
Journal of Computational Mathematics

Vol.29, No.4, 2011, 396–414.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1101-m3203

FITTING C1 SURFACES TO SCATTERED DATA WITH S1
2(∆

(2)
m,n)*

Kai Qu

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Department of Mathematics, Dalian Maritime University, Dalian 116026, China

Email: qukai8@dlmu.edu.cn

Renhong Wang and Chungang Zhu

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Email: renhong@dlut.edu.cn, cgzhu@dlut.edu.cn

Abstract

This paper presents a fast algorithm (BS2 Algorithm) for fitting C1 surfaces to scat-

tered data points. By using energy minimization, the bivariate spline space S1
2(∆

(2)
m,n) is

introduced to construct a C1-continuous piecewise quadratic surface through a set of ir-

regularly 3D points. Moreover, a multilevel method is also presented. Some experimental

results show that the accuracy is satisfactory. Furthermore, the BS2 Algorithm is more

suitable for fitting surfaces if the given data points have some measurement errors.
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1. Introduction

Fitting surface to scattered data is a fast growing research area. It deals with the problem

of reconstructing an unknown function from given scattered data. The main aim of this paper

is to solve the following problem:

(Θ): Let D be a domain in the (x, y)-plane, and suppose F is a real-valued

function defined on D. Suppose we are given the values zj = F (xj , yj) of F

at some set of points (xj , yj) located in D, j = 1, 2, · · · , N . Find a function f

defined on D which reasonably approximates F .

This problem is, of course, precisely the problem of fitting a surface to given data. Natu-

rally, it has many applications, such as terrain modeling, surface reconstruction, fluid-structure

interaction, numerical solutions of partial differential equations, kernel learning, and param-

eter estimation, to name a few. Moreover, these applications come from such different fields

as applied mathematics, computer science, geology, biology, engineering, and even business

studies([28]).

C1 surface is the simplest and most practical surfaces in scientific computation and engi-

neering, and it has very important applications. There are lots of efficient methods for fitting

surfaces such as Shepard’s method, tensor product splines, multiquadratics(MQ), and finite ele-

ment methods. Shepard defined a C0-continuous interpolation function as the weighted average
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of the data([19]). Using tensor product B-splines, Lee et al. constructed a C2-continuous inter-

polation function ([15]). Hardy’s multiquadratics are among the most successful and applied

methods, it constructs a C∞-continuous interpolation function ([10]). However, the solvability

of multiquadratics interpolation depends on the selection of parameters. Franke and Nielson

introduced the modified quadratic Shepard’s method to produce C1-continuous interpolation

([7]), but it is sensitive to triangulation and data distribution, just like finite element methods

([1]). Compactly supported functions were presented in [28, 29], which could produce an inter-

polation function with arbitrary smoothness. However, it needs to solve some equations. In

this paper, using energy minimization, we proposed a very fast algorithm (BS2 Algorithm) for

reconstructing a C1-continuous interpolation function from arbitrary scattered data.

Comparing with all of methods mentioned above, the BS2 Algorithm presented in this paper

has some advantages, such as:

• the BS2 Algorithm doesn’t need to solve any equations.

• the BS2 Algorithm produces a C1-continuous function which degree is just 2.

• according to the different requirements, the BS2 Algorithm could construct a function f

which interpolates the data exactly, or approximately fits the given data.

• the BS2 Algorithm is very simply because the basis which we used here is centrosymmetric

(see Fig. 3.2).

• the surfaces produced by the BS2 Algorithm have minimum energy since the minimum

energy constraint is used.

This paper is organized as follows. Section 2 reviews previous work. In Section 3, the spline

space S1
2(∆

(2)
m,n) is introduced. Surfaces’ energy minimization is introduced in Section 4. The

basic idea and the algorithm are given in Section 5. That serves to motivate the discussion of

multilevel approximation, given in Section 6. In Section 7, the numerical results and comparison

with some algorithms are illustrated. Conclusions and future works are presented in Section 8.

2. Previous Work

There are basically two approaches to handling (Θ). First, we may try to construct a

function f which interpolates the data exactly, i.e., such that

f(xj , yj) = zj , j = 1, 2, · · · , N.

This approach may be desirable when the function values at the data points are known to high

precision and where it is highly desirable that these values be preserved by the approximating

function. The problem of interpolation of scattered data has been addressed by numerous

authors ([1,2,8,11,24]). One of the earliest algorithm in this field was based on inverse distance

weighting of data, namely Shepard’s method ([7, 19]). Another popular approach to scattered

interpolation is to define the interpolation function as a linear combination of radially symmetric

basis functions (RBF). Popular choices for the basis functions include Gaussian, multiquadratics

(MQ) ( [10]), compactly supported functions(CSF) ( [27, 29]). Another class of solutions to

scattered data interpolation is due to finite element methods ([14]). Lee proposed an algorithm

(BA Algorithm) for scattered data interpolation with B-splines ([15]). A recent view of methods

for scattered data interpolation is given by [28].
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The second approach to handling (Θ) is to construct f which only approximately fits the

data. This may be regraded as data fitting (data smooth) and will be desirable when (as is often

the case) the data are subject to inaccurate measurement or even errors. The approach of data

fitting significantly differs from that of interpolation: While interpolation methods approximate

the underlying function by finding a surface that passes through the known data points, data

fitting methods find an approximating surface that best fits the known data points according

to some specified criteria. This means that the approximating function will pass close to the

known values, but not necessarily exactly though them. Data fitting methods have been largely

discussed in literatures ([3, 16]).

Timoshenko pointed that if a system is a position of stable equilibrium, its total energy

is a minimum ([21]). For the geometric shape design industry, a better understanding of the

performance of the strain energy approximation method is important since some of the design

processes use the energy as a means to optimize the shape of a curve or surface ([9, 12, 17, 18,

20]). One example is the process of constructing a smooth surface to interpolate a network

of curves ([13]), where an energy function is minimized to find the optimal twist vectors for

the interpolating surface. Another example is the curve interproximation process ([6]), where

a curve with the smoothest shape is sought to interpolate given data. An interproximation

scheme for B-spline surface is presented in [26], it shows that the energy form has much bigger

impact on the generated curve than the parametrization technique.

3. Spline Space S1
2(∆

(2)
m,n)

Splines are piecewise polynomials with certain smoothness. The first author of this paper

established the basic theory on multivariate splines over arbitrary partition, and presented the

so-called conformality method of smoothing cofactor (the CSC method) which is suitable for

studying the multivariate spline over arbitrary partition ([22, 24, 25]).

Let Ω be a domain in R2, Pk the collection of all these bivariate polynomials with real

coefficients and total degree no more than k, i.e.,

Pk :=







p =

k
∑

i=0

k−i
∑

j=0

cijx
iyj

∣

∣

∣cij ∈ R







.

Using a finite number of irreducible algebraic curves to carry out the partition ∆ of the

domain Ω, then the domain Ω is divided into M sub-domains δ1, · · · , δM , each of such sub-

domains is called a cell of ∆. These line segments that form the boundary of each cell are called

the edges, intersection points of the edges are called the vertices. If two vertices are two end

points of a single edge, then these two vertices are called the adjacent vertices. The vertices

which are not lying on the boundary of domain Ω are called interior vertices, and the others

are called boundary vertices. The space of bivariate splines with degree k and smoothness µ

over ∆ is defined by

Sµ
k (∆) :=

{

s ∈ Cµ(Ω)
∣

∣

∣ s
∣

∣

δi
∈ Pk, i = 1, · · · ,M

}

.

As well known, many regions including the so-called L-form regions and their combinations,

can be translated to many rectangular regions. Type-2 triangulations are yielded by connecting

two diagonals at each small rectangular cell which are based on rectangular regions. Clearly, if

the original rectangular partition is uniform, then the induced type-2 triangulations are called
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uniform type-2 triangulations. All of type-2 triangulations mentioned in our paper are uniform,

see Fig. 3.1.

Without loss the generality, let Ω be a unit square region as follows:

Ω = [0, 1]⊗ [0, 1].

The type-2 triangulation ∆
(2)
m,n is yielded by the following partition lines:

mx− i = 0, ny − i = 0,

ny −mx− i = 0, ny +mx− i = 0,

where i = · · · ,−1, 0, 1, · · · . The dimension of Sµ
k (∆

(2)
m,n) is presented as follows.

Fig. 3.1. Uniform type-2 triangulation, m = 4, n = 4.

Theorem 3.1. ([23, 24])

dim Sµ
k (∆

(2)
m,n) =

(

k + 2

2

)

+ (3m+ 3n− 4)

(

k − µ+ 1

2

)

+mn

(

ck − 2µ

2

)

+ (m− 1)(n− 1) · dµk (4), (3.1a)

where

dµk (4) =
1

2

(

k − µ−

[

µ+ 1

3

])

+

·

(

3k − 5µ+ 3

[

µ+ 1

3

]

+ 1

)

. (3.1b)

Lemma 3.1. ( [23, 24]) For a given partition ∆, let B(x, y) ∈ Sµ
k (∆)(0 ≤ µ ≤ k − 1) be a

B-spline that its support is a convex polygon G. If Ai is a given vertex of G, and the number

of edges inside of G (including the boundary of G) that passing through Ai is Ni, then

Ni > (k + 1)/(k − µ). (3.2)

Lemma 3.1 is a fundmental result. It points out that in order to obtain a B-spline with

local support, the lower bound of the number of edges at each vertex on its support should be

(k + 1)/(k − µ).

According to Eq. (3.2), in order to construct the locally supported splines over partition

∆
(2)
m,n (Ni = 4), the degree k of their piecewise polynomials and the smoothness µ must satisfy

the following inequality: k > (4µ+1)/3. When µ is given, we always expect the smallest k. The

C1 splines are considered in our paper, so that the most interesting spline space is S1
2(∆

(2)
m,n).
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From Eq. (3.1a), we can get

dim S1
2(∆

(2)
m,n) = (m+ 2)(n+ 2)− 1. (3.3)

We first introduce a locally supported spline in S1
2(∆

(2)
m,n) with its support octagon Q cen-

tered at (0, 0) as shown in Fig. 3.2. It is known that a bivariate polynomial of degree 2 on a

triangle can be uniquely determined by the values of three vertices and three midpoints of the

edges. In Fig. 3.2, the values are given on some triangles, and other values are obtained by the

symmetry of lines x = 0, y = 0, x+ y = 0, x− y = 0.

Fig. 3.2. A locally supported spline.

Fig. 3.3. Image of the locally supported spline.

Let B(x, y) be a piecewise polynomial with degree 2 defined in R2, that is, zero outside

of Q, and let its representation in every triangle of Q be determined by the values. Clearly,

B(x, y) ∈ C1(R2), and B(x, y) > 0 inside of Q. Hence, B(x, y) is a bivariate B-spline over

the partition as shown in Fig. 3.3. Using the conformality conditions at vertices ([24]), the

B(x, y) is uniquely determined by the symmetry of lines x = 0, y = 0, x+ y = 0, x− y = 0, and

normalized condition B(0, 0) = 1/2. By the CSC method, we can point out that the support

of B(x, y) is the smallest one ([23]).

Denote

Bij(x, y) := B(mx− i+ 1/2, ny − j + 1/2), (3.4)

then collection

A =
{

Bij(x, y) : i = 0, · · · ,m+ 1, j = 0, · · · , n+ 1
}
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is a subspace of S1
2(∆

(2)
m,n). Note that each element of A is a nontrivial element of S1

2(∆
(2)
m,n),

and the number of elements in A is (m + 2)(n + 2). From Eq. (3.3), A must be a linearly

dependent set. Wang ([24]) gave the following results.

Theorem 3.2. ([24]) The bivariate B-splines of A defined by Eq. (3.4) satisfy

m+1
∑

i=0

n+1
∑

j=0

(−1)i+jBij = 0.

For any i0, j0, 0 ≤ i0 ≤ m+ 1, 0 ≤ j0 ≤ n+ 1, the collection

Ai0j0 =
{

Bij(x, y) ∈ A : (i, j) 6= (i0, j0)
}

is a basis of S1
2(∆

(2)
m,n).

Since the collection A of bivariate B-splines yield the entire space S1
2(∆

(2)
m,n), therefore,

for each bivariate spline s(x, y) ∈ S1
2(∆

(2)
m,n), there must exist aij ∈ R, i = 0, · · · ,m + 1, j =

0, · · · , n+ 1, such that

s(x, y) =

m+1
∑

i=0

n+1
∑

j=0

aijBij .

4. Surfaces’ Energy

The bending properties of a plate depend greatly on its thickness as compared with its

other dimensions. In the following, we shall study one kind of plates: thin plates with small

deflections ([21]).

Definition 4.1. If deflections ω of a plate are small in comparison with its thickness, we call

it a thin plate with small deflections.

A very satisfactory approximate theory of bending of the plate by lateral loads can be

developed by making the following assumptions.

• There is no deformation in the middle plane of the plate. This plane remains neutral

during bending.

• Points of the plate lying initially on a normal-to-the -middle plane of the plate remain on

the normal-to-the-middle surface of the plate after bending.

• The normal stresses in the direction transverse to the plate can be disregarded.

Using these assumption, all stress components can be expressed by deflection ω of the plate,

which is a function of the two coordinates in the plane of the plate, say ω = ω(x, y).

If a plate is bent by uniformly distributed bending moments Mx and My (see Fig. 4.1) so

that the xz and yz planes are the principal planes of the deflection surface of the plate, the

strain energy stored in an element, such as shown in Fig. 4.2, is obtained by calculating the

work done by the moments Mxdy and Mydx on the element during bending of the plate ([21]).

Since the sides of the element remain plane, the work done by the moments Mxdy is obtained
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by taking half the product of the moment and the angle between the corresponding sides of the

element after bending. Since −∂2ω/∂x2 represents the curvature of the plate in the xz plane,

the angle corresponding to the moments Mxdy is −(∂2ω/∂x2)dx, and the work done by these

moments is

−
1

2
Mx

∂2ω

∂x2
dxdy.

An analogous expression is also obtained for the work produced by the moments Mydx. Then

the total work, equal to the strain energy of the element, is

−
1

2

(

Mx
∂2ω

∂x2
+My

∂2ω

∂y2

)

dxdy. (4.1)

If the directions x and y do not coincide with the principal planes of curvature, there will act

on the sides of the element (see Fig. 4.2) not only the bending moments Mxdy and Mydx but

also the twisting moments Mxydy and Myxdx. In deriving the expression for the strain energy

due to twisting moments Mxydy we observe that the corresponding angle of twist is equal to

the rate of change of the slope ∂ω/∂y, as x varies, multiplied with dx; hence the strain energy

due to Mxydy is

1

2
Mxy

∂2ω

∂x∂y
dxdy.

Fig. 4.1. Pure bending of thin plate.

Fig. 4.2. The strain energy stored in an element.
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The same amount of energy will also be produced by the couples Myxdx, so that the strain

energy due to both twisting couple is

Mxy
∂2ω

∂x∂y
dxdy. (4.2)

Since the twist does not affect the work produced by the bending moments, the total strain

energy of an element of the plate is obtained by adding together the energy of bending Eq.(4.1)

and the energy of twist Eq. (4.2). Thus we obtain

dV = −
1

2

(

Mx
∂2ω

∂x2
+My

∂2ω

∂y2

)

dxdy +Mxy
∂2ω

∂x∂y
dxdy. (4.3)

From [21], we have

Mx = −D0

(

∂2ω

∂x2
+ ν

∂2ω

∂y2

)

, My = −D0

(

∂2ω

∂y2
+ ν

∂2ω

∂x2

)

, (4.4)

Mxy = D0(1− ν)
∂2ω

∂x∂y
, (4.5)

where D0 is the flexural rigidity of the plate and ν is Poisson’s ratio of the material, they are

constants. ω = ω(x, y) denotes small deflections of the plate.

Substituting Eqs. (4.4) and (4.5) into Eq. (4.3), the total strain energy of an element of the

plate is represented in the following form:

dV =
1

2
D0

[

(

∂2ω

∂x2

)2

+

(

∂2ω

∂y2

)2

+ 2ν
∂2ω

∂x2

∂2ω

∂y2

]

dxdy +D0 (1− ν)

(

∂2ω

∂x∂y

)2

dxdy.

The strain energy of the entire plate is now obtained

V =
1

2
D0

∫∫

[

(

∂2ω

∂x2

)2

+

(

∂2ω

∂y2

)2

+ 2ν
∂2ω

∂x2

∂2ω

∂y2
+ 2 (1− ν)

(

∂2ω

∂x∂y

)2
]

dxdy. (4.6)

Let ν = 0, Eq.(4.6) can be simplified as

V =
1

2
D0

∫∫

[

(

∂2ω

∂x2

)2

+

(

∂2ω

∂y2

)2

+ 2

(

∂2ω

∂x∂y

)2
]

dxdy.

In this paper, a fitting surface f(x, y) to scattered data could be considered a thin plate

with small deflections, so that it’s total energy is

V =
1

2
D0

∫∫

[

(

∂2f

∂x2

)2

+

(

∂2f

∂y2

)2

+ 2

(

∂2f

∂x∂y

)2
]

dxdy. (4.7)

5. Fitting Surface to Scattered Data

Recently, a B-spline approximation technique has been proposed for scattered data interpo-

lation ([15]). In this section, we elaborate on scattered data interpolation with S1
2(∆

(2)
m,n) and

present the details of the algorithm.

Timoshenko pointed that if a system is a position of stable equilibrium, its total energy is

a minimum ([21]). For given scattered data points, we want to find a new method to get a

fitting surface f(x, y), so that Eq. (4.7) is minimum. Fortunately, such method is proposed in

this section.
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5.1. The energy of the locally supported splines in S1
2(∆

(2)
m,n)

First of all, we talk about the energy of a locally supported spline in S1
2(∆

(2)
m,n) mentioned

in Section 3. Without loss of the generality, Fig. 3.2 is a locally supported spline in S1
2(∆

(2)
m,n)

with its support octagon Q centered at (0, 0). It is known that a bivariate polynomial of degree

2 on a triangle can be uniquely determined by the values of three vertices and three midpoints

of the edges. In Fig. 3.2, the values are given on some triangles, and other values are obtained

by the symmetry of lines x = 0, y = 0, x + y = 0, x − y = 0. So that the expression of this

locally supported spline is given (see Fig. 5.1).

q1(x, y) = −
1

2
x2 −

1

2
y2 +

1

2
,

q2(x, y) = −
1

2
y2 −

1

2
x+

5

8
,

q6(x, y) =
1

4
x2 −

1

2
xy −

1

4
y2 − x+

1

2
y +

7

8
,

q7(x, y) =
1

2
x2 −

3

2
x+

9

8
,

q9(x, y) =
1

4
x2 +

1

2
xy +

1

4
y2 − x− y + 1,

By the centrosymmetric of this locally supported spline, we obtain the expressions of qi(x, y), i =

3, 4, 5, 8, 10, 11, · · · , 28. Substituting these expressions into Eq. (4.7), we obtain the distributing

of energy of a locally supported spline (see Fig. 5.2).

Fig. 5.1. The expression of a locally supported spline.

5.2. Basic idea

Without loss of generality, let Ω = [0, 1]⊗[0, 1] be a square domain in the xy-plane. Consider

a set of scattered data points P = {pj = (xj , yj, zj)}j=1,··· , N in 3D space, where p̃j :=

(xj , yj) ∈ Ω.

To approximate scattered data set P , a suitable partition ∆
(2)
m,n of domain Ω should be

given first. Denote B(x0,y0)(x, y) a locally supported spline centered at (x0, y0). By moving

B(−1/2m,−1/2n)(x, y) and using the following formulate

B((2i−1)/2m,(2j−1)/2n)(x, y) = B(−1/2m,−1/2n)(x− i/m, y − j/n),

the collection

Â =
{

B((2i−1)/2m,(2j−1)/2n)(x, y), i = 0, 1, · · · ,m+ 1, j = 0, 1, · · · , n+ 1
}
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Fig. 5.2. The distributing of energy of a locally supported spline.

is a subspace of S1
2(∆

(2)
m,n). Denote

Φ =
{

B((2i−1)/2m,(2j−1)/2n)(x, y) ∈ Â, i = 0, 1, · · · ,m+ 1, j = 0, 1 · · · , n+ 1, (i, j) 6= (0, 0)
}

,

and reorder the elements in Φ. It follows from Theorem 3.2 that Φ = {Bi(x, y), i = 1, 2, · · · , d}

is a basis of S1
2(∆

(2)
m,n), where d = (m+ 2)(n+ 2)− 1.

The approximation function f(x, y) is defined in terms of Φ by

f(x, y) =

d
∑

i=1

aiBi(x, y), Bi(x, y) ∈ Φ, i = 1, · · · , d. (5.1)

Denote Γ = {△i, i = 1, · · · , 4mn} the set of all the cells of partition ∆
(2)
m,n, clearly, each

element in Γ is a triangle. We say that p ∈ △o if p̃ lies in △. Denote Pi = {p ∈ P | p ∈

△o
i ,△i ∈ Γ}, and Ni = |Pi| the number of elements in Pi, that is, there are Ni scattered data

in △i, i = 1, · · · , 4mn. To ensure
⋃4mn

i=1 Pi = P, Σ4mn
i=1 Ni = N , we use the following notions.

Given p ∈ P , ε is an arbitrary small positive number. Let τ = (c1, c2) be an orient vector,

where c1 > 0, c2 > 0, and mc1 < nc2.

• If p̃ is an interior vertex, or a boundary vertex lying on y = 0, or a boundary vertex lying

on x = 0, we say that p̃ and p̃+ ετ lie in the same cell △ ∈ Γ;

• If p̃ is a boundary vertex lying on y = 1, or a boundary vertex lying on x = 1, we say

that p̃ and p̃− ετ lie in the same cell;

• If p̃ lies on x = i/m, i = 0, 1, · · · ,m − 1 (not vertex), p̃ and p̃ + εe1 lie in the same cell,

where e1 = (1, 0) is the unit vector;

• If p̃ lies on x = 1 (not vertex), p̃ and p̃− εe1 lie in the same cell;

• If p̃ lies on y = j/n, j = 0, 1, · · · , n − 1 (not vertex), p̃ and p̃ + εe2 lie in the same cell,

where e2 = (0, 1) is the unit vector;

• If p̃ lies on y = 1 (not vertex), p̃ and p̃− εe2 lie in the same cell.

Definition 5.1. Suppose B̃ ∈ Φ, we call it an associated locally supported splines respect to

the data point pj, if it influences the value of f at p̃j := (xj , yj).
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Denote φj the set of associated locally supported splines respect to pj . We discuss φj as

follows.

Let △1 be the cell enclosed by the edges: y = 0,mx+ ny− 1 = 0,mx− ny = 0, and let △2

be the cell enclosed by the edges: x = 0,mx+ ny − 1 = 0,mx− ny = 0.

(i). If pj ∈ △o
1,

φj =
{

B(1/2m, −1/2n), B(3/2m, −1/2n), B(−1/2m, 1/2n),

B(1/2m, 1/2n), B(3/2m, 1/2n), B(1/2m, 3/2n)

}

.

(ii). If pj ∈ △o
2,

φj =
{

B(1/2m, −1/2n), B(−1/2m, 3/2n), B(−1/2m, 1/2n),

B(1/2m, 1/2n), B(3/2m, 1/2n), B(1/2m, 3/2n)

}

.

(iii). If pj lies in the other cells, there are 7 locally supported splines which influence the value

of f(xj , yj), see Fig. 5.3.

Fig. 5.3. Associated supported splines.

• If pj ∈ △o
3, φj = {BOt

, t = 1, · · · , 7}, where BOt
denote the locally supported spline

centered at Ot;

• If pj ∈ △o
4, φj = {BO8 , BOt

, t = 1, · · · , 6};

• If pj ∈ △o
5, φj = {BO8 , BO9 , BOt

, t = 1, · · · , 5};

• If pj ∈ △o
6, φj = {BO7 , BO9 , BOt

, t = 1, · · · , 5}.

Obviously, from (i),(ii), (iii), we have

Theorem 5.1. For each data point pj ∈ P, j = 1, · · · , N , there are | Tj | locally supported

splines influencing the value of the approximation function f at the data point p̃j := (xj , yj).

It is said that

f(xj , yj) =
∑

i∈Tj

bjiB̃ji, j = 1, · · · , N,

where B̃ji ∈ φj , Tj = {t : BOt
∈ φj}, and | Tj |=







6, if pj ∈ △o
1,

6, if pj ∈ △o
2,

7, others.
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We call bji, i ∈ Tj the coefficients of associated supported splines respect to pj . For approx-

imation function f to take on the value zj at (xj , yj), the locally supported splines B̃ji must

satisfy

zj = f(xj , yj) =
∑

i∈Tj

bjiB̃ji, B̃ji ∈ φj . (5.2)

There are many values for the b ,
ji s that satisfy Eq. (5.2). We choose one in the minimum

energy sense that minimizes Vj , which denotes the energy of the surface obtained by the data

point pj := (xj , yj , zj). With the data point pj ∈ △o
5, for example, from Theorem 5.1, we have

zj = f(xj , yj) =

5
∑

i=1

bjiBOi
+ bj8BO8 + bj9BO9 . (5.3)

Substituting Eq. (5.3) into Eq. (4.7), we have

Vj =
10D0

mn
bjJbj

⊤,

where bj =
(

bj4 bj2 bj1 bj3 bj8 bj5 bj9
)

, and

J =























32 −8 −4 −8 2 0 2

−8 32 −4 0 −4 −8 2

−4 −4 32 −4 −8 −4 −8

−8 0 −4 32 2 −8 −4

2 −4 −8 2 32 −4 0

0 −8 −4 −8 −4 32 −4

2 2 −8 −4 0 −4 32























.

By solving the following programming:

(Ξj):

min Vj =
10D0

mn
bjJbj

⊤,

s.t. zj = f(xj , yj) =

5
∑

i=1

bjiBOi
+ bj8BO8 + bj9BO9 ,

we obtain an unique group of solution for the b ,
ji s that satisfy Eq. (5.3), notice that the surface

f(x, y) =

5
∑

i=1

bjiBOi
+ bj8BO8 + bj9BO9

has minimum energy.

Now we consider all the data points in P . For each data point pj , solving the programming

(Ξj) can be used to determine | Tj | coefficients of associated supported splines respect to it. We

notice that, given different data points in P , their sets of associated locally supported splines

may share elements in common probably. See Fig. 5.3, it is clear that, φ1

⋂

φ2 = {BOi
, i =

1, · · · , 5}, in another word, BOi
, i = 1, · · · , 5 influence both p1 and p2, where p1 ∈ △o

5, p2 ∈ △o
6.

This brings us some problems that we could not determine the coefficients of BOi
, i = 1, · · · , 5.

In order to solve this problem, we are able to consider a given locally supported spline and

some data points lying in it.
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If p̃ lies in a given locally supported spline Bi(x, y), we say that, p ∈ Bo
i . Denote ςi := {p ∈

P | p ∈ Bo
i } the set of data points associated with Bi(x, y). Suppose that | ςi |= r 6= 0, for

each element in ςi, it’s coefficient bki, which is respect to Bi(x, y), can be derived by solving

the programming (Ξk). To compromise among the coefficients, ai is chosen to minimize error

ei =

r
∑

k=1

(bkiBi(pk)− aiBi(pk))
2.

The term (bkiBi(pk)− aiBi(pk)) is the difference between the real and expected contributions

of ai to function f at the data point pk ∈ ςi. By differentiating the error ei with respect to ai,

we get

ai =

∑r
k=1 B

2
i (pk)bki

∑r
k=1 B

2
i (pk)

. (5.4)

If | qi |= 0, it is said that there is no data point associated with Bi(x, y), ai equals zero.

Considering all of Bi(x, y) ∈ Φ, i = 1, · · · , d, we can get a sequence of suitable coefficients

ai, i = 1, · · · , d. A desired approximation function f can be derived by Eq. (5.4).

5.3. Algorithm

Since each data point in P is associated with | Tj | locally supported splines in Φ, it belongs

only to the set of associated locally supported splines respect to it. Hence, we can efficiently

solve the programming (Ξk) for each locally supported spline by considering each data point

in turn. The values of a group of the coefficients are then obtained. The following pseudocode

outlines this approximation method, which we denote as the BS2 Algorithm.

BS2 Algorithm

Input: m,n, and P = {(xj , yj , zj)}j=1,··· ,N .

Output: the coefficients of the locally supported splines, ai, i = 1, · · · , d.

compute B0, Bi, i = 1, · · · , d;

for all j, do

compute bji by solving the programming (Ξj);

for all i, do

compute ai with Eq.(5.4).

end.

The time and space complexity of the BS2 algorithm isO(N+mn), whereN is the number of

data points, and S1
2(∆

(2)
m,n) is the interpolation space. Although the coefficients are determined

locally, we minimize the approximation error so that the resulting function properly reflects

the scattered data. Fig. 5.4 shows several examples. The error here is 2-norm-error of 13

isolated points in Fig. 5.4(a). Fig. 5.4(b) shows the approximation function f derived by the

BS2 algorithm for m = n = 16, the error is 1.729831e-003. Notice that f nicely approximates

P at densely distributed data points and interpolates P at the isolated points.

The density of partition ∆
(2)
m,n overlaid on domain Ω directly affects the shape to approxi-

mation function f . As ∆
(2)
m,n becomes coarser, each of locally supported spline covers a larger

number of data points in P . This causes many data points to be blended together to yield a

smoother shape for f at the expense of approximation accuracy. However, if we select partition

∆
(2)

m′ ,n′ , instead of ∆
(2)
m,n, where m

′

> m, n
′

> n, the influence of a locally supported spline is
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limited to fewer data points in P . This enables P to be more closely approximated, although

f will tend to contain local peaks near the data points. These characteristics are evident in

Figs. 5.4(b) and 5.4(c), where m = n = 16 and m = n = 32, respectively. The error in Fig.

5.4(c) is 4.966154e-004.

The BS2 algorithm runs very fast even when the number of data points is large. Furthermore,

since locally supported splines have local support, only a small neighborhood on domain Ω needs

to be updated when a data point is added or deleted.
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(c). The BS2 Algorithm for m = n = 32. (d). The MBS Algorithm.

Fig. 5.4. The BS2 Algorithm and the MBS Algorithm.

6. Multilevel Approximation

A tradeoff exists between the shape smoothness and accuracy of the approximation func-

tion generated by the BS2 algorithm. In this section, we present a multilevel approximation

algorithm to circumvent this tradeoff. The resulting function simultaneously achieves a smooth

shape while closely approximating the given data P . The algorithm makes use of a hierar-

chy of partitions to generate a sequence of functions fk whose sum approaches the desired

approximation function. In the sequence, a function from a coarse partition provides a rough

approximation, which is further refined in accuracy by functions derived from finer partition.

Consider a hierarchy of partitions ∆
(2)

m(k), n(k) , where k = 0, · · ·h, m(k) = 2m(k−1), n(k) =

2n(k−1), the multilevel approximation begins by applying the BS2 algorithm to P with the

coarsest partition ∆
(2)

m(0), n(0) . The resulting function f0 serves as a smooth initial approximation

that possibly leaves large discrepancies at the data points in P . In particular, f0 leaves a
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deviation δ1zj = zj − f0(xj , yj) for each point pj ∈ P . The next finer partition ∆
(2)

m(1), n(1) is

then used to obtain function f1 that approximates the difference P1 = {(xj , yj , δ1zj)}. Then,

the sum f0 + f1 yields a smaller deviation δ2zj = zj − f0(xj , yj)− f1(xj , yj) for pj .

In general, for a level k in the hierarchy, we derive function fk by using partition ∆
(2)

m(k), n(k)

to approximate data Pk = {(xj , yj , δkzj)}, where

δkzj = zj −

k−1
∑

i=0

fi(xj , yj) = δk−1zj − fk−1(xj , yj),

and δ0zj = zj . This process starts from the coarsest partition ∆
(2)

m(0), n(0) and continues incre-

mentally to the finest partition ∆
(2)

m(h), n(h) . The final approximation function f is defined as

the sum of functions {fk}, i. e., f =
∑h

k=0 fk. Note that only the coarsest partition ∆
(2)

m(0), n(0)

is applied to the original data P to derive the global shape of function f . All successively finer

partitions serve to approximate and remove the residual error. In this manner, we have an

incremental solution for function f that yields a smooth and close approximation to P . The

following pseudocode outlines the BS2 algorithm for multilevel spline approximation, which we

denote as the MBS algorithm. Note that a hierarchy of partitions is sufficient to represent

function f , because each of fk can be represented by S1
2(∆

(2)

m(k), n(k)), and f is the sum of the

fk’s.

MBS Algorithm

Input: m,n,m(0), n(0), e, and P = {(xj , yj , zj)}j=1,··· ,N .

Output: an approximation function f .

let k = 0;

while E > e, do

k = k + 1

let Pk = {(xj , yj, δkzj)}, m
(k) = 2m(k−1), n(k) = 2n(k−1);

compute fk from Pk by the BS2 Algorithm;

compute δk+1zj = δkzj − fk(xj , yj) for each data point;

E =
∑N

j=1(δk+1zj)
2.

end

Let N be the number of data points, and ∆
(2)
m,n be the finest partition. The time complexity

of the MBS algorithm is

O(N +mn) +O(N +mn/4) + · · ·+O(N +mn/4k) = O(N + 4mn/3)

and the space complexity is O(N + 4mn/3) because we have to store all the coefficients in the

hierarchy. A function obtained from the MBS algorithm is C1-continuous because it is the sum

of C1-continuous splines. Fig. 5.4(d) shows an example, the given data is the same as that in

Fig. 5.4(a), m(0) = n(0) = 4 and m(h) = n(h) = 64, the error is 4.577080e-005.

Notice that multilevel approximation generates a much smoother and more accurate function

than spline approximation given in the last section. Recall that function fk, for level k > 0 in

the hierarchy, is derived to approximate and remove the residual error δkzj at each data point.

The final function f is made to interpolate data P once this error goes to zero at some level k.
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7. Numerical Results

Fig. 5.4 illuminate clearly that the BS2 Algorithm and the MBS Algorithm could generate

interpolation functions from some given isolated points. In this section, we made two tests.

Example 1 is surface reconstructing with some data points lying on the known surface; Exam-

ple 7.2 is surface fitting with some data points which have measurement errors, namely, given

data points P = {pj = (xj , yj, zj)}j=1,··· , N , there exits a relationship zj = f(xj , yj) + ξj ,

where ξj represents the unknown error, we want to get f or a function approximating it.

Both of examples were implemented in MATLAB. MQ and CSF we used here are

Rmq =
√

c2 + r2,

and

Rcsf = max(0, (1 − r)4) · (1 + 4r),

respectively. The errors mentioned here are ∞-norm-error.

Example 7.1. The test surface is (see Fig. 7.1(a))

f(x, y) =
3

4
e−

(9x−2)2+(9y−2)2

4 +
3

4
e−

(9x+1)2

49 −
9y+1
10 −

1

5
e−(9x−4)2−(9y−7)2 +

1

2
e−

(9x−7)2+(9y−3)2

4 .

We select 289 uniformity data points on the test surface. Fig. 7.1(b) shows the interpolation

function derived by the BS2 Algorithm for m = n = 32. Fig. 7.1(c) was obtained by Rmq, where
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Fig. 7.1. Fitting f(x,y) with the BS2 Algorithm, MQ, and CSF.
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c = 0.1. Fig. 7.1(d) was obtained by Rcsf . Obviously, in Fig. 7.1, three methods generate three

interpolation surfaces, which have very little difference from the vision. Actually, the errors

also suggest that the BS2 Algorithm is suitable for fitting surfaces, and its accuracy is fine. It

should be pointed out that, the choice of the parameter c is important and difficult when we

use MQ to reconstruct surfaces. Moreover, MQ and CSF need to solve some equations which

coefficients matrices will be ill.

Example 7.2. Given a surface g(x, y) and some data points (xj , yj , zj), where zj = g(xj , yj)+

ξj , ξj represents the unknown error (see Fig. 7.2(a)).

g(x, y) =



























−x2 − y2 + 2.1, x ≤ 0.5, y ≤ 0.5,

−x2 − 3y2 + 2y + 1.6, x ≤ 0.5, y ≥ 0.5,

−4x2 − 3y2 + 3x+ 2y + 0.85, x ≥ 0.5, y ≥ 0.5,

−4x2 − y2 + 3x+ 1.35, x ≥ 0.5, y ≤ 0.5.

Obviously, g(x, y) ∈ S1
2(∆). Fig. 7.2(b) shows the interpolation function derived by the BS2

Algorithm for m = n = 48. Fig. 7.2(c) was obtained by Rmq, where c = 0.01. Fig. 7.2(d) was

obtained by Rcsf . We see that, Fig. 7.2(c) and Fig. 7.2(d) are accidented, since MQ and CSF
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represent their abilities of interpolation. They generate surfaces that passes though the given

data points which have measurement errors, obviously, both of MQ and CSF are not suitable

for fitting surfaces if the given data points have some measurement errors. The BS2 Algorithm

is more suitable for solving this problem because it’s ability of approximation is fine, Fig. 7.2(b)

indicates this point.

From Examples 7.1 and 7.2, we can see that, the BS2 Algorithm not only have the ability

of interpolation, but also approximation. This advantage could be used to fit surface more

convenient. Moreover, this method is easy to realize.

8. Conclusions and Future Works

This paper presented a fast approximation and interpolation algorithm for scattered data

points. The algorithm is based on spline approximation with S1
2(∆

(2)
m,n). A sequence of co-

efficients is efficiently determined by minimizing a local approximation error for each data

point. The resulting C1-continuous function passes near densely distributed data points and

interpolates isolated points. However, a tradeoff exists between the shape smoothness and

approximation accuracy of the function, depending on the partition density.

Multilevel spline approximation was introduced to circumvent this tradeoff. The algorithm

makes use of a hierarchy of partitions to generate a sequence of functions whose sum approaches

the desired approximation function. In the sequence, a function from the coarsest partition

provides an initial estimate, which is further refined in accuracy by functions derived at finer

levels. Interpolation is achieved when the finest partition becomes sufficiently small relative to

the data distribution.

In this paper, in order to get the coefficients of associated supported splines respect to pj , we

use minimum energy and the programming (Ξj). Actually, minimal area or curvature should

be considered in some cases. Moreover, quasi-interpolation will be considered in future works.
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