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Abstract

In this paper, we present two second-order numerical schemes to solve the fourth order
parabolic equation derived from a diffuse interface model with Peng-Robinson Equation
of state (EOS) for pure substance. The mass conservation, energy decay property, unique
solvability and L> convergence of these two schemes are proved. Numerical results demon-
strate the good approximation of the fourth order equation and confirm reliability of these
two schemes.
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1. Introduction

Multi-phase fluid mixture and its behaviors play important roles in many natural and engi-
neering systems, especially in subsurface petroleum reservoirs [5,6,30-33]. It remains a challenge
to understand and to model the complex interaction between phases, namely the physically
distinct, separable portions of substance. In the classical theory known as the sharp interface
model [9,27,39], an interface between two fluids is modeled as an infinitely thin, or sharp
two-dimensional entity, and it is endowed with interface properties such as surface tension. In
a more detailed continuum model called as the diffuse interface model, the sharp fluid-fluid
interface is replaced by a small but finite-thickness layer in which the fluids may mix. Even
though the concept of a diffuse interface was originally proposed a long time ago by van der
Waals [36], its numerical simulation with realistic fluids has been investigated only in recent
years [20,22]. The diffuse interface theory is also known as the gradient theory [4,10] in the
chemical society, or phase field theory [3] in the fluid dynamics society. Unlike sharp interface
models where surface tension must be provided as an input parameter, diffuse interface models
have been used to predict surface tension [4,10,18,19]. In particular, the surface tensions of
petroleum fluids have been well predicted by diffuse interface models in one spatial dimension
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together with Peng-Robinson Equation of State (EOS) [21], which is one of the most popular
equations of state for hydrocarbon systems. However, little work has been carried out to in-
vestigate the numerical simulation of Peng-Robinson-EOS-equipped diffuse interface models in
multiple spatial dimensions [22].

Inspired by the favorable properties of the Cahn-Hilliard equation and its derivation, we
provide the fourth-order parabolic equation to describe the equilibrium state and the flow of
the components in the crude oil in this article. Numerical experiments are our indispensable
tools to investigate the solution to this equation. Previously proposed schemes for the Cahn-
Hilliard equation [7,8,10-14,17,29,34,35,38] and other kinetics equations contain fourth order
term [23,25,26,28,37] could be used as valuable references. The main contribution of this work
is to develop two second-order energy stable numeircal schemes for the two-dimensional diffuse
interface model with Peng-Robinson EOS of single component substance. The mass conserva-
tion and unique solvability are proved. The energy stability of these two schemes are achieved
following the approach in [24]. However, it is not that smooth as we expected to obtain the L>°
convergence of these two schemes attributed to the unboundedness of the free energy density
of any given substance and its first and second order derivatives respect to the molar density.
Taking the work of Li et al. [15] as reference, we overcome this difficulty with a nontrivial
arguments.

The rest of this paper is organized as follows. In the second section, we present the math-
ematical model of the diffuse interface equation derived from the Peng-Robinson EOS and
the scaled fourth order equation for multi-component substances and demonstrate its energy
decreasing and mass conservation characters. In the third section, we present notations on
the discrete space and some auxiliary lemmas. After that, the L> convergence of the Crank-
Nicolson scheme and the second order linearized scheme will be demonstrated in the fourth and
fifth sections, respectively. And then, we provide the numerical results of these two schemes and
compare them with previously published ones. The conclusion of this article will be provided
in the end.

2. Mathematical Model of Fluid Systems with Diffuse Interface

We consider a fluid system consisting of fixed species amount on a fixed domain with spatially
uniform-distributed given temperature.

2.1. Helmholtz free energy from Peng-Robinson EOS

Let M denote the number of components in the fluid mixture, n; represent the molar
concentration of the component 4, and
T
n= (nlanQa"' 7nM)

be the molar concentrations of all components and n = ny + ngy + - -+ + ny; the molar density
of the fluid. According to the diffuse interface model, the total Holmholtz free energy has the
following form,

F(n) = / f(n)dx = / fo(n)dx +/ fv(n)dx. (2.1)
Q Q Q
From Peng-Robinson EOS, the Helmholtz free energy fo(n) of a homogeneous fluid is given by

folm) = fie ) + fee(n),
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M

fédeal(n) = RTZ n; (Inn; — 1),

=1

0 (n) = —nRT'In (1 — bn) +

2v/2b 1+ (1+v2)bn

Here T reprents the temperature of the mixture and R represents the universal gas constant
(approximately 8.31432JK 'mol™" ). The energy parameter a = a(T') and the covolume pa-

a(T)n In (1 +(1 - ﬂ)bn) .

rameter b are given by the following mixing rules,

M M M
a(T) =YY wiyj(asa)) > (1= ki), b= wibi,
i=1 j=1 i=1
where y; = n;/n is the mole fraction of component i. The Peng-Robinson parameters a; and b;
for pure-substance component 7 can be computed from the critical properties of the species as
follows,
2

R2T2 T RT.,
a; = a; (T) = 045724~ (1 +my (1 — —)) , bi = 0.07780—*. (2.2)

Cj T()i Cj

The binary interaction coefficient k;; of Peng-Robinson EOS is usually computed from exper-
imental correlation. The critical temperature T, and critical pressure P, of a pure substance
are intrinsic properties of the species, and they are available for most species encountered in
application. The parameter m; contained in the formula for a; is experimentally correlated to
the accentric parameter w; of the species by the following equations:
{ 0.37464 4 1.54226w; — 0.26992w?, w; <0.49,
;=

0.379642 + 1.485030w; — 0.164423w? + 0.016666w?, w; > 0.49.

The gradient part of the free energy density fv(n) is in the following form,

1 M
fv(n) = 5 Z ciij- 'Vﬂj,

ij=1
where the influence parameter c;; is a function of temperature and molar concentrations which
can also be provided by Peng-Robinson EOS in the mixing rule given by modified geometric
mean as

cij = (1= Bij) /ey,
where the parameter 3;; is the binary interaction coefficient for the influence parameter. Sta-
bility of the interface requires §;; to be included in the interval [0,1] and 3;; = 3;;. For most
systems, f;; is assumed to be zero. When 3;; = 0, the mixing rule is reduced to the simple
geometric mean. The influence parameter of pure substance ¢; is related to the Peng-Robinson

T
ci = ab}”? <m(1:,i <1 - T_> + m§z> ; (2.3)

where m{ ; and ms ; are the coefficients correlated merely with the accentric factor w; of the

parameters a; and b; by

component ¢ by the following relations,

‘ 10—16 ] 10—16
M T 326+ 1377w, 2T 0.9051 + 15410w,
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2.2. A single component two-phase system

In this work, we would like to consider a single component two-phase system (i.e., the fluid
being pure substance). In this case, the total Helmholtz free energy F' is reduced to

F(n):/Qf(n)dx:/ﬂ(fo(n)+g|vn|2) dx. (2.4)

The evolution of the molar concentration n can be written under mass conservation form

on
AL vaR |
ot ved
where J is the mass flux which has the form
J=-vi)
on

Therefore, giving periodic boundary condition, we have the following governing equation for a
single component two-phase system:

0 t
MOGT) — —enPne 1) + Apio(n(x, 1), (2.5)
subjecting to the initial condition
n(x,0) = no(x). (2.5b)

For the energy density fo(n(x,t)), we have [24]
Ofo(n(x,t))  9fo On on(x,t)
_— == —— — = t
where the first order derivative of fo(n) with respect to the molar density n(x,t) means the
homogeneous chemical potential of the substance, the detailed form of which is as follows,

n > RTbn n a(T) I 1+ (1 —+v2)bn B a(T)n
1—bn 1—bn 22 1+ (14v2)bn 1+ 2bn — b2n2’

(2.6a)

to(n) = RT In ( (2.6b)
Lemma 2.1. (Mass conservation.) If n(x,t) is a solution of the fourth order equation (2.5a)-
(2.5b) under periodic boundary condition, then we can get the following mass conservation
identity

@), n(x,t)dz = 0. (2.7)

The proof of this lemma is trivial. It can be obtained by integrating both sides of the equa-
tion (2.5a) over the domain €2, using Green’s theorem with the periodic boundary condition.
Moreover, taking the inner product of (2.5a) with the term cAn(x,t) — po(n(x,t)) under the
periodic boundary condition, we can also obtain the following energy identity.

Lemma 2.2. (Energy identity.) If n(x,t) is a solution of the fourth-order equation (2.5a)-
(2.5b) under periodic boundary condition, the following energy identity can be guaranteed
dF (n(x,t))
dt

From this natural energy decay property of the fourth order equation (2.5a), it is reasonable

= — |V (cAn(x,t) = po(n(x, 1)))|I. (2.8)

for us to use it to approach the minimum of the total free energy, and the equilibrium state of
the two-phase, single-component fluid system can be approximated by the steady solution of
this equation.
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3. Notations and Some Auxiliary Lemmas

We investigate the numerical solution of the fourth order equation (2.5a)-(2.5b) at the time
interval [0,7T},] on the domain Q = [0, L]?>. Here, T},, denotes the final time. Let hy = L/Mj,
he = L/Ms, At =T, /K, x; =ihi, y; = jhe, ti, = kAt. Denote

Qn={(2i, yj) [0<i <My, 0<j< Mo}, Qr={tx |0<k< K},
Vi =A{nln = {ni;}, nitan g = nigs nijian =i}
For n € V), denote
1 1

Oamiyy ;= 7= (Mivrg = nig), Oyni iy = 7~ (g1 = Nig), (3.1a)
1 2
1 1
52nij = 72 (i1 — 205 + nio1j) Sonij = 72 (Mg =2 + i), (3.1b)
1 2
T
Vilip g = <5x”i+%,jv5y"i,j+%) ' Dnnig = (57 + 3y) nij- (3.1c)
For a grid function w = (w® w', -, wX =1, wk) on Q;, define
1 1
whtE = 5 (w" 4+ w™th), Sw" Tz = 7 (" —w"), 0<k<K-1, (3.2a)
1 1
T Vit L Sy gt = guh 2<k<K-1, (3.2b)
1 o 1 4 .3 0,3 0
w2 =w” + Wt At, w2 =w + §Atwt. (3.2¢)
My Mo
For u,v € Vy, their inner product is defined as (u,v) = hyho Z Z U555, and their Sobolev
=1 j=1
norms as =

lulloe = _,_ max _fui], [ull = v/ (u, u),

1<i<My 1<5<M;

My Ms
[6aull = 4 [hihad_ >°

i=1j=1

‘ 2

Y

2 My Ms>
5xui7%7j‘ y H(SyuH = hthZ Z ‘5yuz’j7%

i=17=1

Villivg j+d _

1=1j=

My, Mo 2 My Mo 2
[Vhull =y [hih2d > ; [Apull = ([haha Y2 > [Dpuis|”.
1

i=1j=1

To demonstrate the solvability and the convergence of special numerical schemes, we will fre-
quently use the following lemmas.

Lemma 3.1. ([1,2]) Let (H, (-,-)) be a finite dimensional inner product space, ||-|| the associated
norm, and g : H — H be continuous. Assume moreover that

Ja>0, VaeH, |sl=a, (g(),2)>0.
Then there exists an element z* € H, such that g(z*) =0 and ||z*]| < a.

Lemma 3.2. For any grid function u, v € Vy, we have

(Apu,v) = (u, Apv) = — (Vpu - Vpo, 1). (3.3)
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Lemma 3.3. ([15]) For any grid function n € Vy,, we have
2
InlZ, < kollnl (I12wnll+ lInl )
where kg is independent of the grid parameter h and the function n.

Referencing to the Lemma 4.2 given by [15], we can get the following similar result.

Lemma 3.4. For any u,v € Vi, and k > 1, we have the following identity

k

k
1 1 1 u
g ut2gits = — (uk+2vk+1 fu2v0) — E ot
At
=0 =1

I3 _ o l-3

At

=
=

Proof. Observe that

k k I+1 l
1 1 10 —v
g uttz0ts = E ias
At
1=0 =0
1 k
_1 1 1 1
:_t E (u 27ul+2)vl+uk+2vk+lfu2v0
=1

This completes the proof. O

Similarly to the approach of Lemma 4.1 provided in [15], we can obtain the following helpful
lemma.

Lemma 3.5. Denote efj = ﬁfj - nfj,
there exists p' € (0,1) and v1 = p'n'ts + (1 — pnt=2, 4o = plalts + (1 — pat=2, ¢ e

(min{v1,y2}, max{vy1,v2}), k, 1 =0,1,2,.... K — 1, such that

where T is the solution of (2.5a). For m, i € Vp,

Ait {No(ﬁH%) — pio(n!*t7) — (uo(ﬁl*%) — Mo(nl*%))}

1
_el—3

1 1 ! % e
/ lLol+5 1 AP 5) ¢
=g (pn +( —p)n 7If

Proof. Note that

ey (plel3 (1 — 4 zfl)
+up (e (et + (1= el ) T

é [MO(ﬁH%) — po(n!*2) — (uo(ﬁl—%) - uo(nl—%))}

1 it N\ At —almE o\ ntE—nls
:uo(pn 2+ (1—p)n ) A7 *uo(pn 2+ (1—p)n"> A7
rof 1-l+L Nl I U 1)) RFE —nltE
:[uo(pn >4 (1=p)n 2)*uo(pn >+ (1=p)n )} A7
L alts — pl-3 nlts —pl-3
I lol1+5 1 _ 1 l—5> n B 34
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In deriving (3.4), we treated po (ﬂk + Atpétﬂk"’%) — o (uk + Atpdtulﬂ'%) as a function of
p € [0,1] and then use the mean-value theorem. To derive (3.5), we have also applied the
differential mid-value theorem. ]

4. Crank-Nicolson Scheme

Define the grid function 72*, f(]f €V, for 0 < k < K on (), as follows,

ﬁ»@:n($17y]7tk)7 (J?O)Z:f(?(%ay]% 1§ZSM1; 1§.7SM2

Applying Taylor expansion to (2.5a) and (2.6a) for all 1 <i < M;, 1 < j < Ms, we have

L s AHE) _ gt
AL + CAhnij — Ao (nij ) = Rij ) 0<k<K-1, (4.1a)
(Fo)s = (o) alsH — ok

o n i +1
ij —k+%> L) L) Sk- 2 0<k<K-1 4.1b
; = U (n A7 +95 7 Sk ) ( )

where there exists a constant mq, such that for 0 < k < K —1

<my (b + h3 + A%,

k+5
‘Rij ij

shte | <ma (13 + B3+ AF2) (4.2)
with the initial conditions
’ﬁ?j = ng (Ii, yj) R ﬁO] = fo (ﬁ?]) . (43)

Omitting the local truncation error terms in (4.1a) and (4.1b), we can derive the Crank-Nicolson
scheme of the fourth-order parabolic equation (2.5a) and (2.6a) forall 1 <i < M, 1 < j < Moy,
0 <k <K —1 as follows,

k+1 k
n,. — N k+1 k+1
% + CA%LTL,L] 2 - Ah/.l/o (n” 2) = 0, (44)
k k
(fO)ijJrl - (fO)fj ~ 1 (nlffji-%) ”in - ”?j (4.5)
At kS At '
Here, the total discrete free energy at kAt, k =0,1,2,..., K, is defined as
c 2
Ff = 5 [ Vin®||” + (f5,1), (4.6)

and it is updated by the equation (4.5). We note that, there is a little inconsistence between the
modified version of the discrete total energy as its original one due to the fact that f¥ # fo(n").
We apply the idea proposed in the work of Qiao. et al [24], to guarantee the energy decreasing
property during the evolution process. The proof of the energy stability presented below will
demonstrate how it plays the role. And the improvement of the consistence between the two
energy expressions will be left as one aspect of our future work.

Lemma 4.1. (Mass conservation.) The solution of the discrete equation (4.4) satisfies the
mass conservation, that is, for any 0 < k< K —1,

M1 M2 Ml M2

h1h2 Z anfrl = h1h2 Zanj

i=1 j=1 i=1 j=1
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Remark 4.1. The proof is classical. The mass conservation can be obtained spontaneously
by multiplying hiho/At to both sides of (4.4), summing for ¢ = 1,..., My, j = 1,..., Mo, with
supplement of the periodic boundary condition.

Lemma 4.2. (Energy identity.) If the total discrete free energy at kAt, k = 0,1,...K, is defined
by (4.6), the discrete scheme provided by (4.4)-(4.5) can guarantee the following energy identity
for any time step At > 0,

2

k1 _ pk
~h " h =0. (4.7)

\V/ k43
At T H n

Proof. Define wk+%, k=0,1,2,...K—1, as

k+3 k+1 k+1
w;; * =clpng * —po (ng; 7).

Taking the inner product of (4.4) with w’”%, we have

1 R 4 b 1 . | |
=~ <nk+1 _ nk’cAh%> -5 <nk+1 _ nk,uo(nk+§)> + <Ahwk+§7wk+§> -0
By using integration by parts under periodic boundary condition and the equation (4.5), we
have
¢ k+11)2 k|2 Loy k k3|7
sz (1947 = V0¥ ) + 5 (60 = 1) + |-t | =0

Recombining the terms in the above formula, we can get

(e 4 () = s (SI9RH I+ ) + e =

At \2 o At \2 0 ’
which is a detailed form of (4.7). This completes the proof. O

Remark 4.2. We note that, this energy stability is respect to the modified energy expression
(4.6), which is a little different with the discrete form of the original energy functional (2.4).
In turn, one can not obtain the H' bound for the numerical solution, even if the numerical
solution is required to be inside the domain [0y, 1/b — 6], as in the following theorems.

4.1. The unique solvability

4.1.1. Solvability

Theorem 4.1. The discrete scheme (4.4)-(4.5) has at least one solution.

Proof. The scheme (4.4) for all 1 <i< My, 1<j < My, 0<k < K — 1, can be written as

c\t At
W5 — nfj + TA%U}U — 7

A}LMO (wij) = 0, (48)

where w = n**2. Define the map

c\t VAN
g(wij) = wij; —nf; + TA%W]’ — 5 Bntio (wiz) -
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Then
(guw), w) = [l — (o w) + L Aol — S (g () )
ol — (n¥ ) + 20 A ||2+%<uo< V- Vi, 1).
Therefore

(o), w) > [Jull® (0¥, 0)] + 2L | Anawl — (D)2t oo

> (Il = ln* ol + "—At 8wl = (5 bt + S22 )
_ (1 - %) lwll? = [|n*| ]l > [( ) [ HH'“H} ]

aA(T)At 1

When At < —— it follows that < 5, and

a?(T) 2¢
() ) = (5 ol = ¥ ) ol = 5 (Jol = 2 ) ol

If [|w| = 2|n*
satisfying [Jw|| < 2||n

, we have (g(w),w) > 0. By Lemma 3.1, there is at least one solution w
kH The solvability of the Crank-Nicolson scheme is proved. O

Remark 4.3. It has to be noted that Theorem 4.1 can only guarantee the existence of the
real value of the solution n**! for the equation (4.4). However, the reasonable value of each
component of the vector n**1 has to be in the open subset of the set of real numbers (0, 1/b).
This requirement for the solution from the physical background could not be guaranteed by this
theorem. Numerically, this requirement could be guaranteed by selecting appropriate temporal

k+1 are in

k+1

steps since the program can only run ahead only if all the components of the vector n
the region (0,1/b). Furthermore, all the components of the obtained numerical solution n
are in a close subset of the reasonable (0,1/b) due to the finiteness of their total number, which
could be written as [0y, 1/b — o], where 6y € (0,1/(2b)) is a really small value.

In addition, the uniqueness of the reasonable solution of the discrete equation (4.4) is pro-
vided as follows.

4.1.2. Uniqueness of the solution

Theorem 4.2. The discrete scheme (4.4)-(4.5) has at most one solution in the region [0g, 1/b — 6p]
for any 0y € (0,1/(2b)) if At < 2¢/M?. Here M = max {|¢/(n)| : n € [0y, 1/b — 60]}.

Proof. Suppose (4.8) has another solution z, w;; € [0y, 1/b— 6y] and z;; € [fy,1/b— o] for
all1 <7< My, 1 <5< My, then

cA\
(25 — ”Z)

t At
Ahzw AhNO (Z”) =0. (49)

Let €;; = w;; — 2, subtracting (4.9) from (4.8), we have

At
€ij + Ahew 5 [Bapo(wij) = Brpolzi)] = 0. (4.10)
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Taking the inner product of (4.10) with €, we obtain
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cA\t At

le]” + = [Bne I? *—<Ahuo( ) = Lnpo (2) ,€) = 0.
According to the Lemma 3.2, we have

At At

S5 (Do (w) = Do (2),€) = - (o (w) = po (=), Be).
Then

e\t At 0]
el + 2L Nnel =2 (o () = o (2). 29 = 5 < g;f@e Buc)
At AtM?
S5 Mllell|Aell < ——lle R I\Ah I

where £ = cw + (1 — ¢)z, ¢ € [0, 1], satisfies |u'(£)| < M spontaneously. Therefore,

AtM?

2 c\t 2
€]l 5 [Anell” <

AtM
Thus [|e]|® <

8c
lle H If At < ik

4.2. Convergence

€ = 0. This completes the proof.

2 c\t 2
el + <55 N Anel®.

For the convenience of presentation, we first introduce the following notations.

n € le1,1/b— e},

2
120014 2074

» T2

c c

b

anr =max{|up(n)|: n € le1,1/b—e},  aiz=max{|ug(n)]:
2 —k+1_ =k
a7 1 vt —n
=1, - = — | k=1,2,.. K - 1.
3 = 0 + 5 Q14 max{ At ; 12 }7
402 200120014 +2¢+2
s = 211 + 1214
c c
a? 402 4o a? 202 Q1o
0416:2+ 11 + 211 + 12¢¢14 “11 ( 211 + 12 14) + max
c c c c c
_ 1€
Ci1 = exp (20&13(1€+1)At) mi,
4o

Cia = ”ka Q% exp (((Jé13+—> (k:—i—l)At)

Theorem 4.3. Suppose the solution of the original fourth order equation (2.5a)-(2.5b) is suf-

ficiently smooth, and there exists €; such that for any k =0,1, ...,

K, the solution of the Crank-

Nicolson scheme (4.4), n* and the solution of (4.1a) A* € [e1,1/b— €1]. If a13At < 1/2, then

e < Cu1 (R + K3 + At?) ;
if a5 At < —, we can obtain

¥, < Ciz (BT + h3 + AL%) .
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k1 _ 4 - . k+1 -
- (3 ) M
Proof. We know n;; n(xi,yj,tx) is the solution of (4.1a), and n;;™" is the solution

of (4.4). Let e” = nk - nf Subtracting (4.4) from (4.1a), we have: for all 1 < ¢ < M,
1§j§Mg,egj:0, and

k+1 ek

€ k+3 k+3%
JAt ”+0Ahew ANO( )+Ahﬂ0( 2):Rij 5 0<k<K-1 (411
k+1 k
Taking inner product of (4.11) with ehts = %, then
"+ * ¥ 2
Apetts
21t +CH he

— (Bt (548) g (558) 558 4 (03

According to Lemma 3.2, we have
<Ahuo (ﬁH%) — Appio (HH%) ,€k+%>
= <#0 (ﬁm%) — Ho (TIH%) ;Ah€k+%> = <#6(§k+%)€k+%vﬁh€k+%>

< e < S e |
Using (4.2), we have
<Rk+% ek+%> < HRH% ebtl 4 ek
’ - 2
E+1)|2 k|2
90 3 a4 L I
Combining all the above results, we obtain
[ e
2

< (S0 3) (Jer 7 + 14 I7) At g md (85 + 83+ A A (412

Replacing the superscript k by [ in (4.12) and summing up for ! from 0 to k leads to

k
2 2 2
17 = 30 (lle* I = [1e'1”)

=0
<Z (an %) (e 10+ et 17) At + (k + 1) 1@ m3 (52 + b3 + At2)° At.

Thus,

0‘11 k 2
Hek+1||2 ( (an ) ) Z le l||2 + : (k(t;lﬂft?lt (kY + B3+ AtQ)QAt.
4c =0 "\ 4c 2

2
IfAt<1/< > then (4—1 %)At<

k
He’““HQS<&11 ) Z’@lHQH(kH)m?(h%+h§+At2)2At~ (4.13)
=0
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Gronwall’s inequality leads to

Hek'H || < Jﬂ exp (2a13(k + 1)At) my (h% + h% + AtQ)

Q13
=C11 (BT + h3 + At?). (4.14)
L ekl _ ok
For estimating HAhekHH, we take the inner product of (4.11) with Seehts = A7 With

the help of Lemma 3.2, we have

ekt _ ok ||? N ¢
At 2At

k1l _ ok
_ <M0 <ﬁk+§) — o (nk%) ;5tAh@k+%> <Rk+; e - —e >

The last term of above formula satisfies

2 2
(lne 1 = ll2ne|*)

k1 _ k+1 _ k2

bl _ ek ! 2] 2 1]le e
RS E <HRk+a <R+ RE 4+ AR 42
< At = At =2 i (i + by o+ )+2 At
Therefore,
1][ektt — ek | o1 112 2
+1 k
2|7 At N (HA”e I = ll2ne™] )
1 1 1 Q
< <u0 (ﬁk+5) o (nk+5> ,5tAhek+5> + |—2|m§ (B2 + 12 + A). (4.15)

Replacing the superscript k& by ! in (4.15), summing up for [ from 0 to k and using Lemmas 3.4
and 3.5, we obtain

1 F et _ ol .k e »
5; At "‘ﬂ;(HAhe I _HAh@H>
k
< iz plts — i t2) 5 Apelte |Q|(k+1) h2+h2—|—At22
§<0( ) 0( ) tApe > (1 2 )
1

k +1 1—1 k
e'2 —e 2 (e3P 10
(et -t 2 ) e

=1 —
k I+1_ 1 -1
- [ e'—e
+ Hel 1”) HAhelH +a11 ; H SAL + N } HAhelH
2
_4At ||A ek+1|| ;Zt (Hek+1”2 4 HekHQ) |Q|(k+ m (h% Jrh% +At2)2

k
N e R G el G S PV
=1
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3 (A A ).
Immediately,
Sl
<t (R 1) + s 0 417 S5 e

k
3 (T e e 22 i 20 ),
=1

It naturally gives
AR (4.16)

203 210
<20 11 (H k+1” +H k” ) | |

k
+l2{—a”f“ (Hel*lnﬁ||elu?+||el-1\f)+<‘°’°”72a“+2a”)”A @
=1

Combining (4.13) and (4.17), we obtain

20k + 1)m3 (B3 + b2 + AF?)? At

e+ et

1+20<11 +0<120414 HekﬂHQerax 3aigais 2012004 +20<%1 Atzk:HelHQ
c c ¢ c? —

3agz 202, \ < 2 210 )
+( =+ _11>Z||Ah€lH ar+ 22 |(k+1)m? (h? + B2 + A#?)" At
¢ ¢ /= ¢
2 2
o 4o dooc o? 202, ajsa
§{2+£+%+ 12014 | 911 ( 211 12 14)
C C C C c c

+max{%72all}}AtZH l” + (4@11 2a12a14+2c+2) 0

c? c
2 (120 120 As2)2 3anpa14+207, 2
+1) |Q| my (h1+h2+At ) At‘f‘f Z HAhe H At

=1

<a16AtZ(HelH ([ Anet|*) + (k + Daas 9 mi (b3 + 3 + AE)2AL
=1

Note that, the derivation of the last step bases on the fact that a?,/c < a?,/c* due to the
coefficient ¢ € (0,1). Gronwall’s inequality yields

[ eF 1% + || Aner ) <a 5 exp (ans(k + 1)AL) - 9] [my (b2 + b3 + A82)],
16

where k =0,1,..., K — 1. Using Lemma 3.3 and (4.14), we can get

2
e oo < Ko lle®*H [ (| 2ne™ ] + [l )
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§k0¢2 ekt 112 (Jlek 117 + l1anek+1)1)

< oy 5o exp ( (2003 + 58 ) (k + DAL) m? | (B3 + 3 + A12)°.
2013016 2

Therefore,
|5 |, < Cuz (BT + 3 + At?).

The completes the proof of the theorem. O

5. A Second Order Linearized Scheme

Applying Taylor expansion to (2.5a), (2.6a) for all 1 <4 < M;, 1 < j < Ms, we have

7_7/?;’_1 77_71,17‘7 2,k+l :k-‘rl Ak_i_l
X + ARy 2 — Dppio (nij 2) =R;; 2, 0<k<K-1, (5.1a)
(fTO)']L:C]ﬂ»l - (fo)’]j] ~k+1 ﬁ']icj‘%l - ﬁ’lfj Ak+1
S () L+ 5 0<k<K-1, (5.1D)
with the following initial conditions
n(xi5,0) = no(xi;),  fo(n(x5,0)) = fo(n(xs)), (5.2)

where there exists a constant msy such that

R

i 2| < mg (W + h3 + AF),

)

g@f%‘ng(h§+h§+At2), 0<k<K-1. (53)

The difference scheme is constructed by omitting the local truncation error terms in the above
two equations as follows: for all 1 <i < My, 1 <j < My,

nk+1 - nk k41 k41
WTt” +elIng  — Ao (ﬁij*i) =0, 0<k<K-—1, (5.4a)
subject to the initial condition
n(x;j,0) = no(x ). (5.4b)

Asfor all 1 <i < My, 1< j < M,, the discrete energy density (fo)f;rl is computed by [24]

k+1 k k+1 k
—(fO)” N o = Ho (AZ 2) — N L 0<k<K-1, (5.5a)

with initial value
fo(n(xij,0)) = fo(no(xi;))- (5.5b)

Similarly to derivations of the mass conservation and the energy decay property of the Crank-
Nicolson scheme, these properties of the second order linearized scheme could be given by the
following two lemmas.
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Lemma 5.1. (Mass conservation.) The solution of the discrete equation (5.4a)-(5.4b) also
satisfies the mass conservation if periodic boundary condition is given, which means that for
any 0 <k< K -1,

M1 M2 Ml M2
h1h2 E E nk+1 = h1h2 E E nfj
i=1 j=1 i=1 j=1

Lemma 5.2. (Energy identity.) If the discrete total energy at kAt, k =0,1,...K, is defined by
(4.6), then the discrete scheme provided by (5.4a)-(5.5a) also can guarantee the energy identity
for any time step At > 0 as follows,

2

Fk?+1 F
—h b =0, (5.6)

At

w

RS

where W2 = cApn ktg — po(f ktg z).

5.1. The unique solvability and the convergence of the linearized scheme

Theorem 5.1. The linearized scheme (5.4a)-(5.4b) is uniquely solvable.

Proof. The scheme (5.4a) for all 1 <i < M, 1<j < Ms, 0<k <K —1 can be written as

nf 4 CAtAfL BHL_ ik C—NA b+ AtAnpo (757 (5.7)
Suppose n*, 7%+ have been determined. Then (5.7) is a linear equation about n**1. Consider
its homogenous system as follows,
A CAtA,% FH—0, 1<i<M, 1<j< M. (5.8)
Taking inner product of (5.8) with n**!, we have
R I 59
It requires n**1 = 0. Therefore (5.7) has a unique solution. O

Remark 5.1. Also, the above theorem can not guarantee that each component of the vector
n**! is in the open subset of the set of real numbers (0,1/b). So far, we can only guarantee
this from our numerical implementations. The exploration of theoretical analysis of this kind
of discrete or continuous partial differential equations with high nonlinearity and singularity

I}

needs further future efforts.

For the convenience of presentation, the following notations are introduced.

61 6 0
aglmax{|u6(n)|: n e [—,—— }, aggmax{mg(nﬂ: n e [5,

2 2
k1l ok
L ,kO,l,...Kl.},

S =
N D>

n
At

o3 = +1, agq = max{
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16a3, + 1 13a2.
Qg5 = % +1, ag= max{ 423720431 + 4daooiay ¢y

160423042 Daogray 2
21 22624 26
Qg7 = max {2a23 + + ; )

|2 2« w93 + o
Cs1 = exp (aost) mg, Coy = % k2 |Q|2 exp ((M) Tm) ma.
Q23 Qa30io7 2

Theorem 5.2. Suppose the solution n(x,t) to the fourth order equation (2.5a)-(2.5b) is suffi-
ciently smooth, and there is a 0 € (0,1/(2b)), such that n € {9 1/b— 9} for all 1 < i < M,
1<j <M, k=0,1,.K. If

Coa(h? + h2 + At?) < =6, (5.10)

l\’)lr—t

then the difference scheme (5.4a)-(5.4b) is convergent with second order in both time and space

in the following detailed form
€51 < Cor (h2+ 2+ ), ||| L < Con (B2 + 13 + AF2) (5.11)

Proof. Since

R At At . 3At 3At
r =+ =l =n"+ =l =pn7, A =n+4 R0 =n0 4 pl = a3,
2 2 2 2
we have
A1 AL ~3 A3
Ho (fﬂ)—uo (n2)=0, Ho (n2>—uo (n2>=

Subtracting (5.4a) from (5.1a) for all 1 <i < Mj, 1 < j < Ma, we have ef; = 0 and

k+1 ek

€; k+1i ~k+d
: A tebhey =Ry, k=01, (5.12)
ek.‘i_l —el.f. k+l k41
S enfen ™t — Ano (i) + s (7 F) = BE, 2<k<K -1 (5.13)
60+61

For the first step, taking inner product of (5.12) at k = 0 with e? = yields

I B o, (Y o (e
one ¢ A’l( 2 ) <R2 2 >
For the initial value, HeOH =0, so
I e/ €
SAL +c||An - _<R2,§>. (5.14)
Using (5.3), we get
1|2 12 2 (2 2 2)2
H2eA|L N z lane!|? < \LeA\L At|Qm3 (h14+ h3 + At?) | (5.15)

It yields
et]] < VIQlmaAst (b + h3 + At?) (5.16)
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|Anet|| < \/m'#mz (h? +h3 + At%). (5.17)

According to Lemma 3.3,
et 1%, < ko (llane! ||l + fle[*)
< ko l\/gmg Q) At (B2 + b3+ A2)? + |9 m2AL (B2 + W2 + A?)? ]
If At < 1/c, then

21Q| koAt
"%mg (h? + b3 + A8%)°

2
el <

Besides, from (5.14) we also obtain

1112 1112 Q 2h2+h2+At22
I s ¢ e < Il 101 (2 1+ A7)
Therefore,
let P [l 191m3 (53 + b + Ar2)®
oAt = a4 T 4 : (5.18)
Secondly, to get the error at second time step ||€2||OO, we take the inner product of (5.12)
) 1 2
with k = 1 and e2 = ¢ —;—e ,

le]* ~ fle* I

2Nt

+c

el + e2
Ah ( 9 )

[l = llet1® _ eI + 11l Jofa
PYAN; - ANt 2

Applying (5.3), we have

m2 (h2 + h3 + At%)? (5.19)

From (5.19) and the estimation of H€1H2 by (5.16), we can get

€] < V5 1QImaAt (BT + h3 + A?). (5.20)
2 _ 1
To get the estimation of HA62||, taking the inner product of (5.12) when k = 1 with ¢ Ate ,
we have
ez — el c 2 2
S (fane)? = el |P)
o2 1 2 12
- <R%’ & > <= +|4ﬂ|mg (1 + 13+ 027,
from which, we obtain
QA
lane(® < [|onet P + ATz (12 4 12 4 Ar)?

2c
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754
Combining the above equation with (5.17), we get
| Ane?||” < %mg (h2 + B2 + AE%)? (5.21)
Similar to the first case, combining the equation (5.20) and (5.21) leads to
2 2
I, < ko (llane?][[le] + [1e*]*)
154t 2 2 2 2)2 2 A42 (B2 2 2)2
<ko |\ 5o |Q| m3AL (hT 4+ h3 + At?)” +5|Q| m3AE* (T + h3 + At?)7] . (5.22)
(5.23)

If At < 1/c, then
8ko |2| At
o), < AL (2 ng 1 ar)?.
At the third step, we derive the estimation for He’“r1 H and He’”‘l HOO by mathematical induction.
Suppose (5.11) is true for [ from 0 to k (0 < k < K —1). Then if (5.10) is satisfied, we have

0, 1<I1<k.

N | =

|€¥ ||, < Caa(h? + b3+ At?) <

Then it follows that
nke [0/2,1/b-8/2], 1<i<M, 1<j< My, 0<I<H

E |  k+1
1 e +e .
ks = 5 , we obtain

Taking inner product of (5.13) with e
2

k+1]12 _ ||k
Al 5 TS

k+1 >

2/t
k
_ <Ahuo (ﬁk+%) — Anpio (ﬁk+%> ,ek+%> + <Rk+%, e +2e
Since
pRts _ pkts
—ak l,ﬁk—l _ lﬁk—Q nk 1 1nk 1 nk=2) = ek o Tkl lek—Q,
2 2 2
we have
syl A k4L 1 fk+L koL L hs
HO(” 2)—u0(n 2):,u(§ 2) e+§e - 5¢ ,
where 813 = A\ F2akts 4 (1 — ARta)pkts JFts ¢ [0,1]. According to Lemma 3.2, we get
<Ahuo (ﬁH%) — Dppo (ﬁk+%) ,€k+%> = <M0 (ﬁH%) — 1o (ﬁ +%) ,Ah€k+%>
< ‘ M/(€k+5) (ek n %ek—l _ %ek—Q) H HAheH%
1 1
e+ 5 k2] anet

1
<o [lH] + 3
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2 1 1
< Mek||2 e+ Hemﬂ fefanest (5.24)
Whereupon
e e
2t +el[ame
a3 I R S R 1e+ek+1
< G (e et 5 ek e anet e o (ee, S,
Accordingly,
[
SAT (5.25)
a3 2 1y ez 1y ko2 e*||” + ||er
< % [t g e ] LI 0 gy iy
Replacing the superscript k by [ in (5.25) and summing up for ! from 2 to k, we get
ke 112 — e a
g}nggLi_;;g;wn+ znwn+ Zmﬂ
k I+1
1=2
Combining (5.18) with (5.26) and multiplying 2A¢t to both side, we obtain
At 2
(1-5) e+
o2 [~y iz 12 2 182 2 At [ & 2 =2
<=2 Dl 3 21 +—Z||€ a5 2o+ 2 e
1=2 =1 1=2 1=3
k 2 1
1A mE (h2 + 3+ At2)7 + —He [ 5
1=2
1 2 (2 2 2)2
+ 19| Atm3 (B3 + 13 + At%)” + e ”2 At [2m3 (b ‘;hQ EAT) N
203, 12 1|2 2 (12 2 2)2
< TAtZ €'l +Atz l€'||” + (& + 1) |2 Atm3 (hf + b3 + At?)
=1 =1
k
= ans ALY [ + (k + 1) Q) m3At (B3 + b3+ A2)7.
=1
If At < 1, then
k
||ek+1||2 < 2030t Y HelHQ +2(k 4 1) |Q m3At (B2 + h3 + A1) (5.27)

=1

The Gronwall’s inequality yields

1)) < exp ams s+ DA 12y (12 4 13+ £8) = G (3 + 13+ 68) . 629
23
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- o1 eRTl e
+1|, we take the inner product of (5.13) with d;e*t2 =

At

For estimating HAhe , then

ekl _ ok ||? N ¢
At 2At

~ 1 1 1 ~ 1 €k+1 — ek
= <Ah,u0 (ﬁk+§) — Dppo (ﬁHE) ;5t6k+§> + <Rk+27 Tt> :
Similar to the derivation of (5.24), we have
<Ah,u0 (ﬁm%) — Appo (ﬁ]”%) 75t€k+%> = <u0 (ﬁkJr%) — [o (ﬁm%) ;5tAh@k+%> .

Also, we obtain

2 2
(lane 7 = llane|*)

2
k41 _ ok

At

€

pkt+d efrt — e < (2| m3(h? + b3 + At?)? +1
At - 2 2

Therefore, we have

1

2
okl _ ok
2

At

C 2 2
+ g (12ne 1 = [ anet])

< <N0 (ﬁk+%> — Ho (ﬁk+%) ’6tAh€k+%> + < m%(h% +2h% - At2)2' (5.29)

Replacing the superscript k by [ in (5.29) and summing up for ! from 0 to k, we get

k 2

1 eltl — ¢l c 2
- - = — A k+1
2 ; At oAl 12ne™
k k
N Q| m2(h2 + h2 + At?)2
SZ@O (ﬁ%) ~ 1 (ﬁ”%) ,5tAhel+%> +3 €2 ma( 1+2 2+ AT)7 (5.30)
=0 =0

According to Lemma 3.4, we have

W

Here,
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-5 5.5 B\ .5 3 3
o (1) o (a2) =0 4 1t (&t 4 Bt 300).

Therefore, we have

ar (po (#74) = (3474 ver)

1 N 1 1
—t<u6(ﬁk+5nk+5+(1—ﬁ’“+5>ﬁ’“+%> (e + et §e’f-2)7mek+l>

A
2 2« 21 _on2
< i ek 2800 (b Lt P e )
and
Ho (ﬁ%) — Mo (@%
_< At 7Ahe >
= g (ot + 0 phah) (@ et G- ) )
e?—el 3el—¢f 1 e? —el 2 el —ef 2 13a2 2
con [ £+ 355 et < |52 |2 | B e

1

At
l -1 1/,0-1 -2 10,01-2 -3
; el —elt 4 2 - -3 -
Sttt 41— phah S e ol —e )
N 7l — bl Lplet o ple2y _ L(ple2 _ ple3
g€ (plehE + (- phe ) it R )l 3

where ' € (0,1) and ée (min{fyl,'yg}, max {"}/1,’)/2}). Consequently, we have

(1) ) () ()

i s
<

NE

l

|

Ho(P'A T E 4+ (1= 5

1=3

& 1 =1-1 , @lml-pl-2 —7
Z< <Am+2+( l)él—%)n rt % 2 7Ah€l>~ (5.31)

l

k l -1 1 -2\ _ 1/.1-2 -3
Z<Mo (Palts 4 (1 - phyal=4) < Rl Aet ) gl e ),Ahel>
1=3
1 k el—1 _ gl-2 2
ZZ +0‘212||Ah@ I+ Z Al
=3 8=
a3 ! N -3 a3, : 1)12
SIIVUEESS vl e ad ) VS I8 (5.32)
—3 1=3 1=3




758 Q.J. PENG, Z.H. QIAO AND S.Y. SUN

As for the second term of (5.31), we have

k

Al i1 n AlTloplm? plo2oplo3
(e ey

=3
D 1
(-5) G2
k

Za22a24”6 H +Za22a24||el|| +Za22a24 H H
=2 =1

=3

k
<2 amans || +

=3

1—ﬁl3
|5

[1ane!

"3 s 2 b 2
+ Z 224 2 HelH + daaaing Z HAhel|
=1 1=3

<u0 (ﬁ”%) — o (a”%) ,5tAhel+%> (5.33)

202
<oy 1t 252 (e g ek et

=

+3 ZZ::
k k—1 k—2 k—3

3 amon ] + 3 azman [+ 3 222928 o 4 3 Q220 g2
Combining (5l_333) with (5 30), wle_z;et . .

1E el+1
52

202
N (u P+ g e g el

2 k
el+1

—el Aol
Tt +OC2GZ|| h@H

b2 et

k 1

_ . k—1
P ISR e S w3 s P + 3 azse
z 0 1=2 1=3 1=2
—2 k—3 k 2(1,2 2 212
n Z a224a24 HelHQ n Z 042240424 HelH2 n Z | m3(hy J;hQ + At?) . (5.34)
= =1 1=0
Therefore,

20{ k 2
o et <2 (et 2 L)) + e 3 e
=2

k 5 k—1 9 k_204 a 2
+ 3 amsan [¢]*+ 3 azsana [l + 50 S22 el
1=3 1=2 =1
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k—3

04220424 . | m3(h? + h2 + At?)?
- e H - . (5.35)
> 2
Accordingly,
2 8a2 2 1 2 1 o2 4o b 2
Jsne <552 (et 4 5 ek 5 ek27) + j%t%\mhelu
i 404220424 1404220424 Q2 0r24
+ > —E A el +Z At lef]|” +Z At le']|”
1=3
Q220004 " 21| m2(h2 + hE + At?)?
+Z At ||e!||” +Z . At. (5.36)

According to (5.27), if At < 1, we get

k
||ek+1||2 < 2a23AtZ Hel||2 +2(k + 1) |Q| m3At (b + h3 + At2)2 .
=1

Combining the above results, (5.27) with (5.36), we have

=17+ e

k
<2053 At S ||e!]|* + 2(k + 1) [Qm3AL (B3 + b3+ AL?)° a%AtZHAh
=1
18041 [y, At§| P+ 2k |0 m3At (B + b3 + A2)?
2 23 ||+ 2k QA mEAt (BT + B3 + A7)
=1
403, _204 At§|\ 112 _ 2 2 2 2)2
- 23 el” +2(k — 1) 12| m3At (h] + b3 + At?)
¢ =1
402, | 3 2 2
6221 2a23At;HelH +2(k — 2) | m3At (B3 + B3 + At?)

i dogacioy A dogocrng 2 = Q2024 2
Y AT+ Y AT+ ) At e
=3 ¢ =2 ¢ =1 ¢
3

k— k 272 2 2\2
n Z a220a24AtHelH2 +Z 2Q|m5(hy i‘hQ + At?) At

=1 1=0
3204230431 1004220424 ! dasg
2 At — At A
< (200 + 2020, ;Heu + dom zu e
32
+(k+1) (2 4 =2 0‘21 —) |Q| a3y (h3 + h3 + At?)2 At

<2a27AtZ (HelH + || Ané!|| )+2 k+ D)ags [ m3 (kT + h3 + At?)?At.
=1

Using the Gronwall’s inequality yields

)7 + (| ane®H* < a—exp(a27(k+1)m 19 [ma (k2 + b3+ A)]°,
27
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where k =0,1,..., K — 1. Using Lemma 3.3 and (5.28), we can get

e+ o e (snet )+ 541 1) < o211 (et P + snet 1)

2
<k 425 exp ( (a3 + az7) (k + l)At)mg Q| (kT + h3 + At2)2 )
Q230027

Therefore,

¥ |, < Caz (BT + b3 + At?).

6. A Numerical Example

In this section, we use the two second order numerical schemes to obtain the steady state of
the fourth order parabolic equations (2.5a)-(2.5b). The substance isobutane (nC4) is selected
for comparing with the results of second order parabolic equation provided in [22]. The critical
properties and the normal boiling point of this substance are provided in Table 6.1. The
parameters a(7'), b and ¢(T) are calculated by the formulas (2.2) and (2.3). For comparison
with the results in [22], all the following numerical results are implementated on the domain
Q =1[0,L)? with L =2 x 10~® meters. The initial condition is set as: the molar density equals
the liquid isobutane under a saturated pressure in the region [0.3L,0.7L], the rest of the domain
is filled with a saturated isobutane gas. The periodic boundary condition is imposed.

Table 6.1: Critical properties (Data from Table 3.1 of the book of Firoozabadi [6]), w and m (our
computed results) of the selected substance, isobutane (nC4).

symbol | T., K P, w m
nCy 425.18 | 3.797 MPa | 0.1990 | 0.6709

6.1. Numerical accuracy test

In this subsection, we check the convergence rate in time of the Crank-Nicolson scheme
(4.4)-(4.5) and the second order linearized scheme (5.4a)-(5.4b). Here, the exact solution is
defined by the molar density at T}, = 10~7 obtained from At = 107! on a 400 x 400 meshes on
the domain . The [? norm of errors at several time points and the convergence rate of these
schemes are provided by Table 6.2.

Table 6.2: The temporal convergence of the two schemes at T}, = 107". (a) The Crank-Nicolson
Scheme; (b) The linearized scheme.

At 12 error | rate of convergence At [ error | rate of convergence
1.0e-10 | 2.7107e-5 - 1.0e-10 | 0.0022 -
2.0e-10 | 1.0925e-4 2.0109 2.0e-10 | 0.0047 1.0952
4.0e-10 | 4.3783e-4 2.0027 4.0e-10 | 0.0096 1.0304
8.0e-10 0.0018 2.0396 8.0e-10 | 0.0194 1.0150
1.0e-9 0.0027 2.0002 1.0e-9 | 0.0244 1.0253

(a) (b)

It is clear that the Crank-Nicolson scheme has exactly second order temporal convergence
rate and the linearized scheme has only first order temporal convergence rate. The loss of the
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convergence rate of the linearized scheme may arise from its large truncation error. However,

at every time step, the Crank-Nicolson scheme takes several steps of the Newton iteration due
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to its nonlinear character, while the linearized scheme does not have this extra cost. So it is
worthy of carrying out the long time simulation with the linearized scheme.

6.2. Spatial distribution of molar density and other chemical properties

Here, the homogeneous contribution of chemical potential g is defined as (2.6b). The
surface tension contribution to the Helmholtz free energy density fintfrens is also defied as [22]

finthens = QfV(TL) =cVn-Vn. (6]_)

And the thermodynamic pressure pg is defined as [22]

0
Do =" <—8f0) — fo =npo — fo
n

_ nRT n?a(T) _ RT a(T) (6.2)
C1l—bn 14+2m—b2n2  v—0b v(w+b) +blv—0b) '

Since the evolution history and the steady state obtained from the two schemes are very close,
the results offered by either one can illustrate the same phenomenon. Hereafter, we use the
solution obtained from the linearized scheme to calculate all the variables of interest. The whole
domain €2 is discretized by 200 x 200 rectangular meshes. Figure 6.1 provides the molar density,
interfacial Helmholtz free energy density, homogeneous chemical potential, the thermodynamic
pressure and the total energy evolution history calculated from the solution of the four-order
equation. The steady state is defined by the condition that the relative error between two
neighboring time step is less than 1078, From Figure 6.1, we can see that the fourth-order
parabolic equation can describe dramatically changing of n, fint7Tens, f0, Po and guarantee the
energy decreasing property.

6.3. Calculation of interface tension and verification against Young-Laplace eqn

The surface tension o is defined as the net contractive force per unit length with a unit of
N/m mechanically or the work for creating a unit area of interface with a unit of J/m?. Here

x10°

0.02 T 45 T
fitting of data computed from linearized scheme fitting of data calculated from linearized scheme
% computed from linearized scheme % computed from linearized scheme

0.018 * + datafrom i il 4r * . from Young-Laplace

0016 1 350 *
€ - I
2 - .
I3 e *
S 00141 #® 5 3f
] @
b S *
@
g oo2f ® g5t
5 3 *
2 . g

0.01F 2 .
%
%
0.008 - . 1 151
0.006 - 1 -
250 300 350 250 300 350
Temperature,K Temperature,K

(a) (b)
Fig. 6.2. Comparison between numerical predictions given by second order linearized scheme and
laboratory data: (a) surface tension (N/m); (b) capillary pressure.
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we use the formula [6,22]

_OF _ F(n) — Fo(npuw)
T O0A A '

o (6.3)
with the assumption that o is spatially constant within the interface for the given system. The
numerator term of the equation (6.3) evaluates the contribution of the surface tension to the
total free energy at equilibrium state. Here, the volume of the liquid droplet is assumed as a
constant all the time and becomes a perfect circle at steady state. The radius of the droplet is
also r =2 x 1078 x (0.16/7)"/? = 4.514 x 10™°. The length of the circle A = 27 x 4,514 x 10~°
meters. The surface tension ranging from 250K to 350K are plotted in Figure 6.2 (a) comparing
with the laboratory results provided in Table 2 of [16]. We can see that, the difference between
the surface tension trend calculated by the steady state of our fourth order equation and the
experimental data is small from the engineering point of view.

The pressure is calculated by the well-known Young-Laplace equation as P. = Pquid —
P,.s = o/r [6,22]. The pressure of liquid drop Piguiq is picked from the central grid point
(101, 101) and the pressure of gas region Py, is calculated at the point (51,51). The difference
between the two is the capillary pressure pg = Pliguid — Pyas.- On the other hand, the capillary
pressure predicted by Young-Laplace equation is p = o/r. The capillary pressure P. from
temperature 250K to 350K obtained from these two methods are plotted in Figure 6.2 (b).
These two methods agree with errors around or smaller than 6%.

7. Conclusions

In this paper, we have derived the fourth-order parabolic equation on a two-dimensional
rectangular domain §2 and provided two second order energy stable schemes to solve it. Here,
we should point out that, our energy stability was obtained on an modified form of the original
total discrete energy. There is still a minor gap between our modified energy stability and the
direct discretization in terms of the original variable n. To make up this gap is left as one aspect
of our future work. The mass conservation, energy decreasing property, and the convergence of
these two schemes are provided. To overcome the difficulty in deriving the convergence of these
two schemes, which contributes to the possible unboundness of the chemical potential pg and
its derivative, yg, on the definitional domain (0,1/b), we impose a reasonable hypothesis that
the exact solution to the fourth-order equation and the numerical solution to these two schemes
at every step are in a subset of (0,1/b), which is in the form of [¢,1/b— 6]. The numerical
results showed in the above section demonstrate the effectiveness of the fourth-order equation
and these two schemes.
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