
Proof. Tt is easy to deduce that the characteristic polynomial of matrix A4 is
p(x) — x(sl+1)m+1 + lo%ex(sl—i-l)m + i (uiTﬁim(sl—sH-l)m—H + }Li)\di %x(sl—sﬁ-l)m)
i=1
!
+ 3 (almeom 4 gy (35)
— (.T + %) <m(sl+1)m + _il m)\tﬁm(sl—si—i-l)m + :Zl%m(sl—si)m> .
It is immediate to observe that one simple root of p(z) is given by
-1
7=, (3.6)
if 0 > %, then |z;] < 1 and the remaining roots satisfy the equation
l !
(s1+1)m lj’l_(si (si—si+1)m HiYi (s;—si)ym _
T + z + — =0. 3.7

Let

l l
gz) = alortim 4 3 M%fsiw(sl—sl-ﬂ)m 3 %m(sl—si)m
i=1 =1
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and
fa) = gl

!
From > |ui| < |A|,0; >0,vi>0and §; +v;, =1,i=1,2,...,1, if || = 1, then
i=1

16 il )i
I |_Z"‘|A'| # L Z'w 7@l (3.8

By Rouché Theorem, we have that f(z) and g(z) have the same number of zeros inside the
unit circle. It is observed that f(z) has (s; + 1)m zeros inside the unit circle. So g(z) also has
(s; + 1)m zeros inside the unit circle. Hence all roots of characteristic polynomial of matrix A
have modulus less than 1, which means that p(A) = ¢ < 1. The proof is completed.

In following part we shall give the sufficient and necessary condition which assure that
0 — method are H — stable.

Theorem 3.1. The 0 — methods are H-stable, if and only if 6 > %

Proof. The equation (2.12) can be written as

Ups1 = (A+ A, — A)U,. (3.9)
From p(A) = ¢ < 1, for 13 there exists a norm || - ||, such that
1—
Al < c+ Tc (3.10)
According to Lemma 3.1, for sufficient large N, if n > N, then
1—
14, = All < — < (3.11)
From (3.10) and (3.11), we can obtain that
l1—-c 143 1+4c¢
lnlle < 1 = All + [J4ll < =S+ 252 = 228 <, (312)
ifn> N.
This means that
lim U, =0.
n—oo
The sufficient condition is proved.
In the following part we give the proof of necessary conditions. Suppose that
lim wu, =0. (3.13)

n—oo
We focus attention to the case that u; = 0,¢ = 1,2,...,1, and Re\ < 0. Clearly, these satisfy
condition (3.1). For this particular case, Eq.(2.11) reads
Uny1 = (61 + B2(n))un,

where
1 — 1

B = ,ﬂQ( ) = 90 —0Nher)
We choose )\ in the way that
1+ (1—=0)Mps1 #0,Yn >0,

which means that ) + 82(n) # 0 for any n > 0. We firstly consider the case § < % Observe
that

1
0<§<:>|61|>1.

Since lim fB»(n) = 0, there exists i such that
n—o0

1
0 < 5= [unt1| > |unl,Vn > 7,
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which contradicts (3.13).
Consider the case 6 = % In this case it holds

Unt1 = (=1 + Ba(n))u.
Since
Ba(n) = O(gl™ ™),

Uy is asymptotically bounded, but does not vanish. The necessary condition is proved.

4. Numerical Test

In this section we give several numerical examples to illustrate the properties of the methods
(2.8) and all of them we performed on the computer using Matlab 6.0 with double precision.
Example 4.1. We consider the following equation

() = —3u(t) + 0.4u(0.4t) + u(0.1t),u(0) = 2.7. (4.1)

Fig.3 Fig.4

We obtain the exact solution of equation (4.1) using Dirichlet series (see [9]). Using the
methods (2.8) with 8 = 0.8 and letting m = 2,3, 5, 10, we give numerical solutions of equation
(4.1). In figures 1-4, the solid line and dashed line denote exact solution and numerical solution,
respectively. From Figures 1-4, it can be easily observed that u, — wu(t,) as m — oo and
Uy — 00, as n — 0.

Example 4.2. We consider the equation

w (t) = —u(t) + p ()u(0.58) + po(t)u(0.25¢), u(0) = 1. (4.2)
Here pu1(t) = —e%%ts5in(0.5t), ua(t) = —2e~%"cos(0.5t)sin(0.25t). It can be seen that the
exact solution of equation (4.2) is u(t) = etcos(t). Using the method (2.8) with § = 0.7, we
obtain the numerical solution for m = 2,4, 8,10, respectively. From these numerical solution,

we also found that u,, — u(t,), as m — oo. In fig 5-8 we give the exact solution and numerical
solutions corresponding.
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Fig.7 Fig.8

These numerical experiment show that the method (2.8) is asymptotic stability and conver-
ce.
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