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Abstract

A two-grid method for the steady penalized incompressible Navier-Stokes equations is
presented. Convergence results are proved. If h = O(H*™®) and ¢ = O(H*™*) (s = 0
(n =2); s = 3 (n = 3)) are chosen, the convergence order of this two-grid method is the
same as that of the usual finite element method. Numerical results show that this method

is efficient and can save a lot of computation time.
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Introduction

It is well known that numerically solving the incompressible Navier-Stokes equations has
two difficulties: the nonlinear term and the incompressibility condition. Firstly, we use the
penalized Navier-Stokes equations to conquer the second difficulty, and a two-grid method
presented in [1-2] to save a lot of computation time. Secondly, we analyze the convergence of
the numerical solution, and derive that if h = O(H?~*) and € = O(H?>72%) (s = 0 (n = 2);
s = 1 (n = 3)) are chosen, the convergence order of this method is the same as that of the
usual finite element method. However, the computational attraction of this two-grid method is
that it finds a solution for a small nonlinear problem on a coarse mesh finite element space X,
and a solution for a linear problem on a fine mesh finite element space X" (h < H), compared
with the usual finite element method finding a solution for the same large nonlinear problem on
X" Thus, this method can save a lot of computation time. Finally, numerical tests are given
to support our theoretic results.

It is noticeable that this method is totally different from the Nonlinear Galerkin method
presented in [3-4]. The Nonlinear Galerkin method is a numerical method for dissipative evolu-
tion partial differential equations where the spatial discretization relies on a nonlinear manifold
instead of a linear space as in the classical Galerkin method. More precisely, one considers a
finite dimensional space X" which is split as X* = X¥ + W" where H > h and W" is a
convenient supplementary of X in X"*. One looks for an approximate solution v lying in a
manifold £= graph¢ of X"; u” takes the form u" = v + ¢(v) where v lies in X# and ¢ is
a mapping from X¥ to W". The method reduces to an evolution equation for X, obtained
by projecting the equations under consideration on the manifold ¥=graphe. In the usual finite
element method, typically, we have ¢ = 0. The two-grid method is based on a coarse grid finite
element space X and a fine grid finite element space X" (X7 c X" H > h). This method
consists of finding a solution v for a nonlinear problem on X# by the usual finite element
method, a solution v* for a linear problem on X" by one-step Newton method, and a solution
wH for a linear correctness problem on X, where an approximate solution u” = wf + v” is
defined as in the following step 1-step 4 in §2.

* Received October 15, 2001; final revised April 9, 2003.
1) Supported by National Natural Science Fund (50136030).
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1. Notations and Mathematical Preliminaries

Consider the incompressible Navier-Stokes problem

“Au+(u-Vu+Vp=f in Q,
V-u=0 in €, (1.1)
u=20 on 01,
in a convex polygon or polyhedron domain € of R", with n = 2 or 3. Here, A\ = Re™!, Re is
the Reynolds number, v : Q@ — R™ the velocity, p : & — R the pressure and f the prescribed

external force.
Hereafter, we will need the following functional spaces:

X=HO)"={uveH(Q)": u=0 on 00N},
V={ueHQ)":V-u=0 in Q}

with scalar product (u,v); := (Vu, Vv), u,v € Hi ()", and
M =LiQ) ={pe L*Q): /pdsz}.
Q
Let H=1(2)" be a dual space of H}(Q)" with the corresponding norm:

flla=  sup %

0AuEH (Q)n uli

feH Q)"

We will use the standard notations L?(Q)", H*(Q)" and H¥(Q)" to denote the usual Sobolev
spaces over 2. The norm and seminorm corresponding to H*(Q)" will be denoted by || - ||z and
| - |k, respectively. In particular, we will use || - ||o and (-,-) to denote the norm and the scalar
product in L2(Q2)", respectively.

With the above notations, the weak form of problem (1.1) reads: find (u,p) € (X, M), such
that

(1.2)

a(u,v) + N(u,u,v) —b(p,v) = (f,v), YveEX,
b(g,u) =0, Vg€ M,

where
a(u,v) = (U’:U 1, b(p,’l}) = (pav ' ’U),

and N (u,v,w) = L[((u- V)v,w) — ((u- V)w,v)].

Because of pressure not being in the second equation of problem (1.2), the algebraic equa-
tions generated by a finite dimensional approximation are not positive definite, which results
in difficulty in solving the numerical solution of problem (1.2). If the positive definite form
connected with the pressure is obtained in problem (1.2), then this difficulty will be conquered.
For brevity, €(p, q) is introduced, where € is a penalty parameter. Then, introduce the following
penalized problem: find u. € X satisfying

ae(ueav)+N(ue>ue;U):<fyv>; Yo € X,

1 1.3
De :_Zv'uea ( )

where
ac(u,v) = a(u,v) + e H(V-u,V-v).
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Furthermore, we shall use the following estimates.
Lemma 1.1°7, Given u, v, w € X and f € H-*(Q)", there exists a positive constant c such
that

[, o) < I ll-alol,

ac(u,u) = Nulf + eV - ullg,

ac(u,v) < Aulr[vl + €IV - ullo]|V - v]lo,

N(u,v,w) = =N(u,w,v), |N(u,v,w)| < cluh|o|i]wl,

N (u,v,w)] < cllully™|ullvli]wl,

il tul? botd 4 S i ol
|V (u, v, w)| < 5”“”0 |ulf |v|1||w||0 lw|f + 5”“”0 |ulf ||U||0 o[ [w]1, (n=2),

where s is a sufficiently small positive constant for n=2 and s = % for n=3.
Thanks to [8-9], the solution to problem (1.3) has the following properties.

Theorem 1.1. Assume that there are two constants a > 0 and 8 > 0 satisfying A > «
and X\ — cB > a > 0, where c is defined in Lemma 1.1. Then when a™2B||f||_1 < 1 and
(e V)3||fll-1 < B are satisfied, there exists a unique solution to problem (1.3) in {ulu €
(HL Q) N H2(Q)™, [V -ullo < 8, |uli < a t|fll-1}- The following estimate also holds (see
[8, Theorem 3.4, p309]):

lu—uelt +[[p = pello < ce, (1.4)
where

B= sup 7|N(u,v,w)|’

w,v,weX |’LL|1|U|1|’LU|1

(u,p) and (u.,pe) are solutions to problems (1.2) and (1.8), respectively, and ¢ > 0 is a constant
independent of € .

2. Two-grid Discretizations

Let 7, = {K} be a uniformly regular subdivision of mesh size h, 0 < h < 1, of the domain Q
into closed subsets K, quadrilaterals in two dimensions and hexahedrons in three dimensions.
Assume that X" and M" are finite element subspaces of X and M, respectively. Let Ij and
Jy, be the finite element interpolation operators associated with X" and M", respectively.

Then the usual finite element approximations u; and u, € X" are calculated by solving
the large nonlinear systems given by

a(un,v) + N(up, up,v) — b(pp,v) = (f,v), Yve X", (2.1)
b(q,un) =0, Vge MM, '
and
ae(uehav) + N(uehauehav) = (f,’l)>, VU € Xh: (22)
respectively.

As usual, we make the following standard assumptions on the finite element subspaces X"
and M":
(H1) Approximation hypothesis: for any (u,p) € (X x M) N (H*(Q)" x H'(Q)),

inf hlu — + ||u — + hl|lp— < ch? + .
(%qh)lenxthh{ |u —vp|1 + |lu—vallo + Rllp — gnllo} < ch™{|lull2 + |pll1 }

(H2) Interpolation hypothesis: for any (v,q) € (X x M) N (H?(Q)" x H'(Q)),

|v — Invly + [lg — Jaqllo < ch(||v]]2 + llgl1)-
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(H3) Inverse hypothesis:
lonly < ch Y |onllo, Von € XM

(H4) Stability hypothesis:
inf sup V)

> B3>0,
geM yexn ||qllolv]1

where (3 is a constant independent of h.

It is well known[®—"! that uj, and u., € X" satisfy the following results from above hypothe-
ses.
Theorem 2.1. Suppose (u,p) € (X x M) N (H?(Q)" x HY(Q)) is a nonsingular solution of
(1.2) and the finite element subspaces X" and M" satisfy assumptions (H1)-(H/). Then there
exists a unique solution (up,pp) to problem (2.1) satisfying the following error estimate:

hlu = un|y + [lu = unllo + hllp = pallo < ch®([lullz + [lpll1)-

Theorem 2.2. Solutions to problem (2.2) exist and satisfy |ucp)r < A 7Y|f||-1. Suppose

A2B||fll-1 < 1. Then the solution u.y to (2.2) is unique. Moreover, if assumption (HJj) is
satisfied, then for all € < ey small enough the following estimate holds®Theorem9.22,p347] .

|un — Uen|r + ||Pr — Penllo < ce,

where ¢ > 0 is a constant independent of h and €.
Proof. Set v = u¢p, in (2.2). This gives

Muenli + € IV - uenllg = (f,ten) < [IFIl-alueenls,

1 1
whence [teni < AU fll-1 and IV - ucnllo < VEIFIE Juenl? < A% /ELfll—1 < 8. This a priori
bound ensures that solutions to problem (2.2) exist (see [9, Theorem 9.21, p346] for details).
For the uniqueness, let u!, and u?, be two solutions to problem (2.2) and z.;, = ul, —u?, their
difference. Then

1
>‘|Z€h|% + Z”v : Zeh“% = _N(Zehaugha Zeh)
< B|Zeh|%|ueh|1 < B>‘_1||f||—1|zeh|%-

Thus |z.,]? = 0 provided (1 — BA72||f]|=1) > 0
Theorem 2.3. Under the conditions of Theorem 2.1 and Theorem 2.2, if u € H*(Q)"NHZ ()™
is the solution to problem (1.2), then the following estimates hold:

|u — uen|1 < c(e+ h)[|ull2,
lu — uenllo < c(B? + €)]|ul]2.

Combining Theorem 2.1 with Theorem 2.2 and using the triangle inequality, we easily get The-
orem 2.3.

The solution to nonlinear problem (2.2) can still be quite computationally intensive. There-
fore, this article considers an attractive two-grid method as follows:

Step 1: Find uff € X# | such that

ac(uf’,v) + N(u' uf ,v) = (f,v), Vve XM (2.3)
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Step 2: Find u” € X", such that

ac(ug,v) + Nl ul,v) + N ué,v) = N ul,v) = (f,v), YveX" (2.4)

€

Step 3: Find uff € X such that

af( )+N( Ue ev v) + Ne flv SI)U):_N('U'?_USI)U?_U?)U)) voe X7, (2.5)
Step 4: Set u* = u” + e
Owing to [1], we can similarly get the following results.
Lemma 2.1. Given a solution uf to problem (2.3), if \™2B||f||-1 < 1, € is small enough and
there is a constant v such that eX™2||f||=181(1 + BB + BA7Y||fl|=1) < ~?, then the solution
to problem (2.4) exists uniquely in {ulu € X" |uly < B1,||V -ullo < v}, where 31 = (A —
AABIf-1) ) (14 BA )]

Lemma 2.2. Given solutions ul andu” to problems (2.3) and (2.4), respectively, if X\ 2B||f|| -1
< 1, then problem (2.5) has a unique solutzon

3. Error Estimates
As well known [#:83-1:2297] that 4 is a nonsingular solution of the Navier-Stokes equations if

and only if the following inf-sup conditions hold:

a(w,v) + N(u,w,v) + N(w,u,v)

inf su u) >0,

s ol > 7() o)
N N ’

inf sup (U),U) + (’LL,U),U) + (’U},’U,,U) > (’LL) >0

vEX wex lwl1]v]1

Thus, for |u —uf|; small enough (which holds for all H and € with 0 < H < Hp and 0 < € < ¢,
where Hy and ¢g are two positive constants)

N N(w
af s 200+ N w0) + N0 9w
wEtheXh |U)| |U|1 2 (3 2)
it p A00) £ N w0,0) 4 Nwull o) | 9w)
vEX™ e xh le vl 2

(3.2) also holds for w and v in XH
Let Cy(w,v) = a(w,v) + N(uf,w,v) + N(w,u ,v), and Qx be a projection operator from
X to X satisfying
Cu(w,Qpv) = Cg(w,v), vwe XH v e X. (3.3)
Lemma 3.1. With H small enough, Qg is well defined and satisfies

lv — Quvl1 SvHig)f(H |’U—UH|1, (3.4)

and
lv = Qrvllo < cH|v — Qrvr. (3.5)
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Proof. For all v € X, by Lemma 1.1, Theorem 2.2 with h replaced by H and (3.2)-(3.3), it
follows that

v —Qpuvly <c sup Cra(07, Qurv = o) =c sup Cu(¢™,v—v")
prex 1971 swexn 107
=c sup a(@",v —v") + N(uf, ", v — v) + N(¢", ull,v — o)
pHEXH loH |1
< clv —of;.

Then the triangle inequality gives

H|1-

lv—Qpuu|1 <c inf |v—w
v H

i
HeX
To estimate L2-error, we consider a dual problem: for given g € L2(2)", find £ € X such that

Cu(& ¢)=(d,9), Ve X (3.6)

We shall assume that the solution ¢ to problem (3.6) is H>-regular, i.e.,

[1€]]2 < cllgllo- (3.7)

It follows from problems (3.6), (3.7) and (3.3) that

[0 Quiai

C , U — v
lo=Quvllo = sup == = sup Cn(&v—Qnv)
geL? ()" ||g||0 gELZ ()™ ||g||0
= Sup CH(E_QH&U_QHU)ScH|U—QHv|1.
geLz(Q)n llgllo

Lemma 3.2. (a) If the global uniqueness condition \"2B||f||_1 < 1 holds, then both uf’ and

ul exist uniquely. Further, the error |uc, — u®|, satisfies

[ueh —ul)y < c(e2 + H¥>* +eH) ( sis small enough(n =2); s=

(b) If the uniqueness condition fails, suppose u is the nonsingular solution of the Navier-Stokes
equations. Then for H small enough, the following estimate holds:

[ueh —ul)y < c(e2 + H3* +eH) ( sis small enough(n =2); s=

(n = 3)).

Proof. For brevity, we only prove part (b).
A straightforward calculation shows that

N(u,u,v) :N(u,ufl,v)+N(u6H,u,v)—N(uH,uf,v)+N(u—u6H,u—u6H,U). (3.8)

€

Subtracting (2.4) from (2.2), setting e = u, — u” and using (3.8), we have

(16(6,1)) + N(eau?)v) + N(ufl,e,v) = _N(ufh - ufl)ueh - ’U,SI,’U). (39)
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When n = 2, by (3. 9) (3.2) and Lemma 1.1, noting that ucp, — uf = (uep, —up) + (up —u) +
(u—uH)+(uH—u ), with h < H we have
_ o H _ o H
’Y( ) h|1 < sup N(ufh Ue s Uch U 7U)
veXh |U|1
|1+s

|tten, — u

<C{||UH—UH||(1) ug — w117+ = upllg | — up

Hlu—upllo™ | — wnlflug —uf|y + lJug — wllllg™*lur — uf|flu — ul}.

Thus, Theorem 2.1 and Theorem 2.2 give

@Wd —ul)y < (@ + H>° + H>Pe+ eH) < (e + H>™° + €H).

When n = 3, we can similarly get

u N(uep, — v uep —u v
7( )|u€h—u |1S sup (Eh e » Yeh € )

2 veXh |’U|1

1 3 1 3
< e{llug — ul||§ lum — UHlf + lu = ugllg v — ugl|?
1
Hlu —ugll§u— UH| lug — uf |y + Jug — UH||o lupg — ug | lu —uplr.}

<c(H® + &+ H3e+eH) < c(H? + € +€eH).

Thus
luen, — ul)y < c(€2 + H* % + eH), (s is small enough(n = 2); s =

Theorem 3.1. If the assumptions in Lemma 3.2 are satisfied and e is small enough, then the
following estimate is valid:

luen —u*]y < c(€ + H>* +e2H3)  (s=0(n=2), s==(n=3)).

Proof. Thanks to the definition of projection operator Qg, (2.5) can be written in the
following form:

ac(el,v) + N(ul ell,v) + Nie ull,v) = =N(w! —uf ,uf —ul,Qmv). (3.10)

€

Combining (2.4) with (3.10) yields

ac(u*,v) + N(ul )+ N(u*,ull jv) — Nl uf v)

A R A (3.11)
_<f) > ( Ue E_UE7QHU—U)_N(UE_UE’UE_UE’U)
Subtracting (3.11) from (2.2), setting uep, — u* = E and using (3.8), we obtain
ac(E,v) + N(wf Ev) + N(E,uff ,v) = N(u! —uH ul —ul v)
—N(ueh ufl uep —uf v) + N — o ul —uff, Quv —v) (3.12)
= N(u? —uf ul —uep,v) + N(uh — wep, uep, — ull,v) |

FN (= ulT ol — ulT, Qv —v).

€



108 C.F REN AND Y.C. MA
From (3.2), it follows that

H H
7(u)|E|1 < sup ac(E,v) + Nu,E,v) + N(E,u ,v)'

2 veXh |’U|1

(3.13)

Next, we will estimate the right-hand side terms of (3.12).
From Lemma 1.1 and Lemma 3.1 with n = 2, we have

h _
€
(Jul = wenly + [ten — ul 1) ul = uen|1]v]y
(e+H+eH)(2 + H*>* +eH)|v|;
(H*=% + & + eH)|v]|1,

N(u? — wep,uep — utt,v) (H* %+ + eH)|v|1,

C
N(ul —ull ul —ull Qv —v) < Z|lul — uljolul — w1 |Quv — v|x

N(ul —ul ul — uep,v) wl |y [ul = wenly |v)s

€ ) € |u

INIAINININ
S )

c 1 1 1 1
+ollue —ulllglud — ul|F lu — w1 |Quv — vlf |Quv — vlig

c 1 1 1 1 1
< 5 (jud —uenl? + luen — uff|P)lud = ul 1§ [uf - w[1|Qwv —v|f[|Qrv — vll§

-2
C
+§||U? —uf|lolu¢ — w1 |Quv —v|x
<c(e2H= 4+ H¥) ||y + (e + eH + H3)|v|, < (€2 + €2 Hz + H3)|v|;.

Similarly, for n = 3 we have

1 3
N(U’h - ’U,?,U? - U’faQHU - U) < C||’U,g - U’?”O2 |U’£L - ’U’£J|12 |QHU - ’U|1

< el +erHz + H3)|y,

N(ul —ul ul —ue,v) < cjul — uf | Ju? —uepli|v)r < c(€ +H: + eH)|vl1,
and .
N(u" — wep,uen, — u? ,v) < c(€ + H2 +€eH)|v);.
Thus 1
|E|; <c(e + H¥*+e3H?) (s=0(n=2); s= 5(1=3).

Combining Theorem 2.2 with Theorem 3.1 and using the triangle inequality yield the fol-
lowing result.
Theorem 3.2. If the assumptions in Theorem 3.1 are satisfied, then there holds the following
estimate:

1
lu—u*|y <cle+h+H?* +e3H?) (s=0(n=2); s=5(n=3).

Remark. From Theorem 2.3 and Theorem 3.2, it follows that if ¢ = O(H°"2%) and h =
O(H®**) (s =0(n = 2); s = L(n = 3)) are chosen, the convergence order of the two-grid
method is the same as that of the usual finite element method for H!-error. We can also get
the L2-error estimate about ||u — u*||o by introducing a linear dual problem to (1.3).

4. Numerical Test

This section gives two examples to verify above analysis. We will numerically solve these
two problems by the usual finite element method (FEM) and the two-grid method (TGM),
respectively. In this part, we assume that @ = (0,1) x (0,1) and each unit is square. Let Q be
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subdivided into coarse mesh units £ with its diameter H = % given in Fig 1.1, then we make

any coarse mesh unit k € 7y into 3% same quadrilateral units T given in Fig 1.2. So we can get
the fine mesh subdivision 75, (h = 5-) of Q.

Th

Jine-
0 1z 23 1 =z Figl.2 Each coarse mesh
Figl.1 Coarse mesh unit subdivision
=ubdivi=zion

To easily check the accuracy of numerical tests, we choose two kinds of right-hand side f to
get the corresponding exact solutions u(z,y) = (u1(z,y),u2(x,y)), p(x,y) to problem (1.1) for
n=2. The first solution is

uy (z,y) = (1 —x)’y(1 —y)(1 - 2y),
us(z,y) = —y*(1 —y)’z(l — z)(1 - 2z),
p(z,y) = 5(z —y),

and the second solution is

ui(z,y) = Zsin®(3nz)sin(6my),
us(z,y) = —32Zcos(6my)cos®(3nz),
1

p = jgcos(6mz).

We present numerical results generated by FEM and TGM in Figs2-5, and use CPUy, I=1,2
to stand for the CPU time used by TGM and FEM, respectively. We only present results for
the exact u; and interpolated numerical solutions generated by FEM and TGM along y-axis at
x=0.8. We give the detail results of the first solution for the different A in Table 1 and Table 2.
From Figs2-5, we know the efficiency of two kinds of algorithms for the first solution is better
than that for the second one. From Figs2-5, Table 1 and Table 2, we also know, TGM can save
a lot of computation time; the finer the grid is, the more the saved CPU time is and the bigger
A is, the better the convergence order is. This results well coincide with the theoretic analysis
in this article.
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Fig2:u (x,y)=2x"(1-x)’y(x-y)(1-2y) (for 2=0.01)
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5 L L L L L L L L

= Solution of TGM
—— Exact Solution
- Solution of FEM

] 0.1 0.2 0.3 0.4 05 06 o7 0.3
¥ 0-1)

Fig3:ur 1(x, y)=3m’255in(3xszsin(61y) (for a=0.1)

0.4 T T T

09 1

up8

= Solution of TGM
—— Exact Solution

- Solution of FEM
=bs
CPU_=10s

up8

0.4 L L L L L L L L L

= Solution of TGM
—— Exact Solution
- Solution of FEM
CPU, =9s
CPU_=27s
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Figh: u '(x, y)=3d25sin(3ﬂqzsin(6:¢y) (for A=0.01 and h=1/54)

U 08y

-0.4

0.4 T

Solution of TGM
—— Exact Solution

Solution of FEM
CPU =797s

CPU_=2024s

. o,

L L L L L L L L
[n) 01 o2 03 0.4 06 o7 03 09 1

Y (Dllfﬂ

two-grid  method finite elerert method
A H'-ermr Tire(s) H'-ermr Tirme(s)
A=0001 149261523 f 1.262735e-3 16
A=0.005 11679703 5 1.131656e-3 15
A=001 11328793 4 1.116366e-3 14
A=DI5 1.108092¢-3 f 1.107803e-3 14
A=D1 11061573 f 11071503 13
A=D5 1104389 3 f 11045723 13
A=l 11042623 f 1.104311e-3 13

Tablel: Corparisons of H-Error and CPU time

two-grid  method finite elerent method

A . :

H'-error Time(s) H'-errur Time(s)

A=0.0 13703734 496 6.231852e-4 1661
A=0.003 6.11003%e-4 458 6.060208e-4 1446
A=0.01 6.060601e-4 436 6.043017e-4 1455
A=005 6.030500e-4 420 6.054160e-4 1402
A=01 6.028151e-4 438 6.053308e-4 1592
A=03 6.026011e-4 433 6.030067e-4 1308
=1 .025856e-4 433 6.025862e-4 1104

Table2: Comparisors of H-Errr and CPU tme with h=1/54

111

Remark. Above numerical examples is performed on IBM pentium 4 whose memory and
mobile CPU are 256MB and 1.80 GHz, respectively.
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