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Abstract

In this paper we present a dynamic optimal method for adjusting the centering pa-
rameter in the wide-neighborhood primal-dual interior-point algorithms for linear pro-
gramming, while the centering parameter is generally a constant in the classical wide-
neighborhood primal-dual interior-point algorithms. The computational results show that
the new method is more efficient.
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1. Introduction

The primal problem and the dual problem we are concerned with are
(LP) min ¢z, st. Az =10, x>0,
(LD) max by, sit. ATy+s=c, s>0,

where A € R™*" ¢,z,s € R" and y,b € R™. Let

Fii={(v,s) € R®: Az =b, ATy+s=c for somey € R™, (z,s) > 0}.

We say that the point (z, s) is an interior feasible pair if (z, s) € F;. We also use the notation
w:=(z,s).

Let us look back the iteration process of the primal-dual interior point algorithms: Assume
that (x,s) is a current iterate interior feasible pair. Let X and S denote the diagonal matrix
obtained from the vectors x and s respectively, i.e. X = diag(z) and S = diag(s). Then, the
search direction of the typical primal-dual interior point methods is obtained by solving the
following linear equations system:

AAzx = 0,
ATAy+As = 0, (1.1)
SAz + XAs = ~yue— Xs,

where p = zTs/n and v € [0,1] is so-called centering parameter. The solution of (1.1) is
denoted by Aw(y) = (Az(y), As(v)). Then the next iteration pair w(y,6) = (z(v,6), s(v,0))
is obtained by setting

z(v,0) =z + 0Az(y),

s(7,0) = s + 6As(7),
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or in a more compact notation
w(y,0) = w+ 0Aw(y),

where 6 € (0, +00) is chosen so that w(y,8) > 0 or w(y,8) belongs to some neighborhood of
the centering path. Two choices of v have special interest:

(i) v = 0: the affine scaling direction Aw® = (Az?, As?);

(ii) v = 1: the centering scaling direction Aw® = (Az*, As®).
By superposition, the search direction (1.1) satisfies

Aw(y) = vyAw® + (1 — v)Aw®. (1.2)
and the resulting point will be
w(v,0) = w + 0yAw’ + 6(1 — v) Aw®. (1.3)

Obviosly, the value of v plays an important role in the primal-dual interior point algorithms.
Generally, the typical choices of the centering parameter v are as follows:
(1) In narrow neighborhood path-following methods([8, 4, 1]), v is the smallest value such
that
1X(7,1)s(7,1) = p(y, el <0.25u(y,1),

where pu(v,1) = z(vy,1)Ts(y,1)/n.

(2) In narrow neighborhood predictor-corrector methods([7]), v = 0 and v = 1 respectively.

(3) In wide neighborhood methods ([3, 2, 6, 9]), v is often a small positive constant between
0.001 and 0.005.

We have to remark that, although the methods in (1) and (2) have the best iteration bound
O(y/n) theoretically, they are less practical; and although theoretical iteration bound of the
methods in wide neighborhoods (3) is not best ( only O(n)), they are more practical because
they allow long steps, which is a prerequisite for practical efficiency. Notice that v is a constant
for all iterations in wide neighborhood methods, which is not the best choice obviously. It is
surely true that practical efficiency will be better if v can be adaptively adjusted according
to the current iteration interior pair. This is really purpose of the paper. In section 2, we
introduce a dynamic optimal adjusting method of - according to the current iteration interior
pair. In section 3, we give our algorithms and its convergence proof. Finally, in section 4, we
show our computational results.

In this paper, we often use the following conclusion that is well-known and easily proved:

Conclusion A. For any Az € R"® and As € R" that satisfy AAx = 0 and AT Ay + As = 0,
there is
AzTAs =0.

We also need the terminology N (n) from Mizuno, Todd and Ye ([7]), which is

Nm) = A{(z,)| (2,5) € Fiy, X5 > (1 = n)pe},

where 5 € (0,1) and p = 2T's/n.

2. An Optimal Method for Adjusting v

Suppose that (z, s) is a current iterate interior feasible pair. We choose a centering parameter
v such that the duality gap of the new iteration pair w(7y) would minimized, i.e. v is a solution
of the following optimization problem:

min z(v, )" s(v, ) s.t. z(vy,0) >0 and s(v,6) > 0. (2.1)
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From (1.3) and Conclusion A, the above problem is changed into the following:

min (1 —60(1—7))2Ts
z + 0yAz® +6(1 —y)Az® >0, (2.2)
s+ 0yAs® +6(1 —y)As® > 0.

(2.2) is a nolinear programming problem. If we set o := 6 and ¢t := (1 —7y), the problem (2.2)
is equivalent to the following linear programming problem:

max t
z + oAz® + tAz® >0, (2.3)

st s+ oAs® +tAs* > 0.

Now, we try to solve the above problem. For the convenience in notation, we set

Tnti = Si ,
Azf = As§ fori=1,2,---,n. (2.4)
Azy = Asf
and
N1 = {’L AV >Ovi: 1727"' ,2”},
Ny ={i:Az°<0,i=1,2,--,2n},
Ny={i:Az¢ =0,i=1,2,---,2n}.
The constraints of (2.3) are equivalent to the following:
—f 155 <o < —F 15, forallie Ny and j € Ny, (2.5)
x; + tAzf >0, for all ¢ € Ns. (2.6)

There exists such a o that satisfies (2.5), if and only if ¢ satisfies the following inequalities:

Az Aw% i Az i tA:ﬂ? =0 forelrefmd e
i.e.
(3 -4F) g & malieNadicn. D
5 i i J
Note that T T
2 J ) 1
At _ Am§ >0, for all i € N; and j € Ns.

So, for some i € Ny and j € Ny, if there is

Az} _ Azf <0

Az§  Azf ~ ’

then the inequality (2.7) is true for all ¢ > 0. We set

z *j
. AzC T Az | Ax? Az? . .
t=min{ 74l at — 2,c > 0,i€Nyand j € Ny g,
Am]C._Amlg ’ ¢

J

(2.8)

ty = min{—i;q Azt < 0,i € N3},

t* = min {tl,tg},
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and
) Az .
Ulzmax{—Az;? _t*Azl? ZENl},
. ) Az? .
(72:m1n{—Ag”g;g —t*Az; ZENQ}.

W.B. Al

(2.9)

Notice that o1 < o2 because of the choice of t*. Then, any point (¢*,0*) that satisfies the

following inequalities
o1 S o S 02,

is a solution of (2.3). So, we obtain the solutions of problem (2.1):

0* :U* +t*, '7* :U*/(U* +t*)
Lemma 2.1. For any o and t, if

x + oAzt +tAz® > 0,
s+ o0As® +tAs* >0,

then
o(pe — Xs)+(2—-t)Xs > 0.

(2.10)

(2.11)

(2.14)

Proof. Multiplying the both sides of (2.12) and (2.13) by S and X from left respectively,

we obtain

Sx + oSAz® +tSAz® > 0,
Xs+o0XAs®+tXAs® > 0.

(2.15)
(2.16)

By adding the both sides of (2.15) to the both corresponding sides of (2.16) we have

2X s+ o(SAz° + XAs%) +t(SAz* + XAs®) > 0.

From (1.1), the inequalities (2.17) is equivalent to the following
2Xs+o(pe — Xs)—tXs>0.

The proof has ended.

(2.17)

Lemma 2.2. Suppose that (z,s) € N (n) and let t* be defined by (2.8). Then

t<t* <1,

where
1

T+n/(1—n)
Proof. Notice that

T+ o Azt +t"Az® >0,

s+ 0" As® + 1" As® >0,

and from Conclusion A

(0* Az + t*Ax®) T (0* As® + t*As?) = 0,

as well as from (1.1) we obtain

tTAs® + sTAze =np—als =0,
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and

zTAs® + sTAz® = —27Ts.

Then
(x4 o* Azt + t* Az (s + 0*As® + t*As?)
=zTs+ 0" (2T As® + sTAz®) + t* (2T As® + sT Azx?)
=1 -t)zls >0,

which implies t* < 1.
The rest is to prove the other inequality ¢* > ¢. From (1.1), Lemma 4.14 (iii) and Lemma
4.15 (i) of ([9]), we have for each ¢ € [0, ]

(X +tAX?) (s + tAs?)
(1-t)Xs+t2AX2As°
(1-t)Xs—t*[|[AX*As?||
(1 —t)(1 = n)pe — t*npe
(L= D)1~ ) — 1) e
0.

VIVIVIV I

Therefore from continuity

T+ tAz® >0,

s+ tAs® > 0. (2.18)

(2.18) show that o = 0 and ¢t =t is a feasible point of problem (2.3), which implies that ¢ < ¢*.
The proof has ended.

3. Algorithm

Now we can give our primal-dual interior point algorithm.
Algorithm 1.

Step 0: Input e > 0. Let n € (0,1) and v € (0,1) with v < 2(1 — 7). Given an initial point
(29,5%) € NZ(n). Compute pg = (2°)7s%/n. Set k := 0.

Step 1: If (zF)Ts* < e then stop.

Step 2: Set (z,s) = (2%, s*) and compute (Az?, As®) and (Az®, As®) from (1.1) for y = 0
and v = 1 respectively. Compute t*and o* := oy from (2.8)-(2.9). If o* + t* # 0, set v* =
o*/(o* 4+ t*) and

k v, if o +t* =0orvy* <7,
v*, otherwise.

Step 3: Compute the largest f such that

(#(+*,0),5(v",6)) € Ny (n) for all § € [0,6];

set (xhtl skt+l) = (m(yk,a),s(yk,a)) )
Step 4: Let k := k + 1, return to Step 1 and repeated.

Lemma 3.1. In Algorithm 1, if v* = v*, then

P41 < (1 - 177'5*2/2) e
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Proof. Set
It = uk,
J: = 61 —vk)/t*,
FE = 0(1—~%)/t",
p: — ( *AXC-l-t*AXa)( *Asc+t*Asa),
q: = (X 4+0*AX+t*AX*)(s + 0*As® + t*As®),
p@): = z(v*,0)"s(v*,0)/n.

The following relations (al), (a2), (a3) and (a4) are obviously true:
(al) 6 € [0,6] if and only if 6 € [0,4]. Besides, o* =~*t*/(1 — v*) > 7t* and do* = fy*.
(a2) ¢ > 0.
(@3)p=q— (1 —t*)Xs —o*(ue — Xs).
(a4) u(0) = (1 —6t")p.
Thus from (a2) and (a3)

(+*,0)s(+*.9)

(X + 00" AXC + " AX) (s + do* As® + §t* As?)

=(1-6t")Xs+ 60" (ue — Xs) + 8°p

=(1—0t")Xs+ 00" (ue — Xs) + 6% (¢ — (1 —t*) X5 — 0" (ue — Xs))

=0%q+ (1 =0t — 62 + 6%*t") X s+ 6(1 — 8)o™ (ue — X s)

> (1—8t* — 6% +6%t")Xs +6(1 — §)o* (ue — Xs). (3.1)

X

For each ¢ € [0,ynt*/2] and each i € {1,2,---,n}, we consider the following two cases:
(1) if 238, < (1 —1n/2)p, from (3.1) and (a4) we have

zi(v¥,0)s:(v", 6)

> (1=6t* =62 + 6%t ) (1 —n)p + 10(1 — 6)o*nu

> (1 =) =6t )= (1 —n)p+ 5601 = 6)yt*nu (3.2)
> (1= mn)u(8) + 30p(yt*n — 26)

> (1 =n)u(8).

(2) otherwise i.e. if z;s; > (1 —n/2)y, from (3.1), (a4), Lemma 2.1 and Lemma 2.2 we have

0)31(7 50)

St* — 0% + 6%t ) Xs — 0(1 - 8)(2 —t*) X s
—0)?Xs

—25)(1 —n/2)u

—0) (L —=n)p+(n/2-0)u

—n)u(0).

(3.2) and (3.3) imply that § > ynt* /2. Therefore

o)
L=

AV BN AVAR [ BRAVARS
—
|

/\/\/\/\/\

P = (@) = (1 -3t < (1 - 562 /2),
which show that the conclusion holds. The proof has ended.

Theorem 3.2. Let 1 € (0,1) and v € (0,1) be a constant with v < 2(1 —n). Then Algorithm
1 will terminate in O(nlog ((2°)7s°/e)) iterations.
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Proof. Consider the k-th iteration. if 4* = v, then from the Theorem 4.20 of ([9])

dny(1—19)

Otherwise, v* = *. From Lemma 3.1

pir < (1= ymt*?/2) p
< (1= nt?/2)p

yn(l—n)
S (1 - 27,2774,2”) Mk 5

(3.4) and (3.5) yields the results. The proof has ended.

4. Computational Results
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We program all algorithms by FORTRAN-77. In actual computation, we get rid of the
safeguard 7. Besides, long-step strategy similar to Lustig ([5])( here we choose 0.996) is used
in all algorithms except for predictor-corrector algorithm. All algorithms are repeated until the

relative duality gap satisfies

:L’TS

— <10
1+ |cTz|

or the iterations number > 80.

(4.1)

In Table 1, the problems used by us are the well-known Klee-Minty examples as following;:

n
max E x;
i=1

s.t. x1 <2,
i—1
vi+2Y @, <2, i=2,3,-,m
j=1
T1,T2, " ,Tn Z 0.
The solution and optimal value of the above problems are z* = (0,0,---,0,2") and f* = 2"
respectively. Their K KT-system can be written as following:
(A, Dz =b,
(_Ia AT)S =6,
Xs=0,
x>0, s>0,
where b = (2,22,---,2") € R", x,5s € R*, I is n by n unitary matrix and A is also n by n
matrix that
1 0 o --- 0 O
2 1 o --- 0 O
e
2 2 2 1 0
2 2 2 2 1
The initial point chosen is
z) =1, sp=4" Ly
x%+l:2l_2i+1, S?L+l:2' 1=1,4, ,n
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Examples in the other tables come from Netlib. We use Ye’s self-dual model (see Page

159-168 and Page 355 of [9]) in order to obtain an initial point: 2° = s® =e,7° = k* = 1.

Table 1: Results on Klee-Minty examples

Problem v = this paper’s vy=1/n =002 ~=0.002 ~=0
Row Col. Iter. F(2F) Iter. Iter. Tter. Tter.
4 8 6 0.15999997E+02 9 7 7 10
5 10 7 0.31999999E+-02 9 7 8 12
6 12 7 0.63999996E+02 8 7 8 13
7 14 7 0.12800000E+03 9 7 8 14
8 16 6 0.25599989E+03 8 7 8 16
9 18 7 0.51199999E+03 8 7 8 17
10 20 6 0.10239994E+04 8 7 8 18
11 22 6 0.20479988E+04 8 8 8 19
12 24 6 0.40959977E+04 8 8 8 20
13 26 7 0.81919999E+04 9 8 8 21
14 28 7 0.16384000E+-05 9 9 8 22
15 30 7 0.32767999E+05 9 9 8 23
16 32 7 0.65535999E4-05 9 10 8 24
17 34 7 0.13107200E+06 9 10 8 25
18 36 7 0.26214398E+06 11 11 8 26
19 38 7 0.52428790E+06 12 10 9 27
20 40 8 0.10485759E+-07 12 12 10 28
21 42 8 0.20971511E407 13 13 10 29
22 44 8 0.41943031E+407 14 14 11 30
23 46 8 0.83886069E+07 14 14 11 31
24 48 8 0.16777212E+08 14 14 12 32
25 50 8 0.33554431E+08 16 16 13 33
26 52 7 0.67108853E+08 16 16 13 34
27 54 7 0.13421772E+09 16 16 13 35
28 56 7 0.26843544E+09 16 16 14 36
29 58 7 0.53687066E+09 17 18 14 37
30 60 8 0.10737418E+10 18 18 15 38
31 62 8 0.21474837E+10 18 18 15 39
Table 2: Results for v = this paper’s
Name Row Col. Iter. Relative Gaps F(z®)
ADLITTLE 56 138 18 0.44023789E-07  0.22549489E+06

AFIRO 27 51 13 0.28608252E-07 -0.46475313E+03
BLEND 74 114 15 0.28340984E-07 -0.30812150E+02
SCAGRT 129 185 17 0.89301159E-06 -0.23313553E+07
SHAREI1B 117 253 41  0.78942865E-08 -0.76589318E4-05
SHARE2B 96 162 17 0.93706072E-07 -0.41573223E+03
SC50A 50 78 16 0.10932362E-08  -0.64575077E~+02
SC50B 50 78 13 0.16741997E-07 -0.70000000E+02
KB2 52 7 26 0.83410639E-08 -0.17499001E+04
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Table 3: Results for vy =1/n

Name Row Col. TIter. Gaps F(zF)
ADLITTLE 56 138 23 0.71694938E-06 0.22549384E+06
AFIRO 27 51 17 0.32716745E-07 -0.46475313E+03
BLEND 74 114 19  0.38299857E-07 -0.30812149E+02
SCAGRT 129 185 26 0.30087636E-06 -0.23313780E4-07
SHAREI1B 117 253 *80 0.21619351E-02  -0.76513640E4-05
SHARE2B 96 162 22 0.89574785E-06  -0.41573204E+03
SC50A 50 78 23 0.16651119E-09 -0.64575077E4-02
SC50B 50 78 21 0.17908760E-09  -0.70000000E+-02
KB2 52 7 37 0.10070738E-07  -0.17499001E+4-04
Table 4: Results for v = 0.002
Name Row Col. Iter. Gaps F(zF)
ADLITTLE 56 138 24 0.71694938E-06 0.22549384E4-06
AFIRO 27 51 18 0.32716745E-07  -0.46475313E+03
BLEND 74 114 19  0.38299857E-07 -0.30812149E+02
SCAGRT 129 185 27 0.30087636E-06 -0.23313780E+07
SHARE1B 117 253 *80 0.21619351E-02  -0.76513640E4-05
SHARE2B 96 162 23 0.89574785E-06 -0.41573204E+03
SC50A 50 78 23  0.16651119E-09 -0.64575077E+-02
SC50B 50 78 19  0.17908760E-09  -0.70000000E+02
KB2 52 7 38 0.10070738E-07  -0.17499001E+4-04
Table 5: Results for predictor-corrector method
Name Row Col. Iter. Gaps F(zF)
ADLITTLE 56 138 57  0.82767491E-06 0.22549366 E+06
AFIRO 27 51 48 0.99578063E-06 -0.46475281E4-03
BLEND 74 114 53  0.87439251E-06 -0.30812140E+-02
SCAGRT 129 185 68 0.85305164E-07 -0.23313865E4-07
SHARE1B 117 233 *80  0.52854784E-02  -0.76425066E4-05
SHARE2B 96 162 64 0.86048553E-07 -0.41573223E+03
SC50A 50 78 65  0.93055485E-07  -0.64575074E4-02
SC50B 50 78 65 0.80474578E-07  -0.69999998E+-02
KB2 52 7 69 0.91977771E-07 -0.17499001E+04
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