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Abstract

In this paper, we present two second-order numerical schemes to solve the fourth order

parabolic equation derived from a diffuse interface model with Peng-Robinson Equation

of state (EOS) for pure substance. The mass conservation, energy decay property, unique

solvability and L∞ convergence of these two schemes are proved. Numerical results demon-

strate the good approximation of the fourth order equation and confirm reliability of these

two schemes.

Mathematics subject classification: 65N06, 65B99.

Key words: Diffuse interface model, Fourth order parabolic equation, Energy stability,

Convergence.

1. Introduction

Multi-phase fluid mixture and its behaviors play important roles in many natural and engi-

neering systems, especially in subsurface petroleum reservoirs [5,6,30–33]. It remains a challenge

to understand and to model the complex interaction between phases, namely the physically

distinct, separable portions of substance. In the classical theory known as the sharp interface

model [9, 27, 39], an interface between two fluids is modeled as an infinitely thin, or sharp

two-dimensional entity, and it is endowed with interface properties such as surface tension. In

a more detailed continuum model called as the diffuse interface model, the sharp fluid-fluid

interface is replaced by a small but finite-thickness layer in which the fluids may mix. Even

though the concept of a diffuse interface was originally proposed a long time ago by van der

Waals [36], its numerical simulation with realistic fluids has been investigated only in recent

years [20, 22]. The diffuse interface theory is also known as the gradient theory [4, 10] in the

chemical society, or phase field theory [3] in the fluid dynamics society. Unlike sharp interface

models where surface tension must be provided as an input parameter, diffuse interface models

have been used to predict surface tension [4, 10, 18, 19]. In particular, the surface tensions of

petroleum fluids have been well predicted by diffuse interface models in one spatial dimension
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together with Peng-Robinson Equation of State (EOS) [21], which is one of the most popular

equations of state for hydrocarbon systems. However, little work has been carried out to in-

vestigate the numerical simulation of Peng-Robinson-EOS-equipped diffuse interface models in

multiple spatial dimensions [22].

Inspired by the favorable properties of the Cahn-Hilliard equation and its derivation, we

provide the fourth-order parabolic equation to describe the equilibrium state and the flow of

the components in the crude oil in this article. Numerical experiments are our indispensable

tools to investigate the solution to this equation. Previously proposed schemes for the Cahn-

Hilliard equation [7,8,10–14,17,29,34,35,38] and other kinetics equations contain fourth order

term [23,25,26,28,37] could be used as valuable references. The main contribution of this work

is to develop two second-order energy stable numeircal schemes for the two-dimensional diffuse

interface model with Peng-Robinson EOS of single component substance. The mass conserva-

tion and unique solvability are proved. The energy stability of these two schemes are achieved

following the approach in [24]. However, it is not that smooth as we expected to obtain the L∞

convergence of these two schemes attributed to the unboundedness of the free energy density

of any given substance and its first and second order derivatives respect to the molar density.

Taking the work of Li et al. [15] as reference, we overcome this difficulty with a nontrivial

arguments.

The rest of this paper is organized as follows. In the second section, we present the math-

ematical model of the diffuse interface equation derived from the Peng-Robinson EOS and

the scaled fourth order equation for multi-component substances and demonstrate its energy

decreasing and mass conservation characters. In the third section, we present notations on

the discrete space and some auxiliary lemmas. After that, the L∞ convergence of the Crank-

Nicolson scheme and the second order linearized scheme will be demonstrated in the fourth and

fifth sections, respectively. And then, we provide the numerical results of these two schemes and

compare them with previously published ones. The conclusion of this article will be provided

in the end.

2. Mathematical Model of Fluid Systems with Diffuse Interface

We consider a fluid system consisting of fixed species amount on a fixed domain with spatially

uniform-distributed given temperature.

2.1. Helmholtz free energy from Peng-Robinson EOS

Let M denote the number of components in the fluid mixture, ni represent the molar

concentration of the component i, and

n = (n1, n2, · · · , nM )
T

be the molar concentrations of all components and n = n1 + n2 + · · ·+ nM the molar density

of the fluid. According to the diffuse interface model, the total Holmholtz free energy has the

following form,

F (n) =

∫

Ω

f(n)dx =

∫

Ω

f0(n)dx +

∫

Ω

f∇(n)dx. (2.1)

From Peng-Robinson EOS, the Helmholtz free energy f0(n) of a homogeneous fluid is given by

f0(n) = f ideal
0 (n) + f excess

0 (n),
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f ideal
0 (n) = RT

M
∑

i=1

ni (lnni − 1) ,

f excess
0 (n) = −nRT ln (1− bn) +

a(T )n

2
√
2b

ln

(

1 + (1−
√
2)bn

1 + (1 +
√
2)bn

)

.

Here T reprents the temperature of the mixture and R represents the universal gas constant

(approximately 8.31432JK−1mol−1 ). The energy parameter a = a(T ) and the covolume pa-

rameter b are given by the following mixing rules,

a(T ) =

M
∑

i=1

M
∑

j=1

yiyj(aiaj)
1/2(1− kij), b =

M
∑

i=1

yibi,

where yi = ni/n is the mole fraction of component i. The Peng-Robinson parameters ai and bi
for pure-substance component i can be computed from the critical properties of the species as

follows,

ai = ai (T ) = 0.45724
R2T 2

ci

Pci

(

1 +mi

(

1−
√

T

Tci

))2

, bi = 0.07780
RTci

Pci

. (2.2)

The binary interaction coefficient kij of Peng-Robinson EOS is usually computed from exper-

imental correlation. The critical temperature Tci and critical pressure Pci of a pure substance

are intrinsic properties of the species, and they are available for most species encountered in

application. The parameter mi contained in the formula for ai is experimentally correlated to

the accentric parameter ωi of the species by the following equations:

mi =

{

0.37464 + 1.54226ωi − 0.26992ω2
i , ωi ≤ 0.49,

0.379642+ 1.485030ωi − 0.164423ω2
i + 0.016666ω3

i , ωi > 0.49.

The gradient part of the free energy density f∇(n) is in the following form,

f∇(n) =
1

2

M
∑

i,j=1

cij∇ni · ∇nj ,

where the influence parameter cij is a function of temperature and molar concentrations which

can also be provided by Peng-Robinson EOS in the mixing rule given by modified geometric

mean as

cij = (1 − βij)
√
cicj ,

where the parameter βij is the binary interaction coefficient for the influence parameter. Sta-

bility of the interface requires βij to be included in the interval [0, 1] and βij = βji. For most

systems, βij is assumed to be zero. When βij = 0, the mixing rule is reduced to the simple

geometric mean. The influence parameter of pure substance ci is related to the Peng-Robinson

parameters ai and bi by

ci = aib
2/3
i

(

mc
1,i

(

1− T

Tci

)

+mc
2,i

)

, (2.3)

where mc
1,i and mc

2,i are the coefficients correlated merely with the accentric factor ωi of the

component i by the following relations,

mc
1,i = − 10−16

1.2326 + 1.3757ωi
, mc

2,i =
10−16

0.9051 + 1.5410ωi
.
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2.2. A single component two-phase system

In this work, we would like to consider a single component two-phase system (i.e., the fluid

being pure substance). In this case, the total Helmholtz free energy F is reduced to

F (n) =

∫

Ω

f(n)dx =

∫

Ω

(

f0(n) +
c

2
|∇n|2

)

dx. (2.4)

The evolution of the molar concentration n can be written under mass conservation form

∂n

∂t
= −∇ · J,

where J is the mass flux which has the form

J = −∇δf(n)

δn
.

Therefore, giving periodic boundary condition, we have the following governing equation for a

single component two-phase system:

∂n(x, t)

∂t
= −c∆2n(x, t) + ∆µ0(n(x, t)), (2.5a)

subjecting to the initial condition

n(x, 0) = n0(x). (2.5b)

For the energy density f0(n(x, t)), we have [24]

∂f0(n(x, t))

∂t
=

∂f0
∂n

∂n

∂t
= µ0(n(x, t))

∂n(x, t)

∂t
, (2.6a)

where the first order derivative of f0(n) with respect to the molar density n(x, t) means the

homogeneous chemical potential of the substance, the detailed form of which is as follows,

µ0(n) = RT ln

(

n

1− bn

)

+
RTbn

1− bn
+

a(T )

2
√
2b

ln

(

1 + (1−
√
2)bn

1 + (1 +
√
2)bn

)

− a(T )n

1 + 2bn− b2n2
. (2.6b)

Lemma 2.1. (Mass conservation.) If n(x, t) is a solution of the fourth order equation (2.5a)-

(2.5b) under periodic boundary condition, then we can get the following mass conservation

identity
d

dt

∫

Ω

n(x, t)dx = 0. (2.7)

The proof of this lemma is trivial. It can be obtained by integrating both sides of the equa-

tion (2.5a) over the domain Ω, using Green’s theorem with the periodic boundary condition.

Moreover, taking the inner product of (2.5a) with the term c∆n(x, t) − µ0(n(x, t)) under the

periodic boundary condition, we can also obtain the following energy identity.

Lemma 2.2. (Energy identity.) If n(x, t) is a solution of the fourth-order equation (2.5a)-

(2.5b) under periodic boundary condition, the following energy identity can be guaranteed

dF (n(x, t))

dt
= −‖∇ (c∆n(x, t)− µ0(n(x, t)))‖2 . (2.8)

From this natural energy decay property of the fourth order equation (2.5a), it is reasonable

for us to use it to approach the minimum of the total free energy, and the equilibrium state of

the two-phase, single-component fluid system can be approximated by the steady solution of

this equation.
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3. Notations and Some Auxiliary Lemmas

We investigate the numerical solution of the fourth order equation (2.5a)-(2.5b) at the time

interval [0, Tm] on the domain Ω = [0, L]2. Here, Tm denotes the final time. Let h1 = L/M1,

h2 = L/M2, △t = Tm/K, xi = ih1, yj = jh2, tk = k△t. Denote

Ωh = {(xi, yj) | 0 ≤ i ≤ M1, 0 ≤ j ≤ M2} , Ωτ = {tk | 0 ≤ k ≤ K} ,
Vh = {n|n = {nij} , ni+M1,j = nij , ni,j+M2

= nij} .

For n ∈ Vh, denote

δxni+ 1

2
,j =

1

h1

(ni+1,j − ni,j) , δyni,j+ 1

2

=
1

h2

(ni,j+1 − ni,j) , (3.1a)

δ2xnij =
1

h2
1

(ni+1,j − 2nij + ni−1,j) , δ2ynij =
1

h2
2

(ni,j+1 − 2nij + ni,j−1) , (3.1b)

∇hni+ 1

2
,j+ 1

2

=
(

δxni+ 1

2
,j, δyni,j+ 1

2

)T

, △hnij =
(

δ2x + δ2y
)

nij . (3.1c)

For a grid function w =
(

w0, w1, · · · , wK−1, wK
)

on Ωτ , define

wn+ 1

2 =
1

2

(

wn + wn+1
)

, δtw
n+ 1

2 =
1

∆t

(

wn+1 − wn
)

, 0 ≤ k ≤ K − 1, (3.2a)

ŵk+ 1

2 = 2wk− 1

2 − wk− 3

2 = wk +
1

2
wk−1 − 1

2
wk−2, 2 ≤ k ≤ K − 1, (3.2b)

ŵ
1

2 = w0 +
1

2
w0

t△t, ŵ
3

2 = w0 +
3

2
△tw0

t . (3.2c)

For u, v ∈ Vh, their inner product is defined as 〈u, v〉 = h1h2

M1
∑

i=1

M2
∑

j=1

uijvij , and their Sobolev

norms as

‖u‖∞ = max
1≤i≤M1,1≤j≤M2

|uij | , ‖u‖ =
√

〈u, u〉,

‖δxu‖ =

√

h1h2

M1
∑

i=1

M2
∑

j=1

∣

∣

∣
δxui− 1

2
,j

∣

∣

∣

2

, ‖δyu‖ =

√

h1h2

M1
∑

i=1

M2
∑

j=1

∣

∣

∣
δyui,j− 1

2

∣

∣

∣

2

,

‖∇hu‖ =

√

h1h2

M1
∑

i=1

M2
∑

j=1

∣

∣

∣
∇hui+ 1

2
,j+ 1

2

∣

∣

∣

2

, ‖△hu‖ =

√

h1h2

M1
∑

i=1

M2
∑

j=1

|△huij |2.

To demonstrate the solvability and the convergence of special numerical schemes, we will fre-

quently use the following lemmas.

Lemma 3.1. ([1,2]) Let (H, (·, ·)) be a finite dimensional inner product space, ‖·‖ the associated

norm, and g : H → H be continuous. Assume moreover that

∃ α > 0, ∀z ∈ H, ‖z‖ = α, 〈g(z), z〉 ≥ 0.

Then there exists an element z∗ ∈ H, such that g(z∗) = 0 and ‖z∗‖ ≤ α.

Lemma 3.2. For any grid function u, v ∈ Vh, we have

〈∆hu, v〉 = 〈u,∆hv〉 = −〈∇hu · ∇hv, 1〉 . (3.3)
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Lemma 3.3. ([15]) For any grid function n ∈ Vh, we have

‖n‖2∞ ≤ k0 ‖n‖
(

‖△hn‖+ ‖n‖
)

,

where k0 is independent of the grid parameter h and the function n.

Referencing to the Lemma 4.2 given by [15], we can get the following similar result.

Lemma 3.4. For any u, v ∈ Vh and k ≥ 1, we have the following identity

k
∑

l=0

ul+ 1

2 δtv
l+ 1

2 =
1

∆t

(

uk+ 1

2 vk+1 − u
1

2 v0
)

−
k
∑

l=1

vl
ul+ 1

2 − ul− 1

2

∆t
.

Proof. Observe that

k
∑

l=0

ul+ 1

2 δtv
l+ 1

2 =

k
∑

l=0

ul+ 1

2

vl+1 − vl

∆t

=
1

∆t

[

k
∑

l=1

(

ul− 1

2 − ul+ 1

2

)

vl + uk+ 1

2 vk+1 − u
1

2 v0

]

=
1

∆t

(

uk+ 1

2 vk+1 − u
1

2 v0
)

−
k
∑

l=1

vl
ul+ 1

2 − ul− 1

2

∆t
.

This completes the proof. �

Similarly to the approach of Lemma 4.1 provided in [15], we can obtain the following helpful

lemma.

Lemma 3.5. Denote ekij = n̄k
ij − nk

ij, where n̄ is the solution of (2.5a). For n, n̄ ∈ Vh,

there exists ρl ∈ (0, 1) and γ1 = ρlnl+ 1

2 + (1 − ρl)nl− 1

2 , γ2 = ρln̄l+ 1

2 + (1 − ρl)n̄l− 1

2 , ξl ∈
(min{γ1, γ2},max{γ1, γ2}), k, l = 0, 1, 2, ...,K − 1, such that

1

∆t

[

µ0(n̄
l+ 1

2 )− µ0(n
l+ 1

2 )−
(

µ0(n̄
l− 1

2 )− µ0(n
l− 1

2 )
)]

=µ′
0

(

ρlnl+ 1

2 + (1 − ρl)nl− 1

2

) el+
1

2 − el−
1

2

∆t
+ µ′′

0 (ξ
l)
(

ρlel+
1

2 + (1− ρl)el−
1

2

) n̄l+ 1

2 − n̄l− 1

2

∆t
.

Proof. Note that

1

∆t

[

µ0(n̄
l+ 1

2 )− µ0(n
l+ 1

2 )−
(

µ0(n̄
l− 1

2 )− µ0(n
l− 1

2 )
)]

=µ′
0

(

ρln̄l+ 1

2 + (1 − ρl)n̄l− 1

2

) n̄l+ 1

2 − n̄l− 1

2

∆t
− µ′

0

(

ρlnl+ 1

2 + (1− ρl)nl− 1

2

) nl+ 1

2 − nl− 1

2

∆t

=
[

µ′
0

(

ρln̄l+ 1

2 + (1 − ρl)n̄l− 1

2

)

− µ′
0

(

ρlnl+ 1

2 + (1− ρl)nl− 1

2

)] n̄l+ 1

2 − n̄l− 1

2

∆t

+ µ′
0

(

ρlnl+ 1

2 + (1− ρl)nl− 1

2

)

(

n̄l+ 1

2 − n̄l− 1

2

∆t
− nl+ 1

2 − nl− 1

2

∆t

)

(3.4)

=µ′
0(ρ

lnl+ 1

2 + (1 − ρl)nl− 1

2 )
el+

1

2 − el−
1

2

∆t
+ µ′′

0 (ξ
l)
(

ρlel+
1

2 + (1 − ρl)el−
1

2

) n̄l+ 1

2 − n̄l− 1

2

∆t
.

(3.5)
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In deriving (3.4), we treated µ0

(

ūk +∆tρδtū
k+ 1

2

)

− µ0

(

uk +∆tρδtu
k+ 1

2

)

as a function of

ρ ∈ [0, 1] and then use the mean-value theorem. To derive (3.5), we have also applied the

differential mid-value theorem. �

4. Crank-Nicolson Scheme

Define the grid function n̄k, f̄k
0 ∈ Vh for 0 ≤ k ≤ K on Ωh as follows,

n̄k
ij = n (xi, yj, tk) , (f̄0)

k
ij = fk

0 (xi, yj) , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Applying Taylor expansion to (2.5a) and (2.6a) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, we have

n̄k+1
ij − n̄k

ij

△t
+ c△2

hn̄
k+ 1

2

ij −△hµ0

(

n̄
k+ 1

2

ij

)

= R
k+ 1

2

ij , 0 ≤ k ≤ K − 1, (4.1a)

(f̄0)
k+1
ij − (f̄0)

k
ij

△t
= µ0

(

n̄k+ 1

2

) n̄k+1
ij − n̄k

ij

△t
+ S

k+ 1

2

ij , 0 ≤ k ≤ K − 1, (4.1b)

where there exists a constant m1, such that for 0 ≤ k ≤ K − 1
∣

∣

∣
R

k+ 1

2

ij

∣

∣

∣
≤ m1

(

h2
1 + h2

2 +△t2
)

,
∣

∣

∣
S
k+ 1

2

ij

∣

∣

∣
≤ m1

(

h2
1 + h2

2 +△t2
)

, (4.2)

with the initial conditions

n̄0
ij = n0 (xi, yj) , f̄0

ij = f0
(

n̄0
ij

)

. (4.3)

Omitting the local truncation error terms in (4.1a) and (4.1b), we can derive the Crank-Nicolson

scheme of the fourth-order parabolic equation (2.5a) and (2.6a) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,

0 ≤ k ≤ K − 1 as follows,

nk+1
ij − nk

ij

△t
+ c△2

hn
k+ 1

2

ij −△hµ0

(

n
k+ 1

2

ij

)

= 0, (4.4)

(f0)
k+1
ij − (f0)

k
ij

△t
= µ0

(

n
k+ 1

2

ij

) nk+1
ij − nk

ij

△t
. (4.5)

Here, the total discrete free energy at k∆t, k = 0, 1, 2, ...,K, is defined as

F k
h =

c

2

∥

∥∇hn
k
∥

∥

2
+
〈

fk
0 , 1
〉

, (4.6)

and it is updated by the equation (4.5). We note that, there is a little inconsistence between the

modified version of the discrete total energy as its original one due to the fact that fk
0 6= f0(n

k).

We apply the idea proposed in the work of Qiao. et al [24], to guarantee the energy decreasing

property during the evolution process. The proof of the energy stability presented below will

demonstrate how it plays the role. And the improvement of the consistence between the two

energy expressions will be left as one aspect of our future work.

Lemma 4.1. (Mass conservation.) The solution of the discrete equation (4.4) satisfies the

mass conservation, that is, for any 0 ≤ k ≤ K − 1,

h1h2

M1
∑

i=1

M2
∑

j=1

nk+1
ij = h1h2

M1
∑

i=1

M2
∑

j=1

nk
ij .
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Remark 4.1. The proof is classical. The mass conservation can be obtained spontaneously

by multiplying h1h2△t to both sides of (4.4), summing for i = 1, ...,M1, j = 1, ...,M2, with

supplement of the periodic boundary condition.

Lemma 4.2. (Energy identity.) If the total discrete free energy at k∆t, k = 0, 1, ...K, is defined

by (4.6), the discrete scheme provided by (4.4)-(4.5) can guarantee the following energy identity

for any time step ∆t > 0,

F k+1
h − F k

h

△t
+
∥

∥

∥
∇hw

k+ 1

2

∥

∥

∥

2

= 0. (4.7)

Proof. Define wk+ 1

2 , k = 0, 1, 2, ...,K − 1, as

w
k+ 1

2

ij = c△hn
k+ 1

2

ij − µ0

(

n
k+ 1

2

ij

)

.

Taking the inner product of (4.4) with wk+ 1

2 , we have

1

∆t

〈

nk+1 − nk, c∆h
nk+1 + nk

2

〉

− 1

∆t

〈

nk+1 − nk, µ0(n
k+ 1

2 )
〉

+
〈

∆hw
k+ 1

2 , wk+ 1

2

〉

= 0.

By using integration by parts under periodic boundary condition and the equation (4.5), we

have

c

2△t

(

∥

∥∇nk+1
∥

∥

2 −
∥

∥∇nk
∥

∥

2
)

+
1

△t

〈

fk+1
0 − fk

0 , 1
〉

+
∥

∥

∥
−∇wk+ 1

2

∥

∥

∥

2

= 0.

Recombining the terms in the above formula, we can get

1

△t

( c

2

∥

∥∇nk+1
∥

∥

2
+
〈

fk+1
0 , 1

〉

)

− 1

△t

( c

2

∥

∥∇nk
∥

∥

2
+
〈

fk
0 , 1
〉

)

+
∥

∥

∥
−∇wk+ 1

2

∥

∥

∥

2

= 0,

which is a detailed form of (4.7). This completes the proof. �

Remark 4.2. We note that, this energy stability is respect to the modified energy expression

(4.6), which is a little different with the discrete form of the original energy functional (2.4).

In turn, one can not obtain the H1 bound for the numerical solution, even if the numerical

solution is required to be inside the domain [θ0, 1/b− θ0], as in the following theorems.

4.1. The unique solvability

4.1.1. Solvability

Theorem 4.1. The discrete scheme (4.4)-(4.5) has at least one solution.

Proof. The scheme (4.4) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ k ≤ K − 1, can be written as

wij − nk
ij +

c△t

2
△2

hwij −
△t

2
△hµ0 (wij) = 0, (4.8)

where w = nk+ 1

2 . Define the map

g(wij) = wij − nk
ij +

c△t

2
△2

hwij −
△t

2
△hµ0 (wij) .
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Then

〈g(w), w〉 = ‖w‖2 −
〈

nk, w
〉

+
c△t

2
‖△hw‖2 −

△t

2
〈△hµ0 (w) , w〉

= ‖w‖2 −
〈

nk, w
〉

+
c△t

2
‖△hw‖2 +

△t

2
〈µ′

0(w)∇hw · ∇hw, 1〉 .

Therefore,

〈g(w), w〉 >
[

‖w‖2 −
〈

nk, w
〉

]

+
c△t

2
‖△hw‖2 − a(T )△t ‖∇hw‖2

≥
[

‖w‖2 −
∥

∥nk
∥

∥ ‖w‖
]

+
c△t

2
‖△hw‖2 −

(

c△t

2
‖△hw‖2 +

a2(T )△t

2c
‖w‖2

)

=

(

1− a2(T )△t

2c

)

‖w‖2 −
∥

∥nk
∥

∥ ‖w‖ ≥
[(

1− a2(T )△t

2c

)

‖w‖ −
∥

∥nk
∥

∥

]

‖w‖ .

When △t <
c

a2(T )
, it follows that

a2(T )△t

2c
<

1

2
, and

(g(w), w) ≥
(

1

2
‖w‖ −

∥

∥nk
∥

∥

)

‖w‖ =
1

2

(

‖w‖ − 2
∥

∥nk
∥

∥

)

‖w‖ .

If ‖w‖ = 2
∥

∥nk
∥

∥, we have 〈g(w), w〉 ≥ 0. By Lemma 3.1, there is at least one solution w

satisfying ‖w‖ ≤ 2
∥

∥nk
∥

∥. The solvability of the Crank-Nicolson scheme is proved. �

Remark 4.3. It has to be noted that Theorem 4.1 can only guarantee the existence of the

real value of the solution nk+1 for the equation (4.4). However, the reasonable value of each

component of the vector nk+1 has to be in the open subset of the set of real numbers (0, 1/b).

This requirement for the solution from the physical background could not be guaranteed by this

theorem. Numerically, this requirement could be guaranteed by selecting appropriate temporal

steps since the program can only run ahead only if all the components of the vector nk+1 are in

the region (0, 1/b). Furthermore, all the components of the obtained numerical solution nk+1

are in a close subset of the reasonable (0, 1/b) due to the finiteness of their total number, which

could be written as [θ0, 1/b− θ0], where θ0 ∈ (0, 1/(2b)) is a really small value.

In addition, the uniqueness of the reasonable solution of the discrete equation (4.4) is pro-

vided as follows.

4.1.2. Uniqueness of the solution

Theorem 4.2. The discrete scheme (4.4)-(4.5) has at most one solution in the region [θ0, 1/b− θ0]

for any θ0 ∈ (0, 1/(2b)) if ∆t < 2c/M2. Here M = max {|µ′(n)| : n ∈ [θ0, 1/b− θ0]}.

Proof. Suppose (4.8) has another solution z, wij ∈ [θ0, 1/b− θ0] and zij ∈ [θ0, 1/b− θ0] for

all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, then

(zij − nk
ij) +

c△t

2
△2

hzij −
△t

2
△hµ0 (zij) = 0. (4.9)

Let ǫij = wij − zij , subtracting (4.9) from (4.8), we have

ǫij +
c△t

2
△2

hǫij −
△t

2
[△hµ0(wij)−△hµ0(zij)] = 0. (4.10)
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Taking the inner product of (4.10) with ǫ, we obtain

‖ǫ‖2 + c△t

2
‖△hǫ‖2 −

△t

2
〈△hµ0 (w)−△hµ0 (z) , ǫ〉 = 0.

According to the Lemma 3.2, we have

△t

2
〈△hµ0 (w) −△hµ0 (z) , ǫ〉 =

△t

2
〈µ0 (w) − µ0 (z) ,△hǫ〉 .

Then

‖ǫ‖2 + c△t

2
‖△hǫ‖2 =

△t

2
〈µ0 (w) − µ0 (z) ,△hǫ〉 =

△t

2

〈

∂µ0

∂n
(ξ)ǫ,∆hǫ

〉

≤△t

2
M ‖ǫ‖ ‖∆ǫ‖ ≤ ∆tM2

8c
‖ǫ‖2 + c△t

2
‖△hǫ‖2 .

where ξ = cw + (1− c)z, c ∈ [0, 1], satisfies |µ′(ξ)| < M spontaneously. Therefore,

‖ǫ‖2 + c△t

2
‖△hǫ‖2 ≤ ∆tM2

8c
‖ǫ‖2 + c△t

2
‖△hǫ‖2 .

Thus ‖ǫ‖2 ≤ ∆tM2

8c
‖ǫ‖2 . If ∆t <

8c

M2
, ǫ = 0. This completes the proof. �

4.2. Convergence

For the convenience of presentation, we first introduce the following notations.

α11 = max {|µ′
0(n)| : n ∈ [ǫ1, 1/b− ǫ1]} , α12 = max {|µ′′

0(n)| : n ∈ [ǫ1, 1/b− ǫ1]} ,

α13 =
α2
11

4c
+

1

2
, α14 = max

{∣

∣

∣

∣

n̄k+1−n̄k

∆t

∣

∣

∣

∣

, k = 1, 2, ...K − 1.

}

,

α15 =
4α2

11

c2
+

2α12α14+2c+2

c

α16 = 2 +
α2
11

c
+

4α2
11

c2
+

4α12α14

c
+

α2
11

c

(

2α2
11

c2
+

α12α14

c

)

+max

{

α12α14

c
,
2α2

11

c2

}

,

C11 =

√

|Ω|
4α13

exp (2α13(k+1)∆t)m1,

C12 = 4

√

α15

2α13α16

k20 |Ω|
2
exp

((

α13+
α16

4

)

(k+1)∆t
)

m1.

Theorem 4.3. Suppose the solution of the original fourth order equation (2.5a)-(2.5b) is suf-

ficiently smooth, and there exists ǫ1 such that for any k = 0, 1, ...,K, the solution of the Crank-

Nicolson scheme (4.4), nk and the solution of (4.1a) n̄k ∈ [ǫ1, 1/b− ǫ1]. If α13∆t < 1/2, then

∥

∥ek+1
∥

∥ ≤ C11

(

h2
1 + h2

2 +∆t2
)

;

if α15∆t < 1
2
, we can obtain

∥

∥ek+1
∥

∥

∞
≤ C12

(

h2
1 + h2

2 +∆t2
)

.
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Proof. We know n̄k+1
ij = n̄(xi, yj, tk) is the solution of (4.1a), and nk+1

ij is the solution

of (4.4). Let ekij = n̄k
ij − nk

ij . Subtracting (4.4) from (4.1a), we have: for all 1 ≤ i ≤ M1,

1 ≤ j ≤ M2, e
0
ij = 0, and

ek+1
ij − ekij

△t
+ c△2

he
k+ 1

2

ij −△hµ0

(

n̄
k+ 1

2

ij

)

+△hµ0

(

n
k+ 1

2

ij

)

= R
k+ 1

2

ij , 0 ≤ k ≤ K − 1. (4.11)

Taking inner product of (4.11) with ek+
1

2 =
ek+1 + ek

2
, then

∥

∥ek+1
∥

∥

2 −
∥

∥ek
∥

∥

2

2△t
+ c

∥

∥

∥
△he

k+ 1

2

∥

∥

∥

2

=
〈

△hµ0

(

n̄k+ 1

2

)

−△hµ0

(

nk+ 1

2

)

, ek+
1

2

〉

+
〈

Rk+ 1

2 , ek+
1

2

〉

.

According to Lemma 3.2, we have
〈

△hµ0

(

n̄k+ 1

2

)

−△hµ0

(

nk+ 1

2

)

, ek+
1

2

〉

=
〈

µ0

(

n̄k+ 1

2

)

− µ0

(

nk+ 1

2

)

,△he
k+ 1

2

〉

=
〈

µ′
0(ξ

k+ 1

2 )ek+
1

2 ,∆he
k+ 1

2

〉

≤ α11

∥

∥

∥
ek+

1

2

∥

∥

∥

∥

∥

∥
∆he

k+ 1

2

∥

∥

∥
≤ α2

11

4c

∥

∥

∥
ek+

1

2

∥

∥

∥

2

+ c
∥

∥

∥
△he

k+ 1

2

∥

∥

∥

2

.

Using (4.2), we have

〈

Rk+ 1

2 , ek+
1

2

〉

≤
∥

∥

∥
Rk+ 1

2

∥

∥

∥

∥

∥

∥

∥

ek+1 + ek

2

∥

∥

∥

∥

≤|Ω|
2
m2

1

(

h2
1 + h2

2 +∆t2
)2

+

∥

∥ek+1
∥

∥

2
+
∥

∥ek
∥

∥

2

4
.

Combining all the above results, we obtain
∥

∥ek+1
∥

∥

2 −
∥

∥ek
∥

∥

2

≤
(

α2
11

4c
+

1

2

)

(

∥

∥ek+1
∥

∥

2
+
∥

∥ek
∥

∥

2
)

∆t+ |Ω|m2
1

(

h2
1 + h2

2 +∆t2
)2

∆t. (4.12)

Replacing the superscript k by l in (4.12) and summing up for l from 0 to k leads to

∥

∥ek+1
∥

∥

2
=

k
∑

l=0

(

∥

∥el+1
∥

∥

2 −
∥

∥el
∥

∥

2
)

≤
k
∑

l=0

(

α2
11

4c
+

1

2

)

(

∥

∥el+1
∥

∥

2
+
∥

∥el
∥

∥

2
)

∆t+ (k + 1) |Ω|m2
1

(

h2
1 + h2

2 +∆t2
)2

∆t.

Thus,

∥

∥ek+1
∥

∥

2 ≤

(

α2

11

2c + 1
)

∆t

1−
(

α2

11

4c + 1
2

)

∆t

k
∑

l=0

∥

∥el
∥

∥

2
+

(k + 1) |Ω|m2
1

1−
(

α2

11

4c + 1
2

)

∆t

(

h2
1 + h2

2 +∆t2
)2

∆t.

If ∆t ≤ 1/

(

α2
11

2c
+ 1

)

, then

(

α2
11

4c
+

1

2

)

∆t ≤ 1

2
, and

∥

∥ek+1
∥

∥

2 ≤
(

α2
11

c
+ 2

)

∆t
k
∑

l=0

∥

∥el
∥

∥

2
+ 2(k + 1)m2

1

(

h2
1 + h2

2 +∆t2
)2

∆t. (4.13)
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Gronwall’s inequality leads to

∥

∥ek+1
∥

∥ ≤
√

|Ω|
4α13

exp (2α13(k + 1)∆t)m1

(

h2
1 + h2

2 +∆t2
)

=C11

(

h2
1 + h2

2 +∆t2
)

. (4.14)

For estimating
∥

∥∆he
k+1
∥

∥, we take the inner product of (4.11) with δte
k+ 1

2 =
ek+1 − ek

∆t
. With

the help of Lemma 3.2, we have

∥

∥

∥

∥

ek+1 − ek

△t

∥

∥

∥

∥

2

+
c

2∆t

(

∥

∥△he
k+1
∥

∥

2 −
∥

∥△he
k
∥

∥

2
)

=
〈

µ0

(

n̄k+ 1

2

)

− µ0

(

nk+ 1

2

)

, δt△he
k+ 1

2

〉

+

〈

Rk+ 1

2 ,
ek+1 − ek

∆t

〉

.

The last term of above formula satisfies

〈

Rk+ 1

2 ,
ek+1 − ek

∆t

〉

≤
∥

∥

∥
Rk+ 1

2

∥

∥

∥

∥

∥

∥

∥

ek+1 − ek

∆t

∥

∥

∥

∥

≤ |Ω|
2

m2
1

(

h2
1 + h2

2 +∆t2
)2

+
1

2

∥

∥

∥

∥

ek+1 − ek

∆t

∥

∥

∥

∥

2

.

Therefore,

1

2

∥

∥

∥

∥

ek+1 − ek

∆t

∥

∥

∥

∥

2

+
c

2∆t

(

∥

∥△he
k+1
∥

∥

2 −
∥

∥△he
k
∥

∥

2
)

≤
〈

µ0

(

n̄k+ 1

2

)

− µ0

(

nk+ 1

2

)

, δt△he
k+ 1

2

〉

+
|Ω|
2

m2
1

(

h2
1 + h2

2 +∆t2
)2

. (4.15)

Replacing the superscript k by l in (4.15), summing up for l from 0 to k and using Lemmas 3.4

and 3.5, we obtain

1

2

k
∑

l=0

∥

∥

∥

∥

el+1 − el

∆t

∥

∥

∥

∥

2

+
c

2∆t

k
∑

l=0

(

∥

∥△he
l+1
∥

∥

2 −
∥

∥△he
l
∥

∥

2
)

≤
k
∑

l=0

〈

µ0

(

n̄l+ 1

2

)

− µ0

(

nl+ 1

2

)

, δt∆he
l+ 1

2

〉

+
|Ω|
2
(k + 1)m2

1

(

h2
1 + h2

2 +∆t2
)2

=
1

∆t

〈

µ′
0

(

ξ
k+ 1

2

1

)

ek+
1

2 ,∆he
k+1
〉

+
|Ω|
2

(k + 1)m2
1

(

h2
1 + h2

2 +∆t2
)2

−
k
∑

l=1

〈

µ′′
0

(

ξl2
)

(

ρlel+
1

2 + (1− ρl)el−
1

2

) n̄l+ 1

2 − n̄l− 1

2

∆t
,∆he

l

〉

+

k
∑

l=1

〈

µ′
0

(

ρlnl+ 1

2 + (1− ρl)nl− 1

2

) el+
1

2 − el−
1

2

∆t
,∆he

l

〉

+
α12α14

2

k
∑

l=1

(
∥

∥

∥
el+1

∥

∥

∥
+
∥

∥

∥
el
∥

∥

∥

+
∥

∥el−1
∥

∥

)

∥

∥∆he
l
∥

∥+α11

k
∑

l=1

[
∥

∥

∥

∥

el+1−el

2∆t

∥

∥

∥

∥

+

∥

∥

∥

∥

el−el−1

2∆t

∥

∥

∥

∥

]

∥

∥∆he
l
∥

∥

≤ c

4∆t

∥

∥∆he
k+1
∥

∥

2
+

α2
11

2c∆t

(

∥

∥ek+1
∥

∥

2
+
∥

∥ek
∥

∥

2
)

+
|Ω|
2

(k + 1)m2
1

(

h2
1 + h2

2 +∆t2
)2

+
k
∑

l=1

(

α12α14

4

∥

∥el+1
∥

∥

2
+

α12α14

4

∥

∥el
∥

∥

2
+

α12α14

4

∥

∥el−1
∥

∥

2
+

3α12α14

4

∥

∥∆he
l
∥

∥

2
)



Second-order Schemes for a Diffuse Interface Model 749

+

k
∑

l=1

(

1

4

∥

∥

∥

∥

el+1 − el

∆t

∥

∥

∥

∥

2

+
1

4

∥

∥

∥

∥

el − el−1

∆t

∥

∥

∥

∥

2

+
α2
11

2

∥

∥∆he
l
∥

∥

)

.

Immediately,

c

4∆t

∥

∥∆he
k+1
∥

∥

2

≤ α2
11

2c∆t

(

∥

∥ek+1
∥

∥

2
+
∥

∥ek
∥

∥

2
)

+
|Ω|
2

(k + 1)m2
1

(

h2
1 + h2

2 +∆t2
)2

+
α2
11

2

k
∑

l=1

∥

∥∆he
l
∥

∥

2

+

k
∑

l=1

(

α12α14

4

∥

∥el+1
∥

∥

2
+

α12α14

4

∥

∥el
∥

∥

2
+

α12α14

4

∥

∥el−1
∥

∥

2
+

3α12α14

4

∥

∥∆he
l
∥

∥

2
)

.

It naturally gives

∥

∥∆he
k+1
∥

∥

2
(4.16)

≤2α2
11

c2

(

∥

∥ek+1
∥

∥

2
+
∥

∥ek
∥

∥

2
)

+
2 |Ω|
c

(k + 1)m2
1

(

h2
1 + h2

2 +∆t2
)2

∆t

+

k
∑

l=1

[

α12α14

c

(

∥

∥el+1
∥

∥

2
+
∥

∥el
∥

∥

2
+
∥

∥el−1
∥

∥

2
)

+

(

3α12α14

c
+

2α2
11

c

)

∥

∥∆he
l
∥

∥

2
]

∆t. (4.17)

Combining (4.13) and (4.17), we obtain

∥

∥∆he
k+1
∥

∥

2
+
∥

∥ek+1
∥

∥

2

≤
(

1 +
2α2

11

c2
+

α12α14

c

)

∥

∥ek+1
∥

∥

2
+max

{

3α12α14

c
,
2α12α14

c
+

2α2
11

c2

}

∆t

k
∑

l=1

∥

∥el
∥

∥

2

+

(

3α12α14

c
+

2α2
11

c

) k
∑

l=1

∥

∥∆he
l
∥

∥

2
∆t+

2 |Ω|
c

(k + 1)m2
1

(

h2
1 + h2

2 +∆t2
)2

∆t

≤
[

2 +
α2
11

c
+
4α2

11

c2
+

4α12α14

c
+
α2
11

c

(

2α2
11

c2
+
α12α14

c

)

+max

{

α12α14

c
,
2α2

11

c2

}]

∆t
k
∑

l=0

∥

∥el
∥

∥

2
+

(

4α2
11

c2
+
2α12α14+2c+2

c

)

(k

+1) |Ω|m2
1

(

h2
1+h2

2+∆t2
)2

∆t+
3α12α14+2α2

11

c

k
∑

l=1

∥

∥∆he
l
∥

∥

2
∆t

≤α16∆t

k
∑

l=1

(

∥

∥el
∥

∥

2
+
∥

∥∆he
l
∥

∥

2
)

+ (k + 1)α15 |Ω|m2
1(h

2
1 + h2

2 +∆t2)2∆t.

Note that, the derivation of the last step bases on the fact that α2
11/c < α2

11/c
2 due to the

coefficient c ∈ (0, 1). Gronwall’s inequality yields

∥

∥ek+1
∥

∥

2
+
∥

∥∆he
k+1
∥

∥

2 ≤ α15

α16

exp (α16(k + 1)∆t) · |Ω|
[

m1

(

h2
1 + h2

2 +△t2
)]2

,

where k = 0, 1, ...,K − 1. Using Lemma 3.3 and (4.14), we can get

∥

∥ek+1
∥

∥

2

∞
≤ k0

∥

∥ek+1
∥

∥

(
∥

∥△he
k+1
∥

∥+
∥

∥ek+1
∥

∥

)
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≤k0

√

2 ‖ek+1‖2
(

‖ek+1‖2 + ‖△hek+1‖2
)

≤ k0

√

α15

2α13α16

exp
((

2α13 +
α16

2

)

(k + 1)∆t
)

m2
1 |Ω|

(

h2
1 + h2

2 +△t2
)2

.

Therefore,

∥

∥ek+1
∥

∥

∞
≤ C12

(

h2
1 + h2

2 +△t2
)

.

The completes the proof of the theorem. �

5. A Second Order Linearized Scheme

Applying Taylor expansion to (2.5a), (2.6a) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, we have

n̄k+1
ij − n̄k

ij

△t
+ c△2

hn̄
k+ 1

2

ij −△hµ0

(

ˆ̄n
k+ 1

2

ij

)

= R̂
k+ 1

2

ij , 0 ≤ k ≤ K − 1, (5.1a)

(f̄0)
k+1
ij − (f̄0)

k
ij

△t
= µ0

(

ˆ̄n
k+ 1

2

ij

) n̄k+1
ij − n̄k

ij

△t
+ Ŝ

k+ 1

2

ij , 0 ≤ k ≤ K − 1, (5.1b)

with the following initial conditions

n̄(xij , 0) = n0(xij), f̄0(n(xij , 0)) = f0
0 (n(xij)), (5.2)

where there exists a constant m2 such that

∣

∣

∣
R̂

k+ 1

2

ij

∣

∣

∣
≤ m2

(

h2
1 + h2

2 +△t2
)

,
∣

∣

∣
Ŝ
k+ 1

2

ij

∣

∣

∣
≤ m2

(

h2
1 + h2

2 +△t2
)

, 0 ≤ k ≤ K − 1. (5.3)

The difference scheme is constructed by omitting the local truncation error terms in the above

two equations as follows: for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,

nk+1
ij − nk

ij

△t
+ c△2

hn
k+ 1

2

ij −△hµ0

(

n̂
k+ 1

2

ij

)

= 0, 0 ≤ k ≤ K − 1, (5.4a)

subject to the initial condition

n(xij , 0) = n0(xij). (5.4b)

As for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, the discrete energy density (f0)
k+1
ij is computed by [24]

(f0)
k+1
ij − (f0)

k
ij

△t
= µ0

(

n̂
k+ 1

2

ij

) nk+1
ij − nk

ij

△t
, 0 ≤ k ≤ K − 1, (5.5a)

with initial value

f0(n(xij , 0)) = f0(n0(xij)). (5.5b)

Similarly to derivations of the mass conservation and the energy decay property of the Crank-

Nicolson scheme, these properties of the second order linearized scheme could be given by the

following two lemmas.
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Lemma 5.1. (Mass conservation.) The solution of the discrete equation (5.4a)-(5.4b) also

satisfies the mass conservation if periodic boundary condition is given, which means that for

any 0 ≤ k ≤ K − 1,

h1h2

M1
∑

i=1

M2
∑

j=1

nk+1
ij = h1h2

M1
∑

i=1

M2
∑

j=1

nk
ij .

Lemma 5.2. (Energy identity.) If the discrete total energy at k∆t, k = 0, 1, ...K, is defined by

(4.6), then the discrete scheme provided by (5.4a)-(5.5a) also can guarantee the energy identity

for any time step ∆t > 0 as follows,

F k+1
h − F k

h

△t
+
∥

∥

∥
−∇hŵ

k+ 1

2

∥

∥

∥

2

= 0, (5.6)

where ŵk+ 1

2 = c△hn
k+ 1

2 − µ0(n̂
k+ 1

2 ).

5.1. The unique solvability and the convergence of the linearized scheme

Theorem 5.1. The linearized scheme (5.4a)-(5.4b) is uniquely solvable.

Proof. The scheme (5.4a) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ k ≤ K − 1 can be written as

nk+1
ij +

c△t

2
△2

hn
k+1
ij = nk

ij −
c△t

2
△2

hn
k
ij +∆t△hµ0

(

n̂
k+ 1

2

ij

)

. (5.7)

Suppose nk, n̂k+ 1

2 have been determined. Then (5.7) is a linear equation about nk+1. Consider

its homogenous system as follows,

nk+1
ij +

c△t

2
△2

hn
k+1
ij = 0, 1 ≤ i ≤ M1, 1 ≤ j ≤ M2. (5.8)

Taking inner product of (5.8) with nk+1, we have

∥

∥nk+1
∥

∥

2
+

c△t

2

∥

∥△hn
k+1
∥

∥

2
= 0. (5.9)

It requires nk+1 = 0. Therefore (5.7) has a unique solution. �

Remark 5.1. Also, the above theorem can not guarantee that each component of the vector

nk+1 is in the open subset of the set of real numbers (0, 1/b). So far, we can only guarantee

this from our numerical implementations. The exploration of theoretical analysis of this kind

of discrete or continuous partial differential equations with high nonlinearity and singularity

needs further future efforts.

For the convenience of presentation, the following notations are introduced.

α21 = max

{

|µ′
0(n)| : n ∈

[

θ̂

2
,
1

b
− θ̂

2

]}

, α22 = max

{

|µ′′
0(n)| : n ∈

[

θ̂

2
,
1

b
− θ̂

2

]}

,

α23 =
2α2

21

c
+ 1, α24 = max

{
∣

∣

∣

∣

n̄k+1 − n̄k

∆t

∣

∣

∣

∣

, k = 0, 1, ...K − 1.

}

,
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α25 =
16α2

21 + 1

c
+ 1, α26 = max

{

13α2
23

4
, 2α2

21 + 4α22α24

}

,

α27 = max

{

2α23 +
16α23α

2
21

c2
+

5α22α24

c
,
2α26

c

}

,

C21 = exp (α23t)

√

|Ω|
α23

m2, C22 = 4

√

2α25

α23α27

k20 |Ω|
2
exp

((

α23 + α27

2

)

Tm

)

m2.

Theorem 5.2. Suppose the solution n̄(x, t) to the fourth order equation (2.5a)-(2.5b) is suffi-

ciently smooth, and there is a θ̂ ∈ (0, 1/(2b)), such that n̄k
ij ∈

[

θ̂, 1/b− θ̂
]

for all 1 ≤ i ≤ M1,

1 ≤ j ≤ M2, k = 0, 1, ..K. If

C22(h
2
1 + h2

2 +∆t2) ≤ 1

2
θ̂, (5.10)

then the difference scheme (5.4a)-(5.4b) is convergent with second order in both time and space

in the following detailed form

∥

∥ek+1
∥

∥ ≤ C21

(

h2
1 + h2

2 +△t2
)

,
∥

∥ek+1
∥

∥

∞
≤ C22

(

h2
1 + h2

2 +△t2
)

. (5.11)

Proof. Since

ˆ̄n
1

2 = n̄0 +
∆t

2
n̄0
t = n0 +

∆t

2
n0
t = n̂

1

2 , ˆ̄n
3

2 = n̄0 +
3∆t

2
n̄0
t = n0 +

3∆t

2
n0
t = n̂

3

2 ,

we have

µ0

(

ˆ̄n
1

2

)

− µ0

(

n̂
1

2

)

= 0, µ0

(

ˆ̄n
3

2

)

− µ0

(

n̂
3

2

)

= 0.

Subtracting (5.4a) from (5.1a) for all 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, we have e0ij = 0 and

ek+1
ij − ekij

△t
+ c△2

he
k+ 1

2

ij = R̂
k+ 1

2

ij , k = 0, 1, (5.12)

ek+1
ij − ekij

△t
+ c△2

he
k+ 1

2

ij −△hµ0

(

ˆ̄n
k+ 1

2

ij

)

+△hµ0

(

n̂
k+ 1

2

ij

)

= R̂
k+ 1

2

ij , 2 ≤ k ≤ K − 1. (5.13)

For the first step, taking inner product of (5.12) at k = 0 with e
1

2 =
e0 + e1

2
yields

∥

∥e1
∥

∥

2 −
∥

∥e0
∥

∥

2

2△t
+ c

∥

∥

∥

∥

△h

(

e0 + e1

2

)
∥

∥

∥

∥

2

=

〈

R̂
1

2 ,
e0 + e1

2

〉

.

For the initial value,
∥

∥e0
∥

∥ = 0, so

∥

∥e1
∥

∥

2

2△t
+ c

∥

∥

∥

∥

△h
e1

2

∥

∥

∥

∥

2

=

〈

R̂
1

2 ,
e1

2

〉

. (5.14)

Using (5.3), we get

∥

∥e1
∥

∥

2

2△t
+

c

4

∥

∥△he
1
∥

∥

2 ≤
∥

∥e1
∥

∥

2

4△t
+

△t |Ω|m2
2

(

h2
1 + h2

2 +△t2
)2

4
, (5.15)

It yields

∥

∥e1
∥

∥ ≤
√

|Ω|m2△t
(

h2
1 + h2

2 +△t2
)

, (5.16)



Second-order Schemes for a Diffuse Interface Model 753

∥

∥△he
1
∥

∥ ≤
√

|Ω|△t

c
m2

(

h2
1 + h2

2 +△t2
)

. (5.17)

According to Lemma 3.3,

∥

∥e1
∥

∥

2

∞
≤ k0

(

∥

∥△he
1
∥

∥

∥

∥e1
∥

∥+
∥

∥e1
∥

∥

2
)

≤ k0

[

√

△t

c
m2

2 |Ω|△t
(

h2
1 + h2

2 +△t2
)2

+ |Ω|m2
2△t2

(

h2
1 + h2

2 +△t2
)2

]

.

If ∆t < 1/c, then

∥

∥e1
∥

∥

2

∞
≤ 2 |Ω| k0△t

c
m2

2

(

h2
1 + h2

2 +△t2
)2

.

Besides, from (5.14) we also obtain

∥

∥e1
∥

∥

2

2△t
+

c

4

∥

∥△he
1
∥

∥

2 ≤
∥

∥e1
∥

∥

2

4
+

|Ω|m2
2

(

h2
1 + h2

2 +△t2
)2

4
.

Therefore,
∥

∥e1
∥

∥

2

2△t
≤
∥

∥e1
∥

∥

2

4
+

|Ω|m2
2

(

h2
1 + h2

2 +△t2
)2

4
. (5.18)

Secondly, to get the error at second time step
∥

∥e2
∥

∥

∞
, we take the inner product of (5.12)

with k = 1 and e
3

2 =
e1 + e2

2
,

∥

∥e2
∥

∥

2 −
∥

∥e1
∥

∥

2

2△t
+ c

∥

∥

∥

∥

△h

(

e1 + e2

2

)
∥

∥

∥

∥

2

=

〈

R̂
3

2 ,
e1 + e2

2

〉

.

Applying (5.3), we have

∥

∥e2
∥

∥

2 −
∥

∥e1
∥

∥

2

2△t
≤
∥

∥e1
∥

∥

2
+
∥

∥e2
∥

∥

2

4△t
+

|Ω|△t

2
m2

2

(

h2
1 + h2

2 +△t2
)2

. (5.19)

From (5.19) and the estimation of
∥

∥e1
∥

∥

2
by (5.16), we can get

∥

∥e2
∥

∥ ≤
√

5 |Ω|m2△t
(

h2
1 + h2

2 +△t2
)

. (5.20)

To get the estimation of
∥

∥∆e2
∥

∥, taking the inner product of (5.12) when k = 1 with
e2 − e1

∆t
,

we have

∥

∥

∥

∥

e2 − e1

△t

∥

∥

∥

∥

2

+
c

2∆t

(

∥

∥△he
2
∥

∥

2 −
∥

∥△he
1
∥

∥

2
)

=

〈

R̂
3

2 ,
e2 − e1

∆t

〉

≤
∥

∥

∥

∥

e2 − e1

△t

∥

∥

∥

∥

2

+
|Ω|
4

m2
2

(

h2
1 + h2

2 +△t2
)2

,

from which, we obtain

∥

∥△he
2
∥

∥

2 ≤
∥

∥△he
1
∥

∥

2
+

|Ω|∆t

2c
m2

2

(

h2
1 + h2

2 +△t2
)2

.
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Combining the above equation with (5.17), we get

∥

∥△he
2
∥

∥

2 ≤ 3 |Ω|∆t

2c
m2

2

(

h2
1 + h2

2 +△t2
)2

. (5.21)

Similar to the first case, combining the equation (5.20) and (5.21) leads to

∥

∥e2
∥

∥

2

∞
≤ k0

(

∥

∥△he
2
∥

∥

∥

∥e2
∥

∥+
∥

∥e2
∥

∥

2
)

≤k0

[

√

15∆t

2c
|Ω|m2

2△t
(

h2
1 + h2

2 +△t2
)2

+ 5 |Ω|m2
2△t2

(

h2
1 + h2

2 +△t2
)2

]

. (5.22)

If ∆t < 1/c, then

∥

∥e2
∥

∥

2

∞
≤ 8k0 |Ω|△t

c
m2

2

(

h2
1 + h2

2 +△t2
)2

. (5.23)

At the third step, we derive the estimation for
∥

∥ek+1
∥

∥ and
∥

∥ek+1
∥

∥

∞
by mathematical induction.

Suppose (5.11) is true for l from 0 to k (0 ≤ k ≤ K − 1). Then if (5.10) is satisfied, we have

∥

∥ek
∥

∥

∞
≤ C22(h

2
1 + h2

2 +∆t2) ≤ 1

2
θ̂, 1 ≤ l ≤ k.

Then it follows that

nk
ij ∈

[

θ̂/2, 1/b− θ̂/2
]

, 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ l ≤ k.

Taking inner product of (5.13) with ek+
1

2 =
ek + ek+1

2
, we obtain

∥

∥ek+1
∥

∥

2 −
∥

∥ek
∥

∥

2

2△t
+ c

∥

∥

∥
△he

k+ 1

2

∥

∥

∥

2

=
〈

△hµ0

(

ˆ̄nk+ 1

2

)

−△hµ0

(

n̂k+ 1

2

)

, ek+
1

2

〉

+

〈

R̂k+ 1

2 ,
ek + ek+1

2

〉

.

Since

ˆ̄nk+ 1

2 − n̂k+ 1

2

= n̄k +
1

2
n̄k−1 − 1

2
n̄k−2 −

(

nk +
1

2
nk−1 − 1

2
nk−2

)

= ek +
1

2
ek−1 − 1

2
ek−2,

we have

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

= µ′(ξ̂k+
1

2 )

(

ek +
1

2
ek−1 − 1

2
ek−2

)

,

where ξ̂k+
1

2 = λ̂k+ 1

2 ˆ̄nk+ 1

2 + (1− λ̂k+ 1

2 )n̂k+ 1

2 , λ̂k+ 1

2 ∈ [0, 1]. According to Lemma 3.2, we get

〈

△hµ0

(

ˆ̄nk+ 1

2

)

−△hµ0

(

n̂k+ 1

2

)

, ek+
1

2

〉

=
〈

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

,△he
k+ 1

2

〉

≤
∥

∥

∥

∥

µ′(ξ̂k+
1

2 )

(

ek +
1

2
ek−1 − 1

2
ek−2

)∥

∥

∥

∥

∥

∥

∥
△he

k+ 1

2

∥

∥

∥

≤ α21

[

∥

∥ek
∥

∥+
1

2

∥

∥ek−1
∥

∥+
1

2

∥

∥ek−2
∥

∥

]

∥

∥

∥
△he

k+ 1

2

∥

∥

∥
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≤ α2
21

2c

[

∥

∥ek
∥

∥

2
+

1

2

∥

∥ek−1
∥

∥

2
+

1

2

∥

∥ek−2
∥

∥

2
]

+ c
∥

∥

∥
∆he

k+ 1

2

∥

∥

∥

2

. (5.24)

Whereupon
∥

∥ek+1
∥

∥

2 −
∥

∥ek
∥

∥

2

2△t
+ c

∥

∥

∥
△he

k+ 1

2

∥

∥

∥

2

≤ α2
21

2c

[

∥

∥ek
∥

∥

2
+

1

2

∥

∥ek−1
∥

∥

2
+

1

2

∥

∥ek−2
∥

∥

2
]

+ c
∥

∥

∥
∆he

k+ 1

2

∥

∥

∥

2

+

〈

R̂k+ 1

2 ,
ek + ek+1

2

〉

.

Accordingly,
∥

∥ek+1
∥

∥

2 −
∥

∥ek
∥

∥

2

2△t
(5.25)

≤ α2
21

2c

[

∥

∥ek
∥

∥

2
+
1

2

∥

∥ek−1
∥

∥

2
+
1

2

∥

∥ek−2
∥

∥

2
]

+

∥

∥ek
∥

∥

2
+
∥

∥ek+1
∥

∥

2

4
+
|Ω|
2
m2

2

(

h2
1+h2

2 +△t2
)2

.

Replacing the superscript k by l in (5.25) and summing up for l from 2 to k, we get

k
∑

l=2

∥

∥el+1
∥

∥

2 −
∥

∥el
∥

∥

2

2△t
≤α2

21

2c

[

k
∑

l=2

∥

∥el
∥

∥

2
+

1

2

k−1
∑

l=1

∥

∥el
∥

∥

2
+

1

2

k−2
∑

l=1

∥

∥el
∥

∥

2

]

+
k
∑

l=2

∥

∥el
∥

∥

2
+
∥

∥el+1
∥

∥

2

4
+

|Ω|
2

k
∑

l=2

m2
2

(

h2
1 + h2

2 +△t2
)2

. (5.26)

Combining (5.18) with (5.26) and multiplying 2∆t to both side, we obtain
(

1− ∆t

2

)

∥

∥ek+1
∥

∥

2

≤ α2
21

c

[

k
∑

l=2

∥

∥el
∥

∥

2
+

1

2

k−1
∑

l=1

∥

∥el
∥

∥

2
+

1

2

k−2
∑

l=1

∥

∥el
∥

∥

2

]

∆t+
∆t

2

[

k
∑

l=2

∥

∥el
∥

∥

2
+

k
∑

l=3

∥

∥el
∥

∥

2

]

+ |Ω|∆t

k
∑

l=2

m2
2

(

h2
1 + h2

2 +△t2
)2

+

∥

∥e2
∥

∥

2
+
∥

∥e1
∥

∥

2

2
∆t

+ |Ω|∆tm2
2

(

h2
1 + h2

2 +△t2
)2

+

∥

∥e1
∥

∥

2
∆t

2
+

|Ω|m2
2

(

h2
1 + h2

2 +△t2
)2

2
∆t

≤ 2α2
21

c
∆t

k
∑

l=1

∥

∥el
∥

∥

2
+∆t

k
∑

l=1

∥

∥el
∥

∥

2
+ (k + 1) |Ω|∆tm2

2

(

h2
1 + h2

2 +△t2
)2

= α23∆t

k
∑

l=1

∥

∥el
∥

∥

2
+ (k + 1) |Ω|m2

2△t
(

h2
1 + h2

2 +△t2
)2

.

If ∆t < 1, then

∥

∥ek+1
∥

∥

2 ≤ 2α23∆t

k
∑

l=1

∥

∥el
∥

∥

2
+ 2(k + 1) |Ω|m2

2△t
(

h2
1 + h2

2 +△t2
)2

. (5.27)

The Gronwall’s inequality yields

∥

∥ek+1
∥

∥ ≤ exp (α23(k + 1)∆t)

√

|Ω|
α23

m2

(

h2
1 + h2

2 +△t2
)

= C21

(

h2
1 + h2

2 +△t2
)

. (5.28)
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For estimating
∥

∥∆he
k+1
∥

∥, we take the inner product of (5.13) with δte
k+ 1

2 =
ek+1 − ek

∆t
, then

∥

∥

∥

∥

ek+1 − ek

△t

∥

∥

∥

∥

2

+
c

2∆t

(

∥

∥△he
k+1
∥

∥

2 −
∥

∥△he
k
∥

∥

2
)

=
〈

△hµ0

(

ˆ̄nk+ 1

2

)

−△hµ0

(

n̂k+ 1

2

)

, δte
k+ 1

2

〉

+

〈

R̂k+ 1

2 ,
ek+1 − ek

∆t

〉

.

Similar to the derivation of (5.24), we have

〈

△hµ0

(

ˆ̄nk+ 1

2

)

−△hµ0

(

n̂k+ 1

2

)

, δte
k+ 1

2

〉

=
〈

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

, δt∆he
k+ 1

2

〉

.

Also, we obtain

〈

R̂k+ 1

2 ,
ek+1 − ek

∆t

〉

≤ |Ω|m2
2(h

2
1 + h2

2 +∆t2)2

2
+

1

2

∥

∥

∥

∥

ek+1 − ek

△t

∥

∥

∥

∥

2

.

Therefore, we have

1

2

∥

∥

∥

∥

ek+1 − ek

△t

∥

∥

∥

∥

2

+
c

2∆t

(

∥

∥△he
k+1
∥

∥

2 −
∥

∥△he
k
∥

∥

2
)

≤
〈

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

, δt∆he
k+ 1

2

〉

+
|Ω|m2

2(h
2
1 + h2

2 +∆t2)2

2
. (5.29)

Replacing the superscript k by l in (5.29) and summing up for l from 0 to k, we get

1

2

k
∑

l=0

∥

∥

∥

∥

el+1 − el

△t

∥

∥

∥

∥

2

+
c

2∆t

∥

∥△he
k+1
∥

∥

2

≤
k
∑

l=0

〈

µ0

(

ˆ̄nl+ 1

2

)

− µ0

(

n̂l+ 1

2

)

, δt∆he
l+ 1

2

〉

+
k
∑

l=0

|Ω|m2
2(h

2
1 + h2

2 +∆t2)2

2
. (5.30)

According to Lemma 3.4, we have

l=k
∑

l=0

〈

µ0

(

ˆ̄nl+ 1

2

)

− µ0

(

n̂l+ 1

2

)

, δt∆he
l+ 1

2

〉

−
k
∑

l=1

〈

µ0

(

ˆ̄nl+ 1

2

)

− µ0

(

n̂l+ 1

2

)

−
[

µ0

(

ˆ̄nl− 1

2

)

− µ0

(

n̂l− 1

2

)]

∆t
,∆he

l

〉

=
1

∆t

〈

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

,∆he
k+1
〉

−
〈

µ0

(

ˆ̄n
5

2

)

− µ0

(

n̂
5

2

)

∆t
,∆he

2

〉

−
k
∑

l=3

〈

µ0

(

ˆ̄nl+ 1

2

)

− µ0

(

n̂l+ 1

2

)

−
(

µ0

(

ˆ̄nl− 1

2

)

− µ0

(

n̂l− 1

2

))

∆t
,∆he

l

〉

.

Here,

µ0

(

ˆ̄nk+ 1

2

)

− µ0

(

n̂k+ 1

2

)

= µ′
0(ρ̂

k+ 1

2 ˆ̄nk+ 1

2 + (1 − ρ̂k+
1

2 )n̂k+ 1

2 )
(

ˆ̄nk+ 1

2 − n̂k+ 1

2

)

= µ′
0(ρ̂

k+ 1

2 ˆ̄nk+ 1

2 + (1− ρ̂k+
1

2 )n̂k+ 1

2 )

(

ek +
1

2
ek−1 − 1

2
ek−2

)

,
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µ0

(

ˆ̄u
5

2

)

− µ0

(

û
5

2

)

= µ′
0(ρ̂

5

2 ˆ̄n
5

2 + (1− ρ̂
5

2 )n̂
5

2 )

(

e2 − e1 +
3

2
e1 − 3

2
e0
)

.

Therefore, we have

1

∆t

〈

µ0

(

ˆ̄uk+ 1

2

)

− µ0

(

ûk+ 1

2

)

,∆he
k+1
〉

=
1

∆t

〈

µ′
0(ρ̂

k+ 1

2 ˆ̄nk+ 1

2 + (1− ρ̂k+
1

2 )n̂k+ 1

2 )

(

ek +
1

2
ek−1 − 1

2
ek−2

)

,∆he
k+1

〉

≤ c

4∆t

∥

∥∆he
k+1
∥

∥

2
+

2α2
21

c∆t

(

∥

∥ek
∥

∥

2
+

1

2

∥

∥ek−1
∥

∥

2
+

1

2

∥

∥ek−2
∥

∥

2
)

,

and

−
〈

µ0

(

ˆ̄u
5

2

)

− µ0

(

û
5

2

)

∆t
,∆he

2

〉

=− 1

∆t

〈

µ′
0(ρ̂

5

2 ˆ̄n
5

2 + (1− ρ̂
5

2 )n̂
5

2 )

(

e2 − e1 +
3

2
e1 − 3

2
e0
)

,∆he
2

〉

≤α21

∥

∥

∥

∥

e2 − e1

∆t
+

3

2

e1 − e0

∆t

∥

∥

∥

∥

∥

∥∆he
2
∥

∥ ≤ 1

4

[

∥

∥

∥

∥

e2 − e1

∆t

∥

∥

∥

∥

2

+

∥

∥

∥

∥

e1 − e0

∆t

∥

∥

∥

∥

2
]

+
13α2

21

4

∥

∥∆he
2
∥

∥

2
.

Its follows from Lemma 3.5 that

1

∆t

[

µ0(ˆ̄n
l+ 1

2 )− µ0(n̂
l+ 1

2 )−
(

µ0(ˆ̄n
l− 1

2 )− µ0(n̂
l− 1

2 )
)]

=µ′
0(ρ̂

ln̂l+ 1

2 + (1 − ρ̂l)n̂l− 1

2 )
el − el−1 + 1

2
(el−1 − el−2)− 1

2
(el−2 − el−3)

∆t

+ µ′′
0 (ξ̂

l)
(

ρ̂lêl+
1

2 + (1 − ρ̂l)êl−
1

2

) n̄l − n̄l−1 + 1
2
(n̄l−1 − n̄l−2)− 1

2
(n̄l−2 − n̄l−3)

∆t
,

where ρ̂l ∈ (0, 1) and ξ̂l ∈
(

min{γ1, γ2},max
{

γ1, γ2
})

. Consequently, we have

−

k
∑

l=3

〈

µ0

(

ˆ̄nl+ 1

2

)

− µ0

(

n̂l+ 1

2

)

−

(

µ0

(

ˆ̄nl−
1

2

)

− µ0

(

n̂l−
1

2

))

∆t
,∆he

l

〉

=−

k
∑

l=3

〈

µ
′

0(ρ̂
l
n̂
l+ 1

2 + (1− ρ̂
l)n̂l−

1

2 )
el − el−1 + 1

2
(el−1

− el−2)− 1

2
(el−2

− el−3)

∆t
,∆he

l

〉

−

k
∑

l=3

〈

µ
′′

0 (ξ
l)
(

ρ̂
l
ê
l+ 1

2 + (1− ρ̂
l)êl−

1

2

) n̄l
− n̄l−1 + n̄

l−1
−n̄

l−2

2
−

n̄
l−2

−n̄
l−3

2

∆t
,∆he

l

〉

. (5.31)

The first term of the right hand side of (5.31) satisfies

−
k
∑

l=3

〈

µ′
0(ρ̂

ln̂l+ 1

2 + (1− ρ̂l)n̂l− 1

2 )
el − el−1 + 1

2
(el−1 − el−2)− 1

2
(el−2 − el−3)

∆t
,∆he

l

〉

≤1

4

k
∑

l=3

∥

∥

∥

∥

el − el−1

∆t

∥

∥

∥

∥

2

+ α2
21

k
∑

l=3

∥

∥∆he
l
∥

∥

2
+

1

8

k
∑

l=3

∥

∥

∥

∥

el−1 − el−2

∆t

∥

∥

∥

∥

2

+
α2
21

2

k
∑

l=3

∥

∥∆he
l
∥

∥

2
+

1

8

k
∑

l=3

∥

∥

∥

∥

el−2 − el−3

∆t

∥

∥

∥

∥

2

+
α2
21

2

k
∑

l=3

∥

∥∆he
l
∥

∥

2
. (5.32)
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As for the second term of (5.31), we have

∣

∣

∣

∣

∣

k
∑

l=3

〈

µ′′
0 (ξ

l)
(

ρ̂lêl+
1

2 + (1− ρ̂l)êl−
1

2

) n̄l − n̄l−1 + n̄l−1−n̄l−2

2
− n̄l−2−n̄l−3

2

∆t
,∆he

l

〉
∣

∣

∣

∣

∣

≤2

k
∑

l=3

α22α24

[

∥

∥ρ̂el
∥

∥+

∥

∥

∥

∥

(

1− ρ̂

2

)

el−1

∥

∥

∥

∥

+

∥

∥

∥

∥

(

1

2
− ρ̂

)

el−2

∥

∥

∥

∥

+

∥

∥

∥

∥

1− ρ̂

2
el−3

∥

∥

∥

∥

]

∥

∥∆he
l
∥

∥

=
k
∑

l=3

α22α24

∥

∥el
∥

∥

2
+

k−1
∑

l=2

α22α24

∥

∥el
∥

∥

2
+

k−2
∑

l=1

α22α24

4

∥

∥el
∥

∥

2

+

k−3
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
+ 4α22α24

k
∑

l=3

∥

∥∆he
l
∥

∥

2
.

Hence,
l=k
∑

l=0

〈

µ0

(

ˆ̄ul+ 1

2

)

− µ0

(

ûl+ 1

2

)

, δt∆he
l+ 1

2

〉

(5.33)

=
1

∆t

〈

µ0

(

ˆ̄uk+ 1

2

)

− µ0

(

ûk+ 1

2

)

,∆he
k+1
〉

−
〈

µ0

(

ˆ̄u
5

2

)

− µ0

(

û
5

2

)

∆t
,∆he

2

〉

−
k
∑

l=3

〈

µ0

(

ˆ̄ul+ 1

2

)

− µ0

(

ûl+ 1

2

)

−
(

µ0

(

ˆ̄ul− 1

2

)

− µ0

(

ûl− 1

2

))

∆t
,∆he

l

〉

≤ c

4∆t

∥

∥∆he
k+1
∥

∥

2
+

2α2
21

c∆t

(

∥

∥ek
∥

∥

2
+

1

4

∥

∥ek−1
∥

∥

2
+

1

4

∥

∥ek−2
∥

∥

2
)

+
1

2

k−1
∑

l=0

∥

∥

∥

∥

el+1 − el

∆t

∥

∥

∥

∥

2

+ α26

k
∑

l=2

∥

∥∆he
l
∥

∥

2

+
k
∑

l=3

α22α24

∥

∥el
∥

∥

2
+

k−1
∑

l=2

α22α24

∥

∥el
∥

∥

2
+

k−2
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
+

k−3
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
.

Combining (5.33) with (5.30), we get

1

2

k
∑

l=0

∥

∥

∥

∥

el+1 − el

△t

∥

∥

∥

∥

2

+
c

2∆t

∥

∥△he
k+1
∥

∥

2

≤ c

4∆t

∥

∥∆he
k+1
∥

∥

2
+

2α2
21

c∆t

(

∥

∥ek
∥

∥

2
+

1

2

∥

∥ek−1
∥

∥

2
+

1

2

∥

∥ek−2
∥

∥

2
)

+
1

2

k−1
∑

l=0

∥

∥

∥

∥

el+1 − el

∆t

∥

∥

∥

∥

2

+ α26

k
∑

l=2

∥

∥∆he
l
∥

∥

2
+

k
∑

l=3

α22α24

∥

∥el
∥

∥

2
+

k−1
∑

l=2

α22α24

∥

∥el
∥

∥

2

+

k−2
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
+

k−3
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
+

k
∑

l=0

|Ω|m2
2(h

2
1 + h2

2 +∆t2)2

2
. (5.34)

Therefore,

c

4∆t

∥

∥△he
k+1
∥

∥

2 ≤2α2
21

c∆t

(

∥

∥ek
∥

∥

2
+

1

4

∥

∥ek−1
∥

∥

2
+

1

4

∥

∥ek−2
∥

∥

2
)

+ α26

k
∑

l=2

∥

∥∆he
l
∥

∥

2

+
k
∑

l=3

α22α24

∥

∥el
∥

∥

2
+

k−1
∑

l=2

α22α24

∥

∥el
∥

∥

2
+

k−2
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
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+

k−3
∑

l=1

α22α24

4

∥

∥el
∥

∥

2
+

k
∑

l=0

|Ω|m2
2(h

2
1 + h2

2 +∆t2)2

2
. (5.35)

Accordingly,

∥

∥△he
k+1
∥

∥

2 ≤8α2
21

c2

(

∥

∥ek
∥

∥

2
+

1

2

∥

∥ek−1
∥

∥

2
+

1

2

∥

∥ek−2
∥

∥

2
)

+
4α26

c
∆t

k
∑

l=2

∥

∥∆he
l
∥

∥

2

+

k
∑

l=3

4α22α24

c
∆t
∥

∥el
∥

∥

2
+

k−1
∑

l=2

4α22α24

c
∆t
∥

∥el
∥

∥

2
+

k−2
∑

l=1

α22α24

c
∆t
∥

∥el
∥

∥

2

+
k−3
∑

l=1

α22α24

c
∆t
∥

∥el
∥

∥

2
+

k
∑

l=0

2 |Ω|m2
2(h

2
1 + h2

2 +∆t2)2

c
∆t. (5.36)

According to (5.27), if ∆t < 1, we get

∥

∥ek+1
∥

∥

2 ≤ 2α23∆t

k
∑

l=1

∥

∥el
∥

∥

2
+ 2(k + 1) |Ω|m2

2△t
(

h2
1 + h2

2 +△t2
)2

.

Combining the above results, (5.27) with (5.36), we have

∥

∥ek+1
∥

∥

2
+
∥

∥△he
k+1
∥

∥

2

≤2α23∆t
k
∑

l=1

∥

∥el
∥

∥

2
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Using the Gronwall’s inequality yields
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where k = 0, 1, ...,K − 1. Using Lemma 3.3 and (5.28), we can get
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)

.

6. A Numerical Example

In this section, we use the two second order numerical schemes to obtain the steady state of

the fourth order parabolic equations (2.5a)-(2.5b). The substance isobutane (nC4) is selected

for comparing with the results of second order parabolic equation provided in [22]. The critical

properties and the normal boiling point of this substance are provided in Table 6.1. The

parameters a(T ), b and c(T ) are calculated by the formulas (2.2) and (2.3). For comparison

with the results in [22], all the following numerical results are implementated on the domain

Ω = [0, L]2 with L = 2× 10−8 meters. The initial condition is set as: the molar density equals

the liquid isobutane under a saturated pressure in the region [0.3L, 0.7L], the rest of the domain

is filled with a saturated isobutane gas. The periodic boundary condition is imposed.

Table 6.1: Critical properties (Data from Table 3.1 of the book of Firoozabadi [6]), ω and m (our

computed results) of the selected substance, isobutane (nC4).

symbol Tc, K Pc ω m

nC4 425.18 3.797 MPa 0.1990 0.6709

6.1. Numerical accuracy test

In this subsection, we check the convergence rate in time of the Crank-Nicolson scheme

(4.4)-(4.5) and the second order linearized scheme (5.4a)-(5.4b). Here, the exact solution is

defined by the molar density at Tm = 10−7 obtained from ∆t = 10−11 on a 400×400 meshes on

the domain Ω. The l2 norm of errors at several time points and the convergence rate of these

schemes are provided by Table 6.2.

Table 6.2: The temporal convergence of the two schemes at Tm = 10−7. (a) The Crank-Nicolson

Scheme; (b) The linearized scheme.

∆t l2 error rate of convergence

1.0e-10 2.7107e-5 -

2.0e-10 1.0925e-4 2.0109

4.0e-10 4.3783e-4 2.0027

8.0e-10 0.0018 2.0396

1.0e-9 0.0027 2.0002

∆t l2 error rate of convergence

1.0e-10 0.0022 -

2.0e-10 0.0047 1.0952

4.0e-10 0.0096 1.0304

8.0e-10 0.0194 1.0150

1.0e-9 0.0244 1.0253

(a) (b)

It is clear that the Crank-Nicolson scheme has exactly second order temporal convergence

rate and the linearized scheme has only first order temporal convergence rate. The loss of the
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Fig. 6.1. Numerical results given by the fourth order equation at steady state: (a1) molar density, (b1)

interfacial Helmholtz free energy density, (c1) chemical potential density, (d1) thermodynamic pressure

density, cross profile of molar (a2), interfacial Helmholtz free energy (b2), chemical potential (c2),

thermodynamic pressure (d2) density; total energy evolution history given by second order equation

(e1), fourth order equation (e2), current energy evolution history given by fourth-order equation.

convergence rate of the linearized scheme may arise from its large truncation error. However,

at every time step, the Crank-Nicolson scheme takes several steps of the Newton iteration due
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to its nonlinear character, while the linearized scheme does not have this extra cost. So it is

worthy of carrying out the long time simulation with the linearized scheme.

6.2. Spatial distribution of molar density and other chemical properties

Here, the homogeneous contribution of chemical potential µ0 is defined as (2.6b). The

surface tension contribution to the Helmholtz free energy density fintfTens is also defied as [22]

fintfTens = 2f∇(n) = c∇n · ∇n. (6.1)

And the thermodynamic pressure p0 is defined as [22]

p0 = n

(

∂f0
∂n

)

− f0 = nµ0 − f0

=
nRT

1− bn
− n2a(T )

1 + 2bn− b2n2
=

RT

v − b
− a(T )

v(v + b) + b(v − b)
. (6.2)

Since the evolution history and the steady state obtained from the two schemes are very close,

the results offered by either one can illustrate the same phenomenon. Hereafter, we use the

solution obtained from the linearized scheme to calculate all the variables of interest. The whole

domain Ω is discretized by 200×200 rectangular meshes. Figure 6.1 provides the molar density,

interfacial Helmholtz free energy density, homogeneous chemical potential, the thermodynamic

pressure and the total energy evolution history calculated from the solution of the four-order

equation. The steady state is defined by the condition that the relative error between two

neighboring time step is less than 10−8. From Figure 6.1, we can see that the fourth-order

parabolic equation can describe dramatically changing of n, fintTens, µ0, p0 and guarantee the

energy decreasing property.

6.3. Calculation of interface tension and verification against Young-Laplace eqn

The surface tension σ is defined as the net contractive force per unit length with a unit of

N/m mechanically or the work for creating a unit area of interface with a unit of J/m2. Here
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Fig. 6.2. Comparison between numerical predictions given by second order linearized scheme and

laboratory data: (a) surface tension (N/m); (b) capillary pressure.
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we use the formula [6, 22]

σ =
∂F

∂A
=

F (n)− F0(nbulk)

A
. (6.3)

with the assumption that σ is spatially constant within the interface for the given system. The

numerator term of the equation (6.3) evaluates the contribution of the surface tension to the

total free energy at equilibrium state. Here, the volume of the liquid droplet is assumed as a

constant all the time and becomes a perfect circle at steady state. The radius of the droplet is

also r = 2× 10−8× (0.16/π)1/2 = 4.514× 10−9. The length of the circle A = 2π× 4, 514× 10−9

meters. The surface tension ranging from 250K to 350K are plotted in Figure 6.2 (a) comparing

with the laboratory results provided in Table 2 of [16]. We can see that, the difference between

the surface tension trend calculated by the steady state of our fourth order equation and the

experimental data is small from the engineering point of view.

The pressure is calculated by the well-known Young-Laplace equation as Pc = Pliquid −
Pgas = σ/r [6, 22]. The pressure of liquid drop Pliquid is picked from the central grid point

(101, 101) and the pressure of gas region Pgas is calculated at the point (51, 51). The difference

between the two is the capillary pressure p0 = Pliquid − Pgas. On the other hand, the capillary

pressure predicted by Young-Laplace equation is p = σ/r. The capillary pressure Pc from

temperature 250K to 350K obtained from these two methods are plotted in Figure 6.2 (b).

These two methods agree with errors around or smaller than 6%.

7. Conclusions

In this paper, we have derived the fourth-order parabolic equation on a two-dimensional

rectangular domain Ω and provided two second order energy stable schemes to solve it. Here,

we should point out that, our energy stability was obtained on an modified form of the original

total discrete energy. There is still a minor gap between our modified energy stability and the

direct discretization in terms of the original variable n. To make up this gap is left as one aspect

of our future work. The mass conservation, energy decreasing property, and the convergence of

these two schemes are provided. To overcome the difficulty in deriving the convergence of these

two schemes, which contributes to the possible unboundness of the chemical potential µ0 and

its derivative, µ′
0, on the definitional domain (0, 1/b), we impose a reasonable hypothesis that

the exact solution to the fourth-order equation and the numerical solution to these two schemes

at every step are in a subset of (0, 1/b), which is in the form of [θ, 1/b− θ]. The numerical

results showed in the above section demonstrate the effectiveness of the fourth-order equation

and these two schemes.

Acknowledgments. We are grateful to Prof. Zhizhong Sun of Department of Mathematics of

Southeast University and Prof. Hehu Xie of Institute of Computational Mathematics of Chinese

Academy of Sciences for providing useful suggestions and many helpful discussions. The research

of Zhonghua Qiao is partially supported by the Hong Kong Research Grant Council GRF grant

15302214, NSFC/RGC Joint Research Scheme N HKBU204/12 and the Hong Kong Polytechnic

University internal grant 1-ZE33. Shuyu Sun gratefully acknowledges that the research reported

in this publication was supported by funding from King Abdullah University of Science and

Technology (KAUST).



764 Q.J. PENG, Z.H. QIAO AND S.Y. SUN

References

[1] G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer.

Anal., 13 (1993), 115-124.

[2] G.D. Akrivis, V.A. Dogalis and O.A. Karakashina, On fully discrete Galerkin methods of second-

order temporal accuracy for the nonlinear Schrödinger equarion. Numer. Math., 59 (1991), 31-53.

[3] K. Bao, Y. Shi, S. Sun and X.P. Wang, A finite element method for the numerical solution of the

coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems, J. Comput.

Phys., 231 (2012), 8083-8099.

[4] B. Breure and C.J. Peters, Modeling of the surface tension of pure components and mixtures using

the density gradient theory combined with a theoretically derived influence parameter correlation,

Fluid Phase Equilib., 34 (2012), 189-196.

[5] C. Dawson, S. Sun and M.F. Wheeler, Compatible algorithms for coupled flow and transport,

Comput. Meth. Appl. Mech. Eng., 193 (2004), 2565-2580.

[6] A. Firoozabadi, Thermodynamics of hydrocarbon reservoirs, McGraw-Hill, New York, 1999.
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