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Abstract
The well known Wilson’s brick is only convergent for regular cuboid meshes. In this
paper a quasi-Wilson element of three dimension is presented which is convergent for any
hexahedron meshes. Meanwhile the element is anisotropic, that is it can be used to any
flat hexahedron meshes for which the regular condition is unnecessary.
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1. Introduction

The classical finite element approximation relies on the regular [5] or nondegenerate [4]
condition,ie. there exists a constant ¢ such that

hi/erx <c¢, VK (1.1)

where hy is diameter of K and pg is diameter of the biggest ball contained in K. But recently
some researches [2,3,7,18] show that the condition (1.1) is not necessary for the convergence of
some finite elements, i.e, these elements can be well used in narrow meshes.

The well known Wilson’s elements are nonconforming elements for the problems of order
two. However the two dimension Wilson’s element is only convergent for rectangular and
parallelogram meshes. In order to extend this element to arbitrary quadrilateral meshes, various
improved methods have been developed, see [6,7,10,11,12,13,14,15,17,18]. But seldom papers
consider the three dimension Wilson’s element. In the same way the three dimension Wilson’s
element is only convergent for regular cuboid meshes. In this paper a quasi-Wilson element of
three dimension is presented. We prove that this element is convergent for any flat hexahedron
meshes, this means its convergence is independent of regular(1.1).

2. Three Dimension Quasi-Wilson Element

ot K = [-1,1]® be the reference element with vertices A; (a4, G924, a3:),1 < i < 8, where
(all -aq ) = ( 7]- ]- ]- 1 _1) (a217 7a28) = ( ]-7 171a17_17_171a1)7 (d?)lv"'a
ass) = (—1,—-1,-1,—1, 1, 1, 1,1). We define on K the finite element (K’,ﬁ, >) as following;:
p:Spa’n{Nla'"7N8;¢3(‘%1)a¢§(i.2)7q§(i.3)} (21)
where
. 1 A A PN . n 3 2 5 4
N; = g(l + alixl)(l + agiil,'g)(]. + agixg),]. <1 <8, gﬁ(t) = —3—2(t — ].) + a(f — 1)
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When ¢(t) = & (t* — 1), it is Wilson’s brick. Obviously Q1(k) = span{Ny,---,Ng}, and

Ni(Aj) = 0i5,1<i,5 <8
Z = {’UA17"'71;87‘91(@)7‘92(@))93(’0)} (22)
where ¥; = ﬁ(fii), 1<i<8, g¢;(0)= fK %diﬁ, 1 < j < 3.1t is easy to see that

VoeP, =0+ (2.3)

where
3

8
0 = ZW(@, o' = Zgz(@)q%(xz), (2.4)

Let K be a convex hexahedron with vertices A;(a1;, a2, as;),1 < i < 8. The mapping

8

~ 3 “ N N . . A~ . .

Fx € (Q1"), Fx(2) = (af (2), 25 (&), 2% (2)), 2] (&) = D Nj(#)a;, 1<i<8 (2.5)
j=1

makes FK(K) = K,FK(Ai) =A4;,1<i<8
For any function v(z) defined on K, we define ©(Z) by
(&) = 0« (2)), or ©

On the hexahedron element K, we define the shape function space Py,
Px ={p=poFy'ip€ P}

Given a convex polyhedron domain 2, let Q = J xer, I& be a decomposition T} of Q. The
finite-element space is defined by V;, = {v;v|x € Px,VK € Ty; v is continuous at the vertices

of elements and vanishing at the vertices on the boundary of 2}.
Consider the model problem,

=wvo Fg

(2.6)

—Au=f in Q
u=20 on 09

where €2 is a bounded, convex polyhedron in three dimension.
Its weak form is find u € HJ(2) such that

a(u,v) = f(v), Vv € H}(Q) (2.7)

where a(u,v) = [, Vu.Vodz, f(v) = [, fvdx. By theorem 1.8 of [8] (see [9]), when f €
LP(Q),p > 2,

u € WP(Q) (2.8)
The quasi-Wilson element approximation of (2.7) is defined by find wup, € vy, such that
ah(uh,vh) = f(vh) Yo, € Vj, (29)

where ap(up,vn) =Y, fk Vup.Vu,der. SinceV}, is not contained in Hg (£2), V4, is a nonconform-
ing approximation of H2(Q)
For every vy, € V},, we define
lvnl} = an(vn, vn)
It is easy to check that |- |15 is a norm over Vj,. Every vp, € V), can be written as
vp = v + v} (2.10)
where VK € Ty, Fx : K — K, with

8 3
upli = ZNi(@)Uh(Ai) =" F', vilk = Z@'(fi)gi(ﬁ) =o' o it

i=1 i=1
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Thus trilinear function v? is the conforming part of v, and v} is the nonconforming part of
Up,.
From Strang’s lemma [5], we have

lan (v, wp) — f(wh)|)

|wh |1,k

lu —up|1,n < C(info,ev, |t —val1,n + supw,ev, (2.11)

where C is independent of T}. K K
Let L be the trilinear interpolation operator on K and Lyv = (L) o Fic' € Pk, then

8 8
Lo =Y Ni(#)i;, Lxv=Y» Ni(&)oFy"
=1 =1

Let L% be the piecewise isoparametric trilinear interpolation of v on Q, such that
L%|x = Lgv,VK € Ty,
Taking vy, € V3, with v}L =0 and vg = L%, i.e. v, = L%, we have
info,evy U —vnlin < Ju— Loulyp (2.12)

In the next section we estimate |u — Lol p,

3. The Anisotropy of the Trilinear Interpolation

First we brleﬁy present the anisotropic mterpolatlon theory [7].

Suppose K is the reference element, W™ ( ) and H™(K) are the usual Sobolev spaces
and P;(K) is the polynomial space of degree <[ on K.
Lemma 3.1 ([5],Theorem 3.14). For some integers | > 0 and m > 0, suppose WHLP(K) —
W™K and I € L(WHLP(K); W™ (K ())-the space of continuous linear mappings from
WHLe(K) into W™4(K)-be a mapping such that

IP=p VpeP(K)
Then there exists a constant C(I, K) such that

< C(I K)|f)|l+1,p,f(

quf

|0 — 19|

Let the shape function space P be a polynomial space of dimension m. Assume, further,
that p1,---,pm C P and dl, . d C P'bea pair of dual bases for P and P’ respectively ,i.e.

where ch, e dyn are called the degree of freedom of the element.
Suppose a finite-element interpolation operator I satisfies.
di(It) = d;(9), 1<i<m (3.1)
Obviously
Io=>"di(d)pi (3.2)
i=1
and .
Iv=0, Yoep (3.3)
Suppose « = (a1, -+, Q,) is a multi-index; the Daﬁ is also a polynomial space on K. Let

dimD*P = r
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and let {¢;}7_; be a set of basis functions of D>P. Suppose that

D°pi = Zc”qj, L<i<m

then
Do E N di(0)Dops = i(Z Ciydi(9))d: £ Z B;(0)di (34)
5,0) = Y Cyd9) (3.5
From (3.5) and (3.1) we have -
5,(0) = 3 Codh(0) = S Cugds (1) = 35(70) (3.6

Theorem 3.1, Let a be a multi-index, P,(K) C ﬁ(’]% and let T : W‘al"’l“’p(fi') — P be
the above ﬁmiie-element interpolation operator satisfying I € £(W ‘a|+l+14’(K) |"H‘m’q(K)),
with W”’“’(K) — w™4(K). If there exists an interpolation operator T : WIT12(K) — Dp
with T € £(w' P (K); w™(K)), and
DIt =TDY, Vo e WelHHbe(f) (3.7)
Then, there exists a constant C(I, K) such that
|D (6 — It)| < C(I,K)|D*(0)

Vo € WlelH+1r () (3.8)

mq7 |l+1pK

Proof. Clearly, |D*(o — I9)|,, WK = = |D*o —TD>%|,, g K
From Pl(f() C Dp, then Vp € P(K ) there exists ¢ € Py|q C P such that p = D>§. We

have

~ (37 . (3:3)

Tp=TD*G D[ "=’ D%§

Then (3.8) follows from Lemma 3.1.
Theorem 3.2[7). The assumptions are the same as Theorem 3.1. If

Bi() = Fj(D*0),1 <j <r (3.9)

where R
e (WHLP(K)Y, 1<j<r (3.10)

then (3.8) holds. R R R
Proof. Define the interpolation operator 7' : W!*1P(K) — D%p by

T
T =Y F(i);
i=1

Then, for all w € WP (K),

~ (3.10)
NT@l], g5 < Z E N dill g < Clbllg i

Thus T' € £(WHIP(K); W™4(K)) Yie W|a+l+1’p(K) we have



182 S.C. CHEN, D.Y. SHI AND G.B. REN

Hence (3.8) follows from Theorem 3.1.
Remark 3.1. Apel etc. have presented other conditions for getting (3.8), see Lemma 3 and 4
of [2], however our result , i.e, Theorem 3.2 is easier to use than Apel’s.

For trilinear interpolation operator Lon K ,

Let o = (1,0,0),then Dop = Q1(%2, 43) = span{l, £, 43, #2435 }. By simple computation, we
have

8 SN 4

NP IN (9]\7z xX) . N

DL =) 89%(1 i = PRGN
3 =1

where M'L’(l) = %(1+b§1)§’.2)(1+0§1)‘%3)a I<i<4, (bgl)a T bfll)) = (_17 L, -1, 1)7 (0(11)7 T Cz(ll)) =
(—-1,-1,1,1), span{Ml(l), e Mil)} = Q1(Z2%3), and

W ay 5 A o0 (1) /Ay A_/ ov
D) =109 — 01 = —ds, D) =03 — U4 = —ds,
1 (0) =02 — . o y () =03 — 4 . o
(1) A . . ov 1)/ . . ov
D) = 0g — U5 = —ds, D) = U7 — Vg = —ds,
3 ( ) 6 5 e o, 4 ( ) 7 8 r Dy
where iij :Aiflj. Thus
9%
BV @) = FV(ZL), 1<i<d. (3.11);
a(El
and
1), - . TN
FO ()] = |/z” wds| < iy,
ik
Where p=2+¢,0<e << 1.
From imbedding theorem (Theorem 5.4 of [1]),
whP (k) = w (1)
Hence. W
| (@) < élllly, - < elldlly ,, 1<i<4 (3.11)2

Let a = (0,1, 0), similarly

Where M®) = (1 4+ bP2)(1 + Pa), 1<i <4, bP) = (-1,1,-1,1),(¢?, -,

i

V) = (=1,-1,1,1), span{M?, .- -, M} = Q1 (¢1,43), and

2 = 00 ds, B (b z/ 9% ds, B\?(s) = 9% ds, B ()= 0¢ ds
61 f14 afz ’ 62 ( ) [23 afz ’ 3 ( ) [58 a(EAQ ’ 4 ( ) [67 afEAQ
In the same way we have
. o . Al
870 = F2 (), IFP @) < llllly, (3.12)

The same results hold for « = (0,0,1). Thus the conditions of Theorem 3,2 are satisfied for
la] =1,m=1=0,p=2+¢,q = 2. Form(3,8) we obtain

|D*(0 = Lb)||g x < elD*0y g, VO € WP(K) (3.13)
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A general hexahedron element K can always be regarded as a perturbation of a cuboid K,
since under translation and rotation of the coordinate system, the L?-norm, the 1-seminorm and
2- seminorm are unchanged,we simply suppose that the faces of K are parallel to the coordinate
planes. Let the vertices of K be A; (@1, G2i,a3:), 1<1i<8, AlAg//atlams A A4//x2ams
A As/ ) isazis.

a12 —apy = hy, G4 —ag1 = ha, azs —as1 = hs
We suppose that
hi ~ ho >> hg (314)

That is we consider flat hexahedron element for which the regular condition(1.1) is unnec-
essary. Let the vertices of K be A;(a1;,agi,a3:), @ <i < 8. we assume that the perturbation of
aj; to aj; is O(h;) along x;-direction and is O(hs) along other direction, 1 < j < 3,1 <7 <8.
Precisely we assume that

Agi — Qj = aﬁf)hm (i,j) € Xk

lagi — anj| = @i; s, (i,5) € X/ Xk, 1<k<3 (3.15)

where X1 = {(2,1), (3,4), (6,5), (7,8)}, Xa = {(4,1),(3,2), (8,5), (7,6)}, Xs={(5,1), (6,2),
(7a3)7(8a4)}7 X = XIUX2UX3

O<o,<al) <o, 0<al) <oy, 1<k<3, (i,j)eX

 Let K = [—1,1]3 be the reference element described in section 2, then mapping Fx of (2.5):
K — K. Let Jg be the Jacobian matrix of Fx, then
81)1 8@‘1

Jrk = (8A axs, Jg = (%)3%
j

From the expressions of N;(1 <i < 8) and (3.15), it can be obtained that
|8xz
0%;

When hl Z hg Z max(4,301/00)h3, analhlhghg S detJK S %O’%hlhghg
and

| 0%,

8xj
Let a = (a1, a2,a3), =% =z x5?x5®, h™ = h{"h3?h3?, then the above inequalities can be
expressed as

| < éh;1<i<3;

L7 s

|<C- min(h;l,hgl)

|%| < C-min(h®, 1), o] = |8 = 1 (3.16)
02\ & min(h=2 b=, o] = || = 1 3.17
15,81 < € -min(h™,h™7), |a| = |6] = (3.17)
coH < detJy <ci1, H (3.18)
where H = h1hohs. Thus

D% <& > h D%, |8l =1, D% <é > hY[D|, |8l =1 (3.19)

lal=1 |al=1
D) < eh® > > hHDF | faf = |8 =1 (3.20)

v|=1 |ul=1

Hence
lu—Lul k= Y |ID?(u— Lu)|jo.x
|B]=1
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¢y Y hTUHE|D (i — L)l 4

18]=1|a|=1

(3. 19)(3 18)

(313)
é Z h~*H?|D* ily, %

jal=1
=¢ Y hTOHE Y (DM
la|=1 [8]=1

(3.20)(3.18)

CHE™5 N 3 B ullo i

[v|=1|u|=1

= eH*"7 Y h|Duly (3.21)
lnl=1

Where ¢ is independent of (1.1).

4. Anisotropic Convergence of Three Dimension Quasi-Wilson
Element

From the results of section 3, we immediately get interpolation error as following:

) (2.12) 1
info,ev,u—valin < Ju—Loulip= () [u—Luf] x)2
KeT,
(3. 21) 1
oY H'E Z h?|DFulf, )2 (4.1)
KeT,

Now we estimate the consistence error, i.e. the second term of (2.11).
For all vy, € Vj, vy can be expressed as

Vp = vg + U}L (42)
Where v is the piecewise trilinear function, v% = v)|x = Zle Ni(&)vn (AK), obviously
) € CO( ) = {v 6 Co%(Q);vlaq = 0}, oY) is the conforming part of vy, vk = vp |k =

Z] 1 b(d)g(0n), v 5 is the nonconforming part of vj,. For any K € Tj, let Fi : K — K, b
vk o F, then 0 =0 +U1 AO—’U OFK,’U —UKOFK

Lemma 4.1.

i) [ 8“;de—0 1<i<3 (4.3)
it) o',z < 10M] & (4.4)
iti) 12212 . = 11522 +||8x, 0k (4.5)
w) |v}<|1,K <éoglir  Nvillox < chilvr|ik (4.6)

Proof. Tt is easy to check that

/qs t)dt = 0,Vp € Py; / ¢ (H)q(t)dt = 0,Yq € P, (4.7)

From

ox;
%,

0z;

I=Jr.Jt = (5)3x3- (ax_)3x3
J
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We have o
(detJ) 5 = Yij € Qa(k), 1 <i,j <3 (438)

8$j
For example, Y71 = g—gg—;ﬁ — 3—23—2 € QQ(K'), etc. Y;; for 23 (1 < k < 3) is a polynomial

of degree two.

i)

81}2 00+ 0%, . (4.8) ) . 5 (4D
K 0z; /Zaxl dtJdeiZ v/qu dd =10

ii) By simple computations we have

3
ol = /. Zgzw RO R

A12 ~ ~ Py ]-3 2/ A
ZH(TH Zgzv/w di= 223" g20)

i=1
Hence
. 2. N
lollo.& =/ 2= 19h.& < 1ol &
iif)
I 90 0
A = _— A —_— ~ ——d

d“ Seis a constant for 2, 3 8L = g;(9)¢’ (x;), hence, Jz 8% 200 d“ -d& = 0 by (4.7), and (4.5) holds.
1v)
(3.19)(3.18) PP
il =Y IID%kllo = &) Hh 2D ¢
lo|=1 1Bl=1

(4
e Y HRPDO|R o <& Y [IDokllf i = ok lf i (4.9)
31=1 A1=1

In the similar way
1 ) Arrial SR A1
lvgllox < eHZ|[o7]|y x < eH?[0],
(3.
< ¢ > hPD o,k
|8l=1
A ) 19)
< ¢hglvghxk < ¢hilvk|ik
since w% is the conforming part of wy,

|an (u, wn) = f(wn)| = lan(u,wy) = f(wy)| < lanu,wy)] + [ f(wy)] (4.10)

Va € R, |ap (u,w})| = Z/Vquhdx = Z/ Vu — «).Vw} dx

KeT, k€T
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Hence
lan(u,wh)| <Y infacrs ||V — allox|[Vwhllo.x
keT,
(3.18) . L 3. 1
< &Y infacpsHE|| S
KeT, KeT,
~ 1 S o N 1 A ~
=¢ Y HZ Y |ID°Vully glwnlix <& D HZ Y |[DVull, g lwnlix
KET, 181=1 KET, 18=1
(3.19)(3.18) 11
< &) H? Z WDV ul o p, i lwn 1, i
KeT, |B8]=
N 1_2 N _2 1
<éy Hv Z WPD%ulyp clwnli < e( Y H'™2 Y h¥DPul} ), ()% |wplin (4.11)
KeT, =1 KeT, =

(4.6)
wi)l < > Wfllosllwillos <> ehnllflloxlwnlk

KET, kETy
< Z hi ||f||0K 2|wh|1h (4.12)
KeTy
From (4.10)(4.11)(4.12) we obtain

ap(u,wp) — f(w . _z 1
sty ey ) = POl G ™ -2 S s psue ) RSB (413)
[wh1,n o =

From (2.11)(4.1)(4.13) we have
Theorem 4.1 suppose u and wuy, are the solution of (2.7) and (2.9), then

N _2 1
u—unhp <l Y (HTF Y WPIDufi |, g + hi||£115,5)) (4.14)
KeT, |B]=

where ¢ is independent of hx /px,VK € T},
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