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Abstract

In this paper, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation with a

variable interfacial parameter, is solved numerically by using a convex splitting scheme

which is second-order in time for the non-stochastic part in combination with the Crank-

Nicolson and the Adams-Bashforth methods. For the non-stochastic case, the uncondi-

tional energy stability is obtained in the sense that a modified energy is non-increasing.

The scheme in the stochastic version is then obtained by adding the discretized stochastic

term. Numerical experiments are carried out to verify the second-order convergence rate

for the non-stochastic case, and to show the long-time stochastic evolutions using larger

time steps.
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1. Introduction

In this work, we consider a two-dimensional stochastic Cahn-Hilliard equation of the form

∂φ

∂t
= D∆

δU(φ)

δφ
+ εξ(r, t), r ∈ Ω, t ∈ (0, T ], (1.1)

where Ω = (0, Lx) × (0, Ly) and φ = φ(r, t) is the unknown function subject to the periodic

boundary condition. U(φ) is the Ginzburg-Landau type energy functional of the form

U(φ) =

∫
Ω

(
F (φ) + κ(φ)|∇φ|2

)
dr, (1.2)

where F (φ) is a potential and κ(φ) is the interfacial parameter weighting the gradient energy.

The constant D > 0 is a diffusion coefficient, and the function ξ(r, t) is a stochastic term

representing a kind of noise whose strength is scaled by ε > 0.
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In the field of small molecules or polymer mixture systems, the phase transition process

has attracted many theoretical and experimental studies [5, 14, 44]. Cahn-Hilliard dynamics,

namely (1.1) with ε = 0, proposed by Cahn and Hilliard [4], turns out to be one of the

most suitable models for simulating phase transitions of a uniform thermodynamic system [15].

Here, φ represents the concentration of one of the components of the mixture (or sometimes,

the difference between the concentrations of the two components of a binary mixture [13]). To

consider the random disturbance in the system, the stochastic term ξ(r, t) is added into the

equation by Cook [7]. In physics, the stochastic term ξ, treated as random force, reflects the

thermal disturbance caused by the chaos motion of molecules, and is required to satisfy the

fluctuation-dissipation theorem [5,19]

E[ξ(r1, t1)ξ(r2, t2)] = −2D∆δ(r1 − r2)δ(t1 − t2), (1.3)

where E represents the mathematical expectation operator. The Laplacian in (1.3) expresses

the conservation law for the field [17]. A random force component which piles up matter at one

site must be exactly balanced by force contributions at neighboring sites which deplete those

sites of matter.

In mathematics, the analytical and numerical studies on the stochastic Cahn-Hilliard equa-

tion (1.1), also called Cahn-Hilliard-Cook equation, have been investigated by many authors.

The existence and regularity of the solutions are proved under some certain conditions [8, 31].

One of the applications of the stochastic Cahn-Hilliard equations is the nucleation and phase

transition of the polymer mixtures. In [3], the nucleation is explained by the stochastically

driven exit in the limit of small noise intensity from the domain of attraction of an asymp-

totically stable homogeneous equilibrium state for the associated deterministic model. The

process of nucleation by formal arguments using two spatial scales and two temporal scales is

described in [2]. In addition, the numerical simulation of the phase transition attracts many

attentions. In [17], a class of finite difference schemes are presented and compared with each

other for simulating the nucleation in one-, two- and three-dimensional cases. Mesforush et

al present the error estimates of the finite element approximations to the Cahn-Hilliard-Cook

equation and its linearized version [20, 21]. Spinodal decomposition of binary alloys is studied

via Monte-Carlo simulation in [29], considering a two-dimensional system at critical concentra-

tion. The so-called string method is adopted to calculate the minimal energy path connecting

two metastable states in both one- and two-dimensional cases in [25,47].

The form of the potential F (φ) depends on the considered systems. For the phase separation

of the small molecules or atomic systems consisting of two components, F (φ) is usually chosen

as a quartic double-well potential function

F (φ) =
1

4
(φ2 − 1)2, (1.4)

where φ represents the difference between the concentrations of the two components, and the

coefficient κ(φ) is often considered as a positive constant. For the studies of spinodal de-

composition in polymer blends, Flory and Huggins developed a lattice theory and gave the

Flory-Huggins free energy [11]

F (φ) =
φ

NA
lnφ+

1− φ
NB

ln(1− φ) + χφ(1− φ), (1.5)

where φ is the concentration of the polymer A, NA and NB represent the degree of polymer-

ization of the polymer A and B, respectively, and χ is the Huggins interaction parameter. It is

noted in [14] that the gradient energy contribution for the polymer mixtures should be weighted
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by

κ(φ) =
σ2

36φ(1− φ)
, (1.6)

where σ > 0 is a characteristic monomer length scale. The functional (1.2) with (1.5) and (1.6)

is called the Flory-Huggins-de Gennes (FHdG) free energy functional in polymer physics. The

phase transition processes of a large class of hydrogels, a kind of network crosslinked by polymer

chains, can be described by the equation (1.1) combined with the FHdG energy functional.

A new kind of hydrogels, macromolecular microsphere composite (MMC) hydrogels, are

becoming popular in polymeric materials because of their high mechanical strength [18]. The

microstructure of MMC hydrogels is composed of both polymer chains and macromolecular

microspheres. In [26,45], a reticular free energy has been developed to describe the structures.

Replacing (1.5) in the FHdG energy functional by the reticular free energy and combining

the stochastic Cahn-Hilliard equation (1.1), the MMC-TDGL equation is obtained to simulate

the phase transition of the MMC hydrogels well. Here, “TDGL” is short for “time-dependent

Ginzburg-Landau” and refers to the TDGL mesoscopic simulation methods. We will give the

expression of the reticular free energy and the form of the MMC-TDGL equation in Section 2.

The difficulties for the numerical simulation of the Cahn-Hilliard equation are mainly of

two aspects: to observe the coarsening dynamics, we need the long-time integration; to capture

phase structures at some moments, we need the fine approximations. Therefore, the stability

and accuracy of the numerical schemes for the Cahn-Hilliard equation are desirable.

Recently, energy stability has been widely considered for the numerical schemes of the

Cahn-Hilliard equation and other phase field models with constant interfacial parameters [9,

12, 16, 22–24, 28, 34, 35, 37, 38, 48]. As one of the energy stable methods, the convex splitting

approach, which was firstly proposed by Eyre in his pioneer work [10], has become more and

more popular. The basic idea of the convex splitting technique is to decompose the energy

into convex and concave parts and then to treat the convex part implicitly while the concave

part explicitly. Most convex splitting schemes are of first-order accuracy in time, such as

numerical simulations of the Cahn-Hilliard equation [46], the phase field crystal model [43], the

epitaxial growth models [6, 41], and the diffuse interface model with Peng-Robinson equation

of state [32]. Recently, second-order convex splitting schemes are proposed for the epitaxial

growth models [36], where the convex part is approximated by the modified Crank-Nicolson

method and the concave part by the second-order Adams-Bashforth formula.

Several works have been done for the models with variable interfacial parameters to investi-

gate some physical properties, such as phase separation and self-assembling. For instance, the

growth law for the characteristic domain size during the phase separation is studied by numerical

simulations [5]. The aforementioned MMC-TDGL equation is one of the Cahn-Hilliard equation

with variable interfacial parameters, and we have investigated some numerical schemes for it

in our recent works. A linear semi-implicit difference scheme is derived to simulate the phase

transitions of MMC hydrogels in [26]. The stochastic term in (1.1) is discretized in the numeri-

cal simulation, and this is the first time for the numerical study for the MMC-TDGL equation.

In [27], an unconditionally uniquely solvable and energy stable difference scheme based on the

convex splitting method is developed for the non-stochastic case, and the stochastic term is

added with the same form as in [26]. Both the linear scheme and the convex splitting scheme

are first-order accurate in time, and the numerical results therein suggest that the time steps

greater than 10−3 are not adequate to the long-time simulations because of the low accuracies.

In this work, motivated partly by [36], we will develop a second-order convex splitting scheme
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for a Cahn-Hilliard equation with variable interfacial parameters, namely, the non-stochastic

part of the MMC-TDGL equation, which is one aspect of the main contributions of this work.

We decompose the energy functional into convex and concave parts by using the same approach

in [27], and treat the convex part by the Crank-Nicolson method while the concave part by the

second-order Adams-Bashforth formula. The unique solvability comes from the fact that the

derived scheme is the Euler-Lagrange equation of a convex functional. However, it is not easy to

prove the energy stability via the similar procedure as [36] since the terms involving the variable

interfacial parameter are very difficult to address. Instead, as the technique used in [33], we

introduce auxiliary variables in the discrete energy functional so that the energy stability will

be achieved in the sense that a modified energy is non-increasing. Another aspect of the main

contributions is the long-time stochastic simulation with a little larger time step. From the

numerical results, we observe the effect of the noise on the long-time coarsening evolutions.

The rest of this paper is organized as follows. In Section 2, we illustrate the mathemat-

ical model of the phase transition of the MMC hydrogel. The difference schemes for both

non-stochastic and stochastic cases are presented in Section 3. The second-order accuracy is

analyzed briefly; the unique solvability and energy stability for the non-stochastic case are

proved rigorously. The unique solvability for the stochastic case is the direct consequence.

The numerical methods for solving the difference schemes are then discussed. In Section 4,

for the non-stochastic case, some numerical experiments are carried out to demonstrate the

convergence rate, and the coarsening evolutions are conducted for the stochastic case. Some

concluding remarks are given in Section 5.

2. The Mathematical Model: MMC-TDGL Equation

The MMC-TDGL equation is the model (1.1) with the energy functional

U(φ) =

∫
Ω

(
S(φ) +H(φ) + κ(φ)|∇φ|2

)
dr, (2.1)

where S(φ) +H(φ) is the reticular free energy density [26,45] with

S(φ) =
φ

γ
ln
αφ

γ
+
φ

N
ln
βφ

γ
+ (1− ρφ) ln(1− ρφ), H(φ) = χφ(1− ρφ), (2.2)

and κ(φ) is the de Gennes coefficient (1.6). Following the notations defined in [26, 45], we

denote by χ the Huggins interaction parameter, by N the degree of polymerization of the

polymer chains, and by M the relative volume of one macromolecular microsphere which does

not appear explicitly in (2.2). The other constants α, β, γ and ρ depend on M and N via

α = π
(√M

π
+
N

2

)2

, β =
α√
πM

, γ =
√
πMN, ρ = 1 +

M

γ
.

All these parameters are positive and 0 < φ < 1/ρ < 1. We set the diffusion coefficient D = 1

in (1.1) for the normalization and the monomer length scale σ = 1 in (1.6). Let

F (r, t) = S(φ) +H(φ), K(r, t) = κ(φ)|∇φ|2, (2.3)

then
∂F

∂t
=
(
S′(φ) +H ′(φ)

)
φt,

∂K

∂t
= κ′(φ)|∇φ|2φt + 2κ(φ)∇φ · ∇φt, (2.4)

and the energy functional (2.1) can be written as

U(t) =

∫
Ω

(
F (r, t) +K(r, t)

)
dr.
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We note that the deterministic Cahn-Hilliard equation, that is, equation (1.1) with ε = 0, has

an important property that the energy is non-increasing, i.e.,

d

dt
U(t) ≤ 0, t > 0.

So we always hope to develop a numerical scheme inheriting such a property.

We have proved in [26] that to meet the condition (1.3), the stochastic term in (1.1) should

have the form

ξ(r, t) = −
√

2∇ · η(r, t), (2.5)

where η = (η1, η2) with η1 and η2 independent two-dimensional space-time Gaussian white

noises, satisfying E[ηl(r, t)] = 0 and E[ηl(r1, t1)ηl(r2, t2)] = δ(r1 − r2)δ(t1 − t2), l = 1, 2.

Noting that the space-time white noise η is nowhere differentiable in the common sense, the

spatial derivatives of η in (2.5) exist in the sense of Schwartz distributions [3, 40].

Now we have given the complete model (1.1) combined with the energy functional (2.1)

and the stochastic term (2.5). The numerical simulations show that our model can be used

to describe the phase transitions of the microstructures of the MMC hydrogels [26, 27, 45]. A

natural question is what the definition or regularity of the solution is. In [31], the regularity

of the solution to (1.1) with κ constant is proved under some certain conditions. The authors

pointed out that the fourth-order linear part regularizes the solution, the noise makes it worse,

and the regularity of the solution depends on the competition of these two terms. In our model,

the fourth-order term has stronger regularizing effects because of the contribution of κ(φ) given

by (1.6), so we believe the solution has better regularity. Similar to the discussion in [25], we

focus on the solutions belonging to C([0, T ];L2(Ω)).

3. Second-order Convex Splitting Schemes

In this section, we present the convex splitting scheme with second-order accuracy in time

for the non-stochastic part of MMC-TDGL equation (1.1) and give the stochastic version by

adding the discretized stochastic term into the presented scheme. The unconditional unique

solvability and energy stability of the non-stochastic scheme are proved rigorously to ensure

the numerical solutions reasonable. And then, the similar results for the stochastic case are

also developed. Finally, we give a brief analysis on the numerical methods used to solve the

difference schemes.

3.1. Discretization of two-dimensional space

Here we use the similar notations introduced in [42,43]. Let hx = Lx/m, hy = Ly/n, where

m,n ∈ N. Define the x-direction mesh xi = (i− 1
2 )hx, i ∈ Z in (0, Lx) and the node sets

Em = {xi+ 1
2
| i = 0, 1, . . . ,m}, Cm = {xi | i = 1, 2, . . . ,m}, Cm = {xi | i = 0, 1, . . . ,m+ 1}.

Similarly, we can define the y-direction mesh yj = (j − 1
2 )hy, j ∈ Z and node sets En, Cn, Cn

with respect to (0, Ly). Define the function spaces

Cm×n = {φ : Cm × Cn → R}, Cm×n = {φ : Cm × Cn → R},
Cm×n = {φ : Cm × Cn → R}, Cm×n = {φ : Cm × Cn → R},
Eew
m×n = {f : Em × Cn → R}, Ens

m×n = {f : Cm × En → R}.

The functions in Cm×n, Cm×n, Cm×n and Cm×n are denoted by the Greek symbols φ with

φi,j = φ(xi, yj). The functions in Eew
m×n and Ens

m×n are denoted by the English symbols f and g,
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respectively. For the function f ∈ Eew
m×n, we let fi+ 1

2 ,j
= f(xi+ 1

2
, yj); for the function g ∈ Ens

m×n,

we let gi,j+ 1
2

= g(xi, yj+ 1
2
). We say a function φ ∈ Cm×n is periodic if and only if

φm+1,j = φ1,j , φ0,j = φm,j , j = 1, 2, . . . , n,

φi,n+1 = φi,1, φi,0 = φi,n, i = 0, 1, . . . ,m+ 1.

Next we define some operators on the function spaces. The averages and differences ax, dx :

Eew
m×n → Cm×n, ay, dy : Ens

m×n → Cm×n, Ax, Dx : Cm×n → Eew
m×n, Ay, Dy : Cm×n → Ens

m×n, and

the two-dimensional discrete Laplacian, ∆h : Cm×n → Cm×n, are defined componentwise by

axfi,j =
1

2
(fi+ 1

2 ,j
+ fi− 1

2 ,j
), dxfi,j =

1

hx
(fi+ 1

2 ,j
− fi− 1

2 ,j
), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

aygi,j =
1

2
(gi,j+ 1

2
+ gi,j− 1

2
), dygi,j =

1

hy
(gi,j+ 1

2
− gi,j− 1

2
), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

Axφi+ 1
2 ,j

=
1

2
(φi+1,j + φi,j), Dxφi+ 1

2 ,j
=

1

hx
(φi+1,j − φi,j), 0 ≤ i ≤ m, 1 ≤ j ≤ n,

Ayφi,j+ 1
2

=
1

2
(φi,j+1 + φi,j), Dyφi,j+ 1

2
=

1

hy
(φi,j+1 − φi,j), 1 ≤ i ≤ m, 0 ≤ j ≤ n,

∆hφi,j = dx(Dxφ)i,j + dy(Dyφ)i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The weighted inner-product (·, ·)h, [·, ·]ew and [·, ·]ns are defined as follows:

(φ, ψ)h = hxhy

m∑
i=1

n∑
j=1

φi,jψi,j , φ, ψ ∈ Cm×n,

[f, g]ew = hxhy

m∑
i=1

n∑
j=1

ax(fg)i,j , f, g ∈ Eew
m×n,

[f, g]ns = hxhy

m∑
i=1

n∑
j=1

ay(fg)i,j , f, g ∈ Ens
m×n.

The following proposition follows directly [27,43].

Proposition 3.1. Assume that φ, ψ ∈ Cm×n, f ∈ Eew
m×n, g ∈ Ens

m×n and φ, ψ are periodic, then

(1) [f,Axφ]ew = (axf, φ)h, [f,Dxφ]ew = −(dxf, φ)h;

(2) [g,Ayφ]ns = (ayg, φ)h, [g,Dyφ]ns = −(dyg, φ)h;

(3) (φ,∆hψ)h = −[Dxφ,Dxψ]ew − [Dyφ,Dyψ]ns = (∆hφ, ψ)h.

3.2. The difference scheme in the non-stochastic case

The convexity of the integrands in (2.1) is proved in [27], and will be stated below.

Proposition 3.2. (1) S and −H are convex in (0, 1/ρ), where S and H are defined by (2.2);

(2) K(u, v) := κ(u)v2 is convex in (0, 1/ρ)× R, where κ is defined by (1.6).

Now we describe the difference scheme for the MMC-TDGL equation with ε = 0, that is,

∂φ

∂t
= ∆µ, µ := S′(φ) +H ′(φ) + κ′(φ)|∇φ|2 − 2∇ ·

(
κ(φ)∇φ

)
. (3.1)

To obtain the second-order accuracy, we discrete the equation on the tk+ 1
2
-layer. The terms

corresponding to S(φ) and κ(φ)|∇φ|2 are approximated by the Crank-Nicolson method, and the

term corresponding to H(φ) is approximated by the second-order Adams-Bashforth formula.
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Introducing a time step τ > 0, for the sequence {ψk}k∈N ⊂ Cm×n, we define

δtψ
k+ 1

2 :=
ψk+1 − ψk

τ
, k = 0, 1, . . . .

The scheme is as follows: given φk ∈ Cm×n periodic, find φk+1 ∈ Cm×n periodic such that

δtφ
k+ 1

2 = ∆hµ
k+ 1

2 , (3.2a)

µk+ 1
2 = Ŝk+ 1

2 + Ĥk+ 1
2 +

1

2
κ̂k+1

(
ax(Dxφ

k+1)2 + ay(Dyφ
k+1)2

)
− dx(Axκ

k+1Dxφ
k+1)− dy(Ayκ

k+1Dyφ
k+1)

+
1

2
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
− dx(Axκ

kDxφ
k)− dy(Ayκ

kDyφ
k), (3.2b)

for k = 0, 1, . . . , where κ` = κ(φ`), κ̂` = κ′(φ`), ` = k or k + 1, and

Ŝk+ 1
2 =

1

2

(
S′(φk+1) + S′(φk)

)
, k = 0, 1, 2, . . . , (3.3a)

Ĥk+ 1
2 =


3

2
H ′(φk)− 1

2
H ′(φk−1), k = 1, 2, . . . ,

H ′(φ0) +
τ

2
H ′′(φ0)(φt)

0, k = 0.
(3.3b)

It is easy to know that the scheme (3.2) is second-order accurate in time as long as the solution

to (3.1) is smooth enough. More precisely, we have the following results. The proof is just

simple applications of the Taylor formula and we omit it.

Proposition 3.3. For k ≥ 0, δtφ
k+ 1

2 is an approximation to φt(tk+ 1
2
) with the truncated error

τ2

24

[
φttt
]∣∣
t=t

k+1
2

+ h.o.t.;

Ŝk+ 1
2 defined as (3.3a) is an approximation to S′(φ(tk+ 1

2
)) with the truncated error

τ2

8

[
S′′(φ)φtt + S′′′(φ)(φt)

2
]∣∣
t=t

k+1
2

+ h.o.t.;

1

2
(κ̂k+1|∇φk+1|2+κ̂k|∇φk|2) is an approximation to [κ′(φ)|∇φ|2](tk+ 1

2
) with the truncated error

τ2

8

[
(κ′(φ)|∇φ|2)tφtt + (κ′(φ)|∇φ|2)tt(φt)

2
]∣∣
t=t

k+1
2

+ h.o.t.;

∇·(κk+1∇φk+1 +κk∇φk) is an approximation to [2∇·(κ(φ)∇φ)](tk+ 1
2
) with the truncated error

τ2

4

[
∇ · (κ(φ)∇φ)tφtt +∇ · (κ(φ)∇φ)tt(φt)

2
]∣∣
t=t

k+1
2

+ h.o.t..

For k ≥ 1, Ĥk+ 1
2 defined as (3.3b) is an approximation to H ′(φ(tk+ 1

2
)) with the truncated error

−3τ2

8

[
H ′′(φ)φtt +H ′′′(φ)(φt)

2
]∣∣
t=t

k+1
2

+ h.o.t.;

Besides, Ĥ
1
2 is an approximation to H ′(φ(t 1

2
)) with the truncated error

τ2

8

[
H ′′(φ)φtt +H ′′′(φ)(φt)

2
]∣∣
t=0

+ h.o.t..

For the nonlinear difference scheme (3.2), it is necessary to analyze the unique solvability

and stability to obtain reasonable numerical solutions.
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3.2.1. Unconditional unique solvability

The unique solvability comes from the fact that the scheme (3.2) is the Euler-Lagrange equation

of a convex functional.

Lemma 3.1 ([27,43]) The operator −∆h is positive definite on the space

M0 := {φ ∈ Cm×n |φ is periodic and (φ, 1)h = 0}.

Lemma 3.2. Define a functional F : Cm×n → R as

F(φ) =
1

2

(
S(φ) + κ(φ)

(
ax(Dxφ)2 + ay(Dyφ)2

)
, 1
)
h
,

then F(φ) is convex. Furthermore, the variational derivative of F(φ) is

δF
δφ

=
1

2
S′(φ) +

1

2
κ′(φ)

(
ax(Dxφ)2 + ay(Dyφ)2

)
− dx(Axκ(φ)Dxφ)− dy(Ayκ(φ)Dyφ).

Proof. We know from Proposition 3.2 that F(φ) is a linear combination of some convex func-

tions, and thus convex. The variational derivative can be obtained by some simple calculations.

�

Theorem 3.1 (Unique solvability) The difference scheme (3.2) is uniquely solvable for any

time step τ > 0.

Proof. The operator L := −τ∆h is positive definite on M0, so it is nonsingular and L−1 is

also positive definite. For given φk ∈M0, define a functional on M0 as

Gk(φ) =
1

2
(L−1(φ), φ)h − (L−1(φ), φk)h + F(φ) +

(1

2
S′(φk) + Ĥk+ 1

2 , φ
)
h

+
(1

2
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
− dx(Axκ

kDxφ
k)− dy(Ayκ

kDyφ
k), φ

)
h
.

With a little work, we can obtain its variational derivative:

δGk
δφ

= L−1(φ− φk) +
1

2
S′(φ) +

1

2
S′(φk) + Ĥk+ 1

2

+
1

2
κ′(φ)

(
ax(Dxφ)2 + ay(Dyφ)2

)
− dx(Axκ(φ)Dxφ)− dy(Ayκ(φ)Dyφ)

+
1

2
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
− dx(Axκ

kDxφ
k)− dy(Ayκ

kDyφ
k).

For any ψ ∈M0, we have

d2Gk(φ+ λψ)

dλ2

∣∣∣
λ=0

= (L−1(ψ), ψ)h +
d2F(φ+ λψ)

dλ2

∣∣∣
λ=0

.

The convexity of F and the positive definiteness of L−1 imply the strict convexity of Gk on

M0. By noting that the scheme (3.2) is equivalent to the Euler-Lagrange equation of Gk, the

unique solvability is the consequence of the strict convexity of Gk. �
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3.2.2. Unconditional energy stability

The energy stability will be achieved by considering a modified discrete energy. We define two

sequences {F k}, {Kk} ⊂ Cm×n generated by

F 0 = S(φ0) +H(φ0), (3.4a)

δtF
k+ 1

2 = (Ŝk+ 1
2 + Ĥk+ 1

2 )δtφ
k+ 1

2 , k = 0, 1, . . . , (3.4b)

K0 = κ′(φ0)
(
ax(Dxφ

0)2 + ay(Dyφ
0)2
)
, (3.4c)

δtK
k+ 1

2 =
1

2

(
κ̂k+1

(
ax(Dxφ

k+1)2 + ay(Dyφ
k+1)2

)
+ κ̂k

(
ax(Dxφ

k)2

+ ay(Dyφ
k)2
))
δtφ

k+ 1
2 + κk+1

(
ax(Dxφ

k+1Dxδtφ
k+ 1

2 ) + ay(Dyφ
k+1Dyδtφ

k+ 1
2 )
)

+ κk
(
ax(Dxφ

kDxδtφ
k+ 1

2 ) + ay(Dyφ
kDyδtφ

k+ 1
2 )
)
, k = 0, 1, . . . , (3.4d)

which can be viewed as the discrete form of the equations (2.4).

Theorem 3.2 (Energy stability) The scheme (3.2) is unconditionally energy stable, mean-

ing that for any time step τ > 0, we always have

Uk+1
h ≤ Ukh ,

where the discrete energy is defined by Ukh = (F k +Kk, 1)h.

Proof. Taking the inner-product of (3.2a) with µk+ 1
2 and using Proposition 3.1, we have

(δtφ
k+ 1

2 , µk+ 1
2 )h = −[Dxµ

k+ 1
2 , Dxµ

k+ 1
2 ]ew − [Dyµ

k+ 1
2 , Dyµ

k+ 1
2 ]ns.

Taking the inner-product of (3.2b) with δtφ
k+ 1

2 leads to

(µk+ 1
2 , δtφ

k+ 1
2 )h = (Ŝk+ 1

2 + Ĥk+ 1
2 , δtφ

k+ 1
2 )h

+
1

2

(
κ̂k+1

(
ax(Dxφ

k+1)2 + ay(Dyφ
k+1)2

)
, δtφ

k+ 1
2

)
h

+
1

2

(
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
, δtφ

k+ 1
2

)
h

−
(
dx(Axκ

k+1Dxφ
k+1) + dy(Ayκ

k+1Dyφ
k+1), δtφ

k+ 1
2

)
h

−
(
dx(Axκ

kDxφ
k) + dy(Ayκ

kDyφ
k), δtφ

k+ 1
2

)
h
.

Using Proposition 3.1, we transform the fourth term in the right-hand-side to

−
(
dx(Axκ

k+1Dxφ
k+1) + dy(Ayκ

k+1Dyφ
k+1), δtφ

k+ 1
2

)
h

=[Axκ
k+1Dxφ

k+1, Dxδtφ
k+ 1

2 ]ew + [Ayκ
k+1Dyφ

k+1, Dyδtφ
k+ 1

2 ]ns

=[Axκ
k+1, Dxφ

k+1Dxδtφ
k+ 1

2 ]ew + [Ayκ
k+1, Dyφ

k+1Dyδtφ
k+ 1

2 ]ns

=
(
κk+1, ax(Dxφ

k+1Dxδtφ
k+ 1

2 )
)
h

+
(
κk+1, ay(Dyφ

k+1Dyδtφ
k+ 1

2 )
)
h

=
(
κk+1, ax(Dxφ

k+1Dxδtφ
k+ 1

2 ) + ay(Dyφ
k+1Dyδtφ

k+ 1
2 )
)
h
.

Similarly, the fifth term is transformed to

−
(
dx(Axκ

kDxφ
k) + dy(Ayκ

kDyφ
k), δtφ

k+ 1
2

)
h

=
(
κk, ax(Dxφ

kDxδtφ
k+ 1

2 )+ay(Dyφ
kDyδtφ

k+ 1
2 )
)
h
.
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Then we have

(µk+ 1
2 , δtφ

k+ 1
2 )h = (Ŝk+ 1

2 + Ĥk+ 1
2 , δtφ

k+ 1
2 )h

+
1

2

(
κ̂k+1

(
ax(Dxφ

k+1)2 + ay(Dyφ
k+1)2

)
, δtφ

k+ 1
2

)
h

+
1

2

(
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
, δtφ

k+ 1
2

)
h

+
(
κk+1, ax(Dxφ

k+1Dxδtφ
k+ 1

2 ) + ay(Dyφ
k+1Dyδtφ

k+ 1
2 )
)
h

+
(
κk, ax(Dxφ

kDxδtφ
k+ 1

2 ) + ay(Dyφ
kDyδtφ

k+ 1
2 )
)
h

= (δtF
k+ 1

2 , 1)h + (δtK
k+ 1

2 , 1)h = δtU
k+ 1

2

h .

As a result, we obtain

δtU
k+ 1

2

h = −[Dxµ
k+ 1

2 , Dxµ
k+ 1

2 ]ew − [Dyµ
k+ 1

2 , Dyµ
k+ 1

2 ]ns ≤ 0,

which completes the proof. �

3.3. The difference scheme in the stochastic case

Now we describe the difference scheme for the case ε > 0. We first recall the discretization

of the stochastic term (2.5). See [26] in detail (see also [1]).

As is known to us, the space-time Gaussian white noise can be expressed as dW/dt, where

W (t) is the Brownian motion on L2(Ω). Separating the variables of W , we obtain

W (t, x, y) =
∑
p,q∈Z

βpq(t)epq(x, y), (x, y) ∈ Ω, t ≥ 0,

where {epq} is a set of normal orthogonal basis on L2(Ω), βpq(t) = (W (t), epq)L2(Ω), and {βpq(t)}
is a sequence of independent Wiener process, thus

βpq(tk+1)− βpq(tk)√
τ

∼ N(0, 1).

Using the mid-rectangle quadrature formula, we approximate η
k+ 1

2
ij (either (η1)

k+ 1
2

ij or (η2)
k+ 1

2
ij )

as

η
k+ 1

2
ij =

(dW

dt

)k+ 1
2

ij
≈ 1

hxhyτ

∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

∫ tk+1

tk

dW

dt
dxdydt

=
1

hxhyτ

∑
p,q∈Z

(βpq(tk+1)− βpq(tk))

∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

epq dxdy.

For i = 1, . . . ,m and j = 1, . . . , n, we choose

eij =
1√
hxhy

1[(i− 1
2 )hx,(i+

1
2 )hx)×[(j− 1

2 )hy,(j+
1
2 )hy).

For p 6= i or q 6= j, by orthogonalizing the basis functions, we obtain∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

epq dxdy = 0.

Then we have

η
k+ 1

2
ij ≈ 1

hxhyτ
(βij(tk+1)− βij(tk))

√
hxhy
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=
1√
hxhyτ

βij(tk+1)− βij(tk)√
τ

=
1√
hxhyτ

r
k+ 1

2
ij ,

where {rk+ 1
2

ij } is a sequence of standard normal random variables. Therefore, the discretized

form of the stochastic term (2.5) is

ξ
k+ 1

2
ij = −

√
2√

hxhyτ

(
axDx(r1)

k+ 1
2

ij + ayDy(r2)
k+ 1

2
ij

)
, (3.5)

where (rl)
k+ 1

2 = {(rl)
k+ 1

2
ij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} (l = 1, 2) is a sequence of standard normal

random variables.

The difference scheme is presented as follows: given φk ∈ Cm×n periodic, find φk+1 ∈ Cm×n
periodic such that

δtφ
k+ 1

2 = ∆hµ
k+ 1

2 + εξk+ 1
2 , (3.6)

where µk+ 1
2 is still expressed as (3.2b), and ξk+ 1

2 = {ξk+ 1
2

ij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} with

components given by (3.5). Note that the stochastic term ξk+ 1
2 does not depend on the unknown

φk+1, so the unique solvability of (3.6) is the direct corollary of Theorem 3.1.

Corollary 3.1 (Unique solvability) The difference scheme (3.6) is uniquely solvable for any

time step τ > 0.

Remark 3.1. We cannot claim that the stochastic scheme (3.6) is second-order convergent in

the strong or weak sense. The common way to estimate the truncated error is to use the Taylor

formula in the stochastic sense, which is different from the deterministic Taylor formula, so it is

illegal to obtain the convergence results directly from the deterministic case. The construction

of the second-order difference scheme for the stochastic case may be another big job, therefore,

we just use (3.6) for simulation in this paper without considering the convergence.

3.4. Newton-BiCGSTAB method

Here we discuss the numerical methods for solving the difference schemes (3.2) and (3.6).

The proof of Theorem 3.1 or Corollary 3.1 indicates that φk+1 is the unique minimum of a convex

functional Gk, so we can use the optimization method to minimize the objective functional. We

adopt the standard Newton method (see, e.g., [30]) to search the minimum and the BiCGSTAB

method [39] to solve the Newton equation.

For convenience of the statement, we view the functional Gk as an mn-variable function.

The procedure for finding φk+1 with given φk is as follows:

1. Let φ(0) = φk and φ(l) is the l-th iterations of φk+1;

2. Solving the system ∇2Gk(φ(l))ψ(l) = −∇Gk(φ(l)) by BiCGSTAB method;

3. Let φ(l+1) = φ(l) + ψ(l);

4. If ‖ψ(l)‖ < tol, let φk+1 = φ(l+1); otherwise, let l = l + 1 and turn to step 2.

The Newton equation ∇2Gk(φ)ψ = −∇Gk(φ) can be rewritten as

ψ − τ∆h

(
A(φ)ψ

)
= −(φ− φk − τεξk+ 1

2 ) + τ∆h

(1

2
S′(φ) +

1

2
S′(φk) + Ĥk+ 1

2
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+
1

2
κ′(φ)

(
ax(Dxφ)2 + ay(Dyφ)2

)
− dx(Axκ(φ)Dxφ)− dy(Ayκ(φ)Dyφ)

+
1

2
κ̂k
(
ax(Dxφ

k)2 + ay(Dyφ
k)2
)
− dx(Axκ

kDxφ
k)− dy(Ayκ

kDyφ
k)
)
,

where A(φ) := 1
hxhy
∇2F(φ) and

A(φ)ψ =
1

2

(
S′′(φ) + κ′′(φ)

(
ax(Dxφ)2 + ay(Dyφ)2

))
ψ + κ′(φ)

(
ax(DxφDxψ) + ay(DyφDyψ)

)
− dx

(
Ax(κ′(φ)ψ)Dxφ+Axκ(φ)Dxψ

)
− dy

(
Ay(κ′(φ)ψ)Dyφ+Ayκ(φ)Dyψ

)
.

The system of equations with respect to the Newton step ψ is large and sparse, and thus, can

be solved by the BiCGSTAB method.

4. Numerical Experiments

Our experiments are divided into two parts. First, we conduct convergence tests in the

non-stochastic case ε = 0 for both the second-order difference scheme (3.2) and the first-order

scheme developed in [27]. Second, we use the difference scheme (3.6) to simulate the MMC-

TDGL equation (1.1) with various noise strengths ε > 0. It is aim to observe the effects of the

noise on the long-time coarsening evolutions.

All the following experiments are carried out on the domain Ω = (0, 50) × (0, 50) with the

200 × 200 mesh nodes. We set M = 0.16 and N = 4.34 in the model. The tolerance of the

Newton iteration is set to be 10−6 and the tolerance of the BiCGSTAB method for solving the

Newton equation is 10−8.

4.1. Convergence tests

We first present convergence tests on the second-order scheme (3.2) and compare with the

first-order scheme presented in our recent work [27]. For the comparison, we use the second-

order scheme with a very small time step to give an “exact” solution for both cases. The initial

condition is set to be

φ(x, y, 0) = 0.6 + 0.1

(
sin

6πx

Lx
sin

4πy

Ly
+ sin

10πx

Lx
sin

10πy

Ly

)
with Lx = Ly = 50, and the Huggins parameter is set to be χ = 2.37.

We conduct the experiments with the time steps τ = 64δ, 32δ, 16δ, 8δ, 4δ, 2δ, δ with δ =

2.5×10−4. The length of the time interval T is set to be T = 6400δ = 1.6. The “exact” solution

is calculated by the second-order scheme (3.2) with a smaller time step τ = δ/5 = 5× 10−5.

Numerical results on the L∞, L2 and energy errors are shown in Table 4.1. In the table, the

L∞ error refers to the maximum of the absolute difference between the numerical and “exact”

solutions, the L2 error refers to the discrete L2 norm of the difference between the numerical and

“exact” solutions, and the energy error refers to the absolute difference between the energies of

the numerical and “exact” solutions. The convergence rate is the base 2 logarithm of the ratio

of the error for the current time step and the error for the preceding larger time step.

It is easy to see that both the two schemes reach gradually the optimal convergence rates

as the time steps decrease. Comparing the error values, we see that the second-order scheme

is far more accurate than the first-order scheme. To obtain a given accuracy, we can use ten

to hundred times larger time steps in the second-order scheme (3.2) than in the first-order

scheme [27].
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4.2. Stochastic simulations

To observe the evolutions driven by the stochastic term, we simulate the MMC-TDGL

equation using the scheme (3.6) with the time step τ = 0.01 for the long-time coarsening

evolutions. Here, we set the initial state to be uniform and metastable, i.e., φ(x, y, 0) ≡ 0.3,

and choose χ = 1.975 in the model.

First, we are interested in the energy evolutions in the mean sense though we do not obtain

theoretical results about it. Here, we adopt the classical Monte Carlo method to compute the

expectations. Driven by the noise with strength ε = 10−3, the system escapes away from the

initial state and the phase transition is observed. We focus on the time interval [0, 20] where the

first obvious phase transition occurs. Fig. 4.1 plots the mean energy (bold black curve) of 500

independent samples and the energy of one sample (thin blue curve) which has the largest L2-

deviation from the mean value. The black curve is almost smooth throughout the considered

interval, and the blue curve performs as the whole trend similar to the black one with the

obvious oscillations at some moments. For the comparison, the scales of y-axis in Fig. 4.1(b),

(c) and (d) are set to be identical. In the mean sense, the system driven by the noise climbs over

an energy barrier from the beginning to about t = 0.5, which is manifested as the increasing of

the energy, see Fig. 4.1(b). After the system escapes away from the initial metastable state, the

energy turns to decrease more and more sharply, that is, the phase transition occurs generally.

We observe from Fig. 4.1(c) and (d) that the oscillations on the blue curve are weaker and

weaker as the time evolves and vanish after about t = 5.7, which is because the phase transits

so rapidly that the noise has little effect on the process. The whole process is the performance

of the noise driving, which is consistent with the results given in [47].

Second, we are concerned about the phase transition processes driven by the noises with

different strengths. We consider the noise with ε = 10−5 as the “small” noise while the noise

with ε = 10−2 as the “big” one. The energy evolutions up to the time T = 1000 are presented

in Fig. 4.2. We observe from Fig. 4.2(a) that the system driven by the big noise climbs over a

larger energy barrier and starts the phase transition earlier than the small noise case, which is

consistent with the phenomena we have observed in the previous works (see [26,27]). Moreover,

some local details of the energy evolution curves are shown in Fig. 4.2(b) and (c), where the

Table 4.1: Numerical errors and convergence rates.

τ 1.6 × 10−2 8 × 10−3 4 × 10−3 2 × 10−3 1 × 10−3 5 × 10−4 2.5 × 10−4

1st-order

L∞ error 9.8852e-2 5.4327e-2 2.8080e-2 1.4191e-2 7.1210e-3 3.5651e-3 1.7835e-3

rate * 0.8636 0.9521 0.9845 0.9948 0.9981 0.9992

L2 error 9.9907e-1 5.1794e-1 2.6344e-1 1.3281e-1 6.6673e-2 3.3403e-2 1.6718e-2

rate * 0.9478 0.9753 0.9881 0.9942 0.9971 0.9986

energy error 4.2765 2.1497 1.0773 5.3915e-1 2.6967e-1 1.3486e-1 6.7433e-2

rate * 0.9923 0.9967 0.9987 0.9995 0.9998 0.9999

2nd-order

L∞ error 1.4756e-3 3.7236e-4 9.3448e-5 2.3396e-5 5.8444e-6 1.4516e-6 3.5317e-7

rate * 1.9865 1.9945 1.9979 2.0011 2.0094 2.0392

L2 error 1.4834e-2 3.7064e-3 9.2691e-4 2.3172e-4 5.7837e-5 1.4354e-5 3.4824e-6

rate * 2.0008 1.9995 2.0001 2.0023 2.0105 2.0433

energy error 5.1736e-2 1.2972e-2 3.2482e-3 8.1244e-4 2.0283e-4 5.0344e-5 1.2213e-5

rate * 1.9958 1.9977 1.9993 2.0020 2.0104 2.0434
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Fig. 4.1. Energy evolutions of 500 samples with ε = 10−3.

0 200 400 600 800 1000
615

620

625

630

635

640

645

650

655

660

time

en
er

gy

 

 
ε = 1e−5
ε = 1e−2

(a) 0 ≤ t ≤ 1000.

107.6 108 108.4 108.8 109.2 109.6
632.6

632.62

632.64

632.66

632.68

632.7

632.72

632.74

time

en
er

gy

 

 
ε = 1e−5
ε = 1e−2

(b) 107.6 ≤ t ≤ 109.6.

998 998.4 998.8 999.2 999.6 1000
619.3

619.32

619.34

619.36

en
er

gy

ε = 1e−2

998 998.4 998.8 999.2 999.6 1000
618.12

618.14

618.16

618.18

time

en
er

gy

ε = 1e−5

(c) 998 ≤ t ≤ 1000.

Fig. 4.2. Energy evolutions with ε = 10−5 and 10−2.

same scale is adopted in the coordinate axes for the comparison. It is obvious that the curve

corresponding to the big noise performs oscillations almost everywhere while the curve corre-

sponding to the small noise preforms smoothly, no matter whether the energy decreases fast

(Fig. 4.2(b)) or slowly (Fig. 4.2(c)). This is because the geometric evolution dominates during

the phase transition process driven by the small noise, while the noise dominates in the big

noise case. We can also observe such effect of the noise from the solutions at some moments.
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Fig. 4.3. Evolutions with ε = 10−5 (up) and 10−2 (below).
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Fig. 4.4. Solutions at t = 1000 with ε = 10−5 and 10−2.

Fig. 4.3 shows the contour graphs of the solutions at t = 10, 100, 300 and 1000. In the domain

which one phase occupies, the solutions perform flat and smooth for the small noise case (see

Fig. 4.3(a)-(d)) while many oscillations are observed for the big noise case (see Fig. 4.3(e)-(h)),

which can be also seen from the cross section curves of the final solutions by fixing y (see

Fig. 4.4). That is still the performance of the noise driving, similar to the phenomena observed

in [47].

We also observe the evolutions of the phase structures from Fig. 4.3, where the red parts

in the graphs represent the chain-rich domains. Here, the initial concentration of the segments

has been set as 0.3. Because of the lack of the segments, the polymer chains grafted on the

surface of the microspheres are too short to entangle with the chains on the other microspheres.

Every microspheres with chains on its surface dissociate each other in the solvent, so we observe

that the red parts constitute some isolated balls. In this paper, we mainly focus on the effects
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of different noises on the longtime evolutions using the second-order schemes, and thus, only

the case φ(r, 0) = 0.3 was simulated. In our previous work [26], we simulated more cases with

different concentrations of the segments, and in the case φ(r, 0) = 0.6 we observed the crosslink

networks, consistent with the microstructure of the MMC hydrogels [18].

5. Conclusions

In this paper, we develop a second-order convex splitting scheme for a Cahn-Hilliard equa-

tion with variable interfacial parameters in combination with the Crank-Nicolson and Adams-

Bashforth discretization. The unique solvability is proved by constructing a convex functional

whose Euler-Lagrange equation is equivalent to the proposed scheme. By introducing auxiliary

variables F and K, we define the energy in an alternate way to avoid the difficulty for the

energy stability in the classical theories. Since the auxiliary variables F and K are updated

by (3.4), which is based on the evolutionary equations (2.4) instead of the original expressions

(2.3), the energy stability is obtained with respect to a modified energy Uh. The second-order

accuracy of the derived scheme is demonstrated numerically in the non-stochastic case and

compared with the convergence rate of the scheme presented in [27]. The main advantage of

the proposed scheme is the second-order accuracy in time so that larger time steps can be used

in the long-time simulations.

We did not consider the second-order scheme for the stochastic case, instead, we added

directly the stochastic term into the scheme for the deterministic case. In fact, one could use

the Taylor formula in the stochastic case, derived from the Itô formula, to construct second-

order schemes, which is out of range of this paper, so we leave it as one of our future works.

We should point out that we do not use the technique of convex splitting to prove the energy

stability directly. The energy stability we obtain in this work is just based on the modified

energy Uh instead of the original energy (2.1), so in fact, we obtain U(φk+1) ≤ U(φk) +O(τ2),

which is similar to the energy identity obtained in [36]. One of the future works in this direction

is to develop second-order accurate energy stable schemes based on a direct discretization of the

energy (2.1). Other future works include the high-order linear energy stable schemes, which is

important in improving the efficiency of the simulations for the complicated nonlinear equations.

In addition, we do not work out the energy stability in the stochastic case because it will involve

the Itô integrals, which is left as another future work.
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