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Abstract. We derive a closed form expression for the regularized Stokeslet in two
space dimensions with periodic boundary conditions in the x-direction and a solid
plane wall at y = 0. To accommodate the no-slip condition on the wall, a system of
images for the regularized Stokeslets was used. The periodicity is enforced by writ-
ing all elements of the image system in terms of a Green’s function whose periodic
extension is known. Although the formulation is derived in the context of regularized
Stokeslets, the expression for the traditional (singular) Stokeslet is easily found by tak-
ing the limit as the regularization parameter approaches zero. The new formulation is
validated by comparing results of two test problems: the Taylor infinite waving sheet
and the motion of a cylinder moving near a wall. As an example of an application,
we use our formulation to compute the motion and flow generated by cilia using a
model that does not prescribe the motion so that the beat period and synchronization
of neighboring cilia are a result of the forces developed along the cilia.

AMS subject classifications: 76D07, 76Z05
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1 Introduction

Spatially periodic systems have been used for many years to study phenomena with
large numbers of particles or with repeated structures immersed in a viscous fluid. Ex-
amples are the dynamics of sedimenting particles [14, 36], sedimentation of fibers [33],
instabilities associated with some flows with periodicity [12] and with active suspen-
sions [34], flow past arrays of spheres [18,43], and flows generated by arrays of cilia [42].
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In cases of large numbers of particles in space, it becomes computationally prohibitive to
account for each particle, so models with a smaller number of the particles in a periodic
domain are used to capture the behavior of those systems. In most of these cases, the
models begin with an infinite sum representing the contributions of the periodic repli-
cation of forces and proceed to truncate the sums based on rapidly converging formu-
lations [4, 9, 18, 24, 25, 31, 40]. Since many of these flows can occur near a wall, as is the
case of cilia attached to a surface, the swimming of sperm, the sedimentation of particles,
and flow past obstacles [16, 22, 35], there has been a need to develop methods to satisfy a
no-flow condition at an infinite plane [1, 3] in otherwise unbounded domains.

There is continued interest in modeling two-dimensional Stokes flow in unbounded
domains [11, 17] or with periodic boundary conditions either in both directions or only
in one direction (see e.g. [6, 27, 31, 34]). Marple et al. [27] recently considered the flow of
vesicles in a channel by computing two dimensional Stokes flow with periodic boundary
conditions at the channel outlet. Their approach is to use direct free-space summation
that includes the two nearest periodic images and approximate the contributions from
the more distant images using proxy sources on the boundary of an auxiliary domain.
Bryngelson and Freund [6] used boundary integral methods to simulate two-dimensional
channel flow with a dense suspension of deforming fluid-filled capsules. Crowdy and
Or [11] developed a two-dimensional model to compute the motion of a swimmer near
a wall using complex analysis. Importantly, their results show sufficient agreement with
experiments and three-dimensional models to conclude that 2D models can provide in-
sight into the dynamics of low-Reynolds number swimmers.

Here we describe an efficient method for two-dimensional flows generated by cilia or
particle suspensions near a plane wall at y= constant and with periodic boundary condi-
tions in the x-direction (see Fig. 1). Our motivation comes from the motion of cilia, which
are attached to a surface and beat to generate coordinated flows. The effect of multiple
cilia beating next to each other can be modeled by imposing periodicity while the sur-
face lined by the cilia is modeled as an infinite wall where no-flow boundary conditions
are satisfied. We proceed by first adapting the method of regularized Stokeslets [8] for
the case of periodic boundary conditions in the x-direction through the use of a singly-
periodic Green’s function. We then derive the system of images [1, 10] that analytically
cancels the flow at the wall. The result is an explicit formula for the flow due to regu-
larized singly-periodic Stokeslets near a plane wall in two dimensions, which provides a
straight forward way to investigate the flows of interest.

There have been many approaches to simulating cilia but they generally fall into two
categories. Either the shape of the cilium beat is assumed to be known based on observed
biological data [20,23] or the motion of the cilium emerges from the model of an internal
force generating mechanism [7, 15, 16, 28]. While modeling the internal mechanisms is
more challenging, it has the feature that the motion of the cilium itself is coupled to the
fluid and is a priori unknown. With this approach, properties that depend on hydrody-
namic coupling can be investigated, including how the beat frequency depends on the
spacing between cilia and the synchronization of cilia beat patterns. In the present appli-
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Figure 1: Schematic of the domain [0,L)×[w,∞) where the Stokes equations are solved with periodic boundary
conditions at x=0 and x= L, and zero flow conditions at y=w.

cation the internal mechanisms are modeled based on the work by Dillon and Fauci [13]
in order to examine such properties. This is described in Section 3.3.

2 Stokeslets in two dimensions

2.1 Free space Stokeslet

The incompressible Stokes equations are

0=−∇p+µ∆u+gδ(x−x0), 0=∇·u,

where u is the fluid velocity, p is the fluid pressure, µ is the viscosity, g is an external
constant force and δ(x−x0) is the Dirac delta distribution centered at x0. The fundamental
solution of the Stokes equations in R

2 is called a Stokeslet and is given by (summation
notation assumed)

4πp=4πgn
∂

∂xn
G0(|x̂|), (2.1)

4πµuj =4πgn

[

∂2

∂xj∂xn
−δjn∆

]

B0(|x̂|), (2.2)

where the functions B0 and G0 are

B0(r)=
r2

16π

[

log(r2)−3
]

, G0(r)=∆B0(r)=
1

4π

[

log(r2)−1
]

.
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Specifically, the Stokeslet becomes

4πp=2gn
x̂n

r2
, (2.3)

4πµuj(x)= gn

[

x̂j x̂n

r2
−δjn log(r)

]

, (2.4)

with r= |x̂| and x̂=x−x0 with components (x̂1, x̂2). Note the singularity when r=0.

2.2 Regularization of the Stokeslet

One way to regularize the Stokeslet [8] is to modify the function B(r) and apply the
operator in Eq. (2.2) to define the incompressible velocity. For example, letting 0< δ≪1
and setting

Bδ(r)=
(r2+δ2)

16π

[

log(r2+δ2)−3
]

,

we can compute

Gδ(r)=∆Bδ(r)=
1

4π

[

log(r2+δ2)−1− δ2

r2+δ2

]

so that using these functions in Eqs. (2.1)-(2.2) leads to the divergence-free regularized
Stokeslet

2πp= gn x̂n

(

1

r2+δ2
+

δ2

(r2+δ2)2

)

, (2.5)

4πµuj(x)= gn

[

x̂j x̂n

r2+δ2
−δjn

(

1

2
log(r2+δ2)− δ2

r2+δ2

)]

. (2.6)

2.3 Flow bounded by a wall

We are interested in developing an expression for the flow generated by a Stokeslet of
strength g at x0 so that the fluid velocity vanishes at all points on the line y = w. The
strategy is to place a Stokeslet at the image point xI (see Fig. 2) plus additional ele-
ments that exactly cancel the flow at the wall. The image system is known for the sin-
gular Stokeslet [30] and for regularized Stokeslets in three dimensions [10]. The two-
dimensional case is similar so we provide only the main ideas here. The elements needed
are a Stokes doublet, a potential dipole and rotlets.

2.3.1 The Stokeslet velocity

Based on Eq. (2.2), the velocity generated by a general regularized Stokeslet is

4πµuj =4πgn

[

∂2

∂xj∂xn
−δjn∆

]

Bδ(|x̂|),
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wall: x2=w
−hê2

hê2

x̂∗
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x

Figure 2: An illustration of the geometry and notation of the image system of a Stokeslet located at x0 which
is a distance h above a solid wall.

and it satisfies ∇·u=0 analytically for any Bδ. Taking advantage of the radial symmetry
of Bδ, the regularized Stokeslet in two dimensions can be written in vector form as

S[g](x)=gH1(r)+(g·x̂)x̂H2(r), (2.7)

where r= |x̂|, x̂=x−x0 and

H1(r)=−Bδ
′′, H2(r)=

rBδ
′′−Bδ

′

r3
.

2.3.2 The Stokes doublet velocity

The Stokes doublet is obtained from taking the directional derivative of the Stokeslet in
an arbitrary direction b. Applying (b·∇) to S[g] yields the following velocity

SD[g,b]=(g·b)x̂H2(r)+(b·x̂)g H′
1(r)

r
+(g·x̂)bH2(r)+(g·x̂)(b·x̂)x̂ H′

2(r)

r
. (2.8)

2.3.3 The potential dipole velocity

The potential dipole is obtained by taking the negative Laplacian of the Stokeslet. Doing
so on a Stokeslet of strength q yields the velocity field

PD[q]=qD1(r)+(q·x̂)x̂D2(r), (2.9)

where Gδ=∆Bδ and

D1(r)=Gδ
′′, D2(r)=− rGδ

′′−Gδ
′

r3
.

2.3.4 The rotlet velocity

A rotlet is the antisymmetric velocity field derived from a Stokes doublet, that is

1

2
(SD[g,b]−SD[b,g])=

1

2
(g2b1−g1b2)

(

−x̂2

x̂1

)(

H2−
H′

1

r

)

.

By defining L= 1
2 (g2b1−g1b2) and simplifying the last factor, we arrive at the rotlet ve-

locity

R[L]= L
Gδ

′

r

(

−x̂2

x̂1

)

. (2.10)
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2.4 The image system for a regularized Stokeslet

Assume a Stokeslet of strength g at an arbitrary location x0 above a horizontal wall lo-
cated at x2=w. The system of images will be obtained by adding various elements at the
image point xI = x0−2he2 where h is the height the Stokeslet is above the wall. In what
follows x̂∗ refers to the vector from the location of the Stokeslet to an arbitrary point x,
and x̂ refers to the vector from the image point xI to x (see Fig. 2). Additionally, S∗[·]
represents the Stokeslet velocity at x0.

For an arbitrary point on the wall, x = (x,w) and we have that x̂ = (x−x0,h) and
|x̂|= |x̂∗|. Consider the velocity at (x,w) due to the original Stokeslet of strength g at x0

and a second Stokeslet at xI of strength −g:

S∗[g]+S[−g]=[(g·x̂∗)x̂∗−(g·x̂)x̂]H2(r)

=[(g·(x̂−2he2))(x̂−2he2)−(g·x̂)x̂]H2(r)

=
[

−2hg2x̂−2h(g·x̂)e2+4h2g2e2

]

H2(r)

=−2hx̂1H2(r)

(

g2

g1

)

. (2.11)

To cancel the remaining flow at the wall, consider the velocity at x=(x,w) due to the
linear combination of a Stokes doublet and a potential dipole as given below:

SD[e2,b]+PD[
1

2
hb]=hb

[

H2(r)+
D1(r)

2

]

+h(b·x̂)x̂
[

H′
2(r)

r
+

D2(r)

2

]

+b2x̂H2(r)+(b·x̂)e2
H′

1(r)

r
. (2.12)

In the singular case, it is known that Eq. (2.11) and Eq. (2.12) cancel each other for
a specific choice of b. Cancellation in the regularized case can be achieved if the Po-
tential Dipole is formed from a slightly different regularization than the one used in the
Stokeslets. The algorithm is:

1. Functions for the Stokeslets and Stokes doublet

(a) Choose Bδ and set Gδ=∆Bδ

(b) Compute H1, H2 from Eq. (2.7)

2. Functions for the dipole

(a) Define G̃δ=2 Bδ
′

r

(b) Compute D1, D2 from Eq. (2.9) using G̃δ
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With these choices the following identities can be established

H′
1(r)

r
=H2(r)−

Gδ
′

r
, H2(r)=

G̃δ
′

2r
, (2.13)

H2(r)+
1

2
D1(r)=

Gδ
′

r
− G̃δ

′

r
,

H′
2(r)

r
+

D2(r)

2
=0. (2.14)

Applying these identities to the sum of Eq. (2.11) and Eq. (2.12) gives

S∗[g]+S[−g]+SD[e2,b]+PD[
1

2
hb]

=
Gδ

′

r

(

hb1

−b1x̂1

)

+
G̃δ

′

r

(

1
2 b2x̂1−hb1−hx̂1g2

− 1
2 hb2+

1
2(b1 x̂1+hb2)−hx̂1g1

)

.

Defining b=2h(−g1,g2), reduces it to

S∗[g]+S[−g]+SD[e2,b]+PD[
1

2
hb]=2hg1

[

Gδ
′

r
− G̃δ

′

r

]

(

−h
x̂1

)

.

Recalling that x̂2 = h for an point at the image location, this is exactly the difference
of two rotlets of strength L=2hg1 where one is formed using Gδ and one is formed using
G̃δ. Thus, zero velocity at the wall will be achieved by adding R̃[2hg1 ]−R[2hg1] so that
the complete regularized image system for the Stokeslet is given by

S∗[g]+S[−g]+SD[e2,b]+PD
[1

2
hb
]

+ R̃[2hg1]−R[2hg1 ], (2.15)

where b=2h(−g1,g2).

2.5 The image system for a specific regularization

The functions for the Stokeslets and Stokes Doublet The functions for the dipole

Bδ=
1

16π
(r2+δ2)

(

log(r2+δ2)−3
)

Gδ=
1

4π
log(r2+δ2)− δ2

4π(r2+δ2)
− 1

4π

G̃δ=
1

4π
log(r2+δ2)− 1

2π

These lead to

H1=
δ2

4π(r2+δ2)
− 1

8π
log(r2+δ2),

H2=
1

4π(r2+δ2)
,
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D1=
δ2

π(r2+δ2)2
− 1

2π(r2+δ2)
,

D2=
1

π(r2+δ2)2
,

Gδ
′

r
− G̃δ

′

r
=

δ2

2π(r2+δ2)2
.

2.6 The periodic extension of the regularized Stokeslet

Following [30, p.94] we begin with Eq. (2.6) and use x̂2
1 = r2− x̂2

2, to write the regularized
Stokeslet velocity as

4πµu1(x)= g1+
x̂2(g2 x̂1−g1 x̂2)

r2+δ2
− 1

2
g1 log(r2+δ2), (2.16)

4πµu2(x)=
x̂2(g1 x̂1+g2 x̂2)

r2+δ2
−g2

(

1

2
log(r2+δ2)− δ2

r2+δ2

)

, (2.17)

which is equal to

4πµu1=(1−G)g1+ x̂2

(

−g1
∂G
∂x̂2

+g2
∂G
∂x̂1

)

, (2.18)

4πµu2=

(

δ
∂G
∂δ

−G
)

g2+ x̂2

(

g1
∂G
∂x̂1

+g2
∂G
∂x̂2

)

(2.19)

when written in terms of the Green’s function

G(x̂1, x̂2,δ)=
1

2
log(x̂2

1+ x̂2
2+δ2).

This formulation is useful because there is a straight-forward way to extend it to the
case of periodic boundary conditions in the x1-direction. We are interested in replacing
G with the periodic Green’s function

GP(x̂1, x̂2,δ)=
∞

∑
j=−∞

1

2
log
[

(x̂1+Lj)2+ x̂2
2+δ2

]

.

Fortunately, this is computable from the known result (see [2, 32])

∞

∑
j=−∞

log((x+2πj)2+ξ2)= log(cosh(ξ)−cos(x))

so that

GP(x̂1, x̂2,δ)=
1

2
log

(

cosh

(

2π

L

√

x̂2
2+δ2

)

−cos(2πx̂1/L)

)

+
1

2
log
(

L2/2π2
)

. (2.20)
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where the last term on the right is a constant that makes G(x̂1, x̂2,δ) and GP(x̂1, x̂2,δ) match
asymptotically near (x̂1, x̂2)=(0,0) for any δ. Therefore, the Stokeslet velocity with peri-
odicity in the x1-direction is given by Eqs. (2.18)-(2.19) using the periodic Green’s func-
tion:

4πµu1=
(

1−GP
)

g1+ x̂2

(

−g1
∂GP

∂x̂2
+g2

∂GP

∂x̂1

)

, (2.21)

4πµu2=

(

δ
∂GP

∂δ
−GP

)

g2+ x̂2

(

g1
∂GP

∂x̂1
+g2

∂GP

∂x̂2

)

. (2.22)

Next we describe how to satisfy the zero-flow condition at a plane wall using the
method of images and how to write the image system in terms of GP to introduce peri-
odicity.

2.7 The periodic extension of the image system

Now we would like to write the image system in terms of the function G= 1
2 log(r2+δ2)

so that the periodic version can easily be obtained by replacing G(r,δ) with its periodic
version GP(x̂1, x̂2,δ) in Eq. (2.20). The expression for the Stokeslet has already been stated
in Eqs. (2.18)-(2.19).

The Stokes doublet. Note that SD[e2,b]=(b·∇)S[e2], so the relevant Stokes doublet is

4πµu1=(b·∇)

(

x̂2
∂G
∂x̂1

)

,

4πµu2=(b·∇)

(

δ
∂G
∂δ

−G
)

+(b·∇)

(

x̂2
∂G
∂x̂2

)

,

or

4πµu1= b1x̂2
∂2G
∂x̂2

1

+b2

(

∂G
∂x̂1

+ x̂2
∂2G

∂x̂1∂x̂2

)

,

4πµu2= b1

(

δ
∂2G

∂δ∂x̂1
+ x̂2

∂2G
∂x̂1∂x̂2

− ∂G
∂x̂1

)

−b2x̂2
∂2G
∂x̂2

1

.

The dipole. For the dipole we use x̂2
1 = r2− x̂2

2 to write

µu1=D1q1+ x̂2
1q1D2+ x̂1x̂2q2D2=(D1+r2D2)q1+ x̂2(−q1 x̂2D2+q2x̂1D2),

µu2=D1q2+ x̂1 x̂2q1D2+ x̂2
2q2D2=D1q2+ x̂2(q1x̂1D2+q2x̂2D2),

and use the identities

D1+r2D2=
1

4π

2

δ

∂G
∂δ

, D1=− 2

4π

∂2G
∂δ2

, x̂jD2=− 1

4π

2

δ

∂2G
∂δ∂x̂j
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to get

4πµu1=
2

δ

∂G
∂δ

q1+
2x̂2

δ

(

q1
∂2G

∂δ∂x̂2
−q2

∂2G
∂δ∂x̂1

)

,

4πµu2=−2
∂2G
∂δ2

q2−
2x̂2

δ

(

q1
∂2G

∂δ∂x̂1
+q2

∂2G
∂δ∂x̂2

)

.

Since G(r,δ) is symmetric about the two arguments, its derivatives with respect to δ
can be related to derivatives with respect to x̂1 and x̂2. Using the property

x̂2

δ

∂G
∂δ

=
∂G
∂x̂2

,

we get

4πµu1=2q1

(

∂2G
∂x̂2

2

)

−2q2

(

∂2G
∂x̂1∂x̂2

)

,

4πµu2=2q2

(

∂2G
∂x̂2

1

)

−2q1

(

∂2G
∂x̂1∂x̂2

)

.

The rotlets. The velocity due to the difference of rotlets is

µu1=−Lx̂2

(

Gδ
′

r
− G̃δ

′

r

)

,

µu2=Lx̂1

(

Gδ
′

r
− G̃δ

′

r

)

.

Using the identity

x̂j

(

Gδ
′

r
− G̃δ

′

r

)

=− 1

4π
δ

∂2G
∂δ∂x̂j

,

we can write

4πµu1=Lδ
∂2G

∂δ∂x̂2
,

4πµu2=−Lδ
∂2G

∂δ∂x̂1
.

2.8 The full image system

The full image system S∗[g]−S[g]+SD[e2,b]+PD[ h
2 b]+ R̃[2hg1]−R[2hg1 ] with b =

2h(−g1,g2), after simplification, becomes

4πµu1=−G∗g1+ x̂∗2

(

−g1
∂G∗

∂x̂2
+g2

∂G∗

∂x̂1

)

+Gg1+ x̂2g1
∂G
∂x̂2

+2hg1(x̂2−h)
∂2G
∂x̂2

2

+g2(2h− x̂2)
∂G
∂x̂1

+2hg2(x̂2−h)
∂2G

∂x̂1∂x̂2
,
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4πµu2=

(

δ
∂G∗

∂δ
−G∗

)

g2+ x̂∗2

(

g1
∂G∗

∂x̂1
+g2

∂G∗

∂x̂2

)

+

(

G−δ
∂G
∂δ

− x̂2
∂G
∂x̂2

)

g2

−2hg2(x̂2−h)
∂2G
∂x̂2

1

+g1(2h− x̂2)
∂G
∂x̂1

−2hg1(x̂2−h)
∂2G

∂x̂1∂x̂2
.

The periodicity in the x-direction is achieved by simply replacing G with the Green’s
function GP(x̂1, x̂2,δ) in Eq. (2.20).

2.9 The far field velocity of the periodic image system

The far field velocity due to a single force g=(g1,g2) can be calculated directly by taking
the limit as x̂2→∞ of the periodic image system. This yields

4πµ(u1,u2)=

(

g1
4πh

L
,0

)

, (2.23)

which shows that the flow far above the wall reaches a nonzero constant parallel to the
wall.

3 Numerical examples

3.1 Taylor’s infinite waving sheet

In Taylor’s classic paper [38], the swimming velocity of an infinite sheet undergoing inex-
tensible traveling waves of the parametric form x(s)=s and y(s)=bsin(ks−σt) is derived
asymptotically. For small values of the wave amplitude b, this translational velocity in
the x-direction is found to be

σ

2
b2k
(

1− 19

16
b2k2+···

)

. (3.1)

As a way of validating the singly-periodic formulation of the regularized Stokeslets
without a bounding plane (no images), we let the periodic box of length L= 2π consist
of a single period of the sheet so that the velocity at a point X(s0) on the sheet can be
expressed as

u(X(s0))=U+
∫

Γ
SP[f(s)](X(s0)−X(s))ds,

where X(s) is the arc length parameterization of the swimming sheet Γ and SP[f(s)](·)
is the periodic Stokeslet in Eqs. (2.21)-(2.22) and GP given in Eq. (2.20). Here, u(X(s0))
is the prescribed velocity of the traveling wave at X(s0) and U is a constant translational
velocity resulting from the motion. The integral is approximated with the composite
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midpoint rule. Under the constraint that the net force is zero, this yields the following
linear system















w1SP(x1−x1) w2SP(x1−x2) ··· wNSP(x1−xN) I

w1SP(x2−x1) w2SP(x2−x2) ··· wNSP(x2−xN) I
...

...

w1SP(xN−x1) ··· wNSP(xN−xN) I

w1I ··· wNI 0





























f1

f2
...

fN

U















=















u1

u2
...

uN

0















,

where the wave has been divided into N equal subintervals and wi is the arc length of
the ith section. Each matrix element shown is a 2×2 block that provides the contribution
of the force at one point to the velocity at another and uj is the prescribed velocity at xj.
This system can be solved for the unknown forces and the swimming velocity U.

We set σ=1, k=1 and δ=0.7∆x where ∆x= 2π
kN and compute the difference between

the swimming velocity (in the x-direction) predicted by Taylor and the value found using
periodic Stokeslets for several values of the amplitude b. This difference in swimming
speed is not expected to vanish for finer discretizations since neither method gives the
exact solution; however, we can write

UTaylor−UStokeslet=(UTaylor−UExact)−(UStokeslet−UExact)=ǫ(b)−(UStokeslet−UExact),

where ǫ(b) is the asymptotic error in Taylor’s swimming velocity, which depends on b.
Thus if the periodic Stokeslets velocity converges to the exact velocity, the difference be-
tween the velocity predicted by Taylor and that obtained from periodic Stokeslets should
approach the constant ǫ(b). Table 1 shows the results for several values of b and different
discretizations. In each column, the difference approaches a constant as the error in the
Stokeslet computation becomes negligible compared to ǫ(b).

Table 1: The difference UTaylor−UStokeslets calculated with periodic Stokeslets for different wave amplitude

heights b and number of discretization points N. All data shown is with the parameters σ= k= 1, δ= 0.7∆x
and ∆x= 2π

kN . As should be expected, the value that is approached is larger for larger b.

N b=0.05 b=0.1 b=0.2 b=0.4 b=0.8

25 0.00015887 0.00062111 0.00223645 0.00395793 -0.10447483

26 0.00008407 0.00032506 0.00110050 0.00009622 -0.11281151

27 0.00004310 0.00016295 0.00047932 -0.00201021 -0.11743034

28 0.00002161 0.00007794 0.00015390 -0.00311139 -0.11985732

29 0.00001060 0.00003439 -0.00001274 -0.00367452 -0.12110090

210 0.00000503 0.00001234 -0.00009707 -0.00395930 -0.12173032

211 0.00000222 0.00000125 -0.00013949 -0.00410251 -0.12204694

212 0.00000082 -0.00000432 -0.00016077 -0.00417431 -0.12220573

213 0.00000011 -0.00000710 -0.00017142 -0.00421026 -0.12228525
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3.2 Periodic flow past obstacles near a wall

Here we consider examples in the semi-infinite domain (x,y)∈ [− L
2 , L

2 ]×[0,∞) with peri-
odic boundary conditions in x and zero flow at y=0. A case of a background flow over
solid stationary obstacles is depicted in Fig. 3, where the parabolic flow U=y(2.5π−y)e1

is perturbed by the presence of fixed circular solid obstacles randomly placed. Forces on
the surface of the circles are computed so that their induced velocity exactly counters the
background flow. As in the previous example, a linear system is constructed for the forces
except that in this case there is no need to enforce a zero net force constraint. Once the
forces are found, they are used to compute the fluid velocity everywhere. Fig. 3 shows
streamlines of the flow over two periods of the above domain solved with a discretization
size of ∆s=π/250 (dimensionless units) on the circles and a regularization parameter of
δ=∆s.

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

3.5

x

y

Figure 3: A visualization of the streamlines induced by a parabolic background flow in a periodic domain past
fixed circular obstacles. Note that 2 periods are shown.

As a way of assessing our method, we turn to the problem of computing the force
(Fx,Fy) exerted by a single cylinder moving with speed U parallel to the wall and V
perpendicular to it. In the nonperiodic case (L→∞), Jeffrey and Onishi [21] provide the
formulas

Fx

µU
=

4π

log(d+
√

d2−r2)−log(r)
,

Fy

µV
=

4π

log(d+
√

d2−r2)−log(r)−
√

d2−r2/d

for the corresponding forces by a cylinder of radius r whose center is at a distance d
from the wall. Note that when the cylinder is very close to the wall, Fx ∼ (d/r−1)−1/2

and Fy ∼ (d/r−1)−3/2. Fig. 4 shows the force components for r = 0.25, a discretization
size ∆s= 1/1600 on the cylinder surface, a regularization parameter δ=∆s and several
values of the periodic box length L. The figure shows that the effect of periodicity is to
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Figure 4: Forces on a cylinder translating parallel (left) and perpendicular (right) to the wall for various sizes
of the periodic box L.

reduce the net tangential force Fx on the cylinder and that when L≥100, periodicity has
very little influence on the resulting force as the curves collapse onto the predicted values
in [21]. In fact, the force Fy perpendicular to the wall seems to be nearly independent of
the periodic effects except when L<1=4r which requires larger forces.

The effect of the discretization parameter ∆s and the regularization parameter δ can
be seen in Fig. 5, which shows the relative error in the force computation when L= 100
compared to the values in [21]. The choice δ = ∆s gave consistently better results than
larger values of δ for a range of discretizations. The figure also shows that the errors
in the force computations are larger when the gap between the cylinder and the wall is
smaller, as one would expect due to the large velocity gradients that develop within the
gap.

3.3 Modeling cilia

Cilia play a diverse and important role in biology, from facilitating the transport of the
ovum through the Fallopian tubes to the movement of mucus and particles in the lungs
and mechanotransduction [19, 37, 39]. Many of these motile cilia occur in groups extend-
ing from the surface of a cell. A natural idealization is to treat the cell surface as a wall
and assume the cilia are periodic along the wall. Under these assumptions, the proposed
numerical method is applicable. The biological structure of a cilium has been well docu-
mented (the “9+2” axoneme structure), but it is still unknown how the local mechanisms
combine to form a cohesive and regular beat [26]. A model that imposes a prescribed beat
form cannot be used to study switching mechanisms that signal the end of a power stroke
and the beginning of the recovery stroke. For this, the approach adopted here is that of
Dillon and Fauci [13, 42], where specific assumptions about how the internal structure
operates are made and the beat pattern is allowed to emerge.
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Figure 5: Relative errors in the net force needed to translate a cylinder parallel (left) and perpendicular (right)
to a wall. The periodic box size was set to L= 100 in order to compare with the values given by Jeffrey and
Onishi.

3.3.1 A model of the cilium structure

Each cilium is assumed to be composed of two microtubule pairs. Each microtubule pair
is represented by two filaments attached with diagonal cross links (see Fig. 6). The mi-
crotubule pairs are connected to each other by horizontal and diagonal links between the
inner filaments representing nexins and dyneins, respectively. The diagonal dyneins are
responsible for creating the bending of the cilium. Bending in both directions, and thus
the whole ciliary beat, is achieved by assuming there are two sets of dyneins which are
alternatingly activated. In the LR mode (short for “left-to-right”), a set of dyneins ori-
ented diagonally downwards from left to right creates the power stroke. The contraction
of the LR dyneins pulls the left microtubule down and the right microtubule up and ef-
fect an overall bending to the right since the base is anchored to the wall. Analogously, in
the RL mode, a set of dyneins oriented diagonally upwards from left to right creates the
recovery stroke. In both instances the other set of dyneins is deactivated. The horizontal
nexins act to enforce an overall spacing between the microtubule pairs.

The entire structure and cross links are modeled as springs attached to different nodes
along the microtubules. The horizontal nexin connections are permanently attached to
nodes on the right inner filament and dynamically attach to the closest node on the left
inner filament irrespective of mode. In the LR mode the dyneins are permanently at-
tached to the left filament and in the RL mode they are permanently attached to the right
filament. In either case the dynamic side attaches two nodes below the nearest node on
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Figure 6: Cilium in LR mode: dyneins are permanently attached on the left inner filament and dynamically
connect two nodes below the closest node on the right inner filament.

the opposite filament. In the first sections of the cilium, designated as the base, there are
no dyneins. Additionally, in the last segments of the cilium, designated as the tip, there
are no dyneins nor nexin connections between the microtubules. See [26] for a complete
description.

In this application, the flow is driven by spring forces. Assuming springs connect
node xj to other nodes, the force per unit length generated at the node xj is

fj =−∑
i

Sji(‖xj−xi‖−Rji)
xj−xi

‖xj−xi‖
,

where Sji is the stiffness constant of the spring between xj and xi, and Rji is the spring
rest length. The Stokes equations are

0=−∇p+µ∆u+F, ∇·u=0,

where F(x)=∑j fjφδ(x−xj)∆s is a discretization of a line integral along a filament with
nodes separated by a distance ∆s.

For the simulations, we wrote the equations in dimensionless variables based on a
representative length scale ℓ and velocity scale U. The force and pressure were scaled by
F=µU/ℓ2 and P= ℓF , respectively. This leads to the dimensionless model

0=−∇p∗+∆u∗+F∗, ∇·u∗=0,
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where

F∗(x∗)=∑
j

f∗j φδ∗(x
∗−x∗j )∆s∗, f∗j =−∑

i

S∗
ji(‖x∗j −x∗i ‖−R∗

ji)
x∗j −x∗i

‖x∗j −x∗i ‖

and
S∗

ji = ℓ
2Sji/µU, f∗j = ℓfj/µU.

The representative scales used were ℓ=1 µm and U=1000 µm/s (based on a 14 µm cilium
beating at about 10 Hz).

The dyneins and diagonal connections have variable spring constants. The diagonal
springs are stronger at the base to prevent kinking of the cilium. Their spring constants
decay linearly from 1.5×103 at the base to 103 at 1/6 of the length of each filament, and
are 103 thereafter. The dynein spring constant changes dynamically based on the dis-
placement between the nodes as

k











0, for z≤0.7d,

(z−0.7d)/0.3d, for 0.7d≤ z≤d,

1, for z>d,

where z=‖xj−xi‖, d is the initial horizontal distance between the filaments in the micro-
tubule pair, and k is a constant to be given as explained below.

To create a net fluid movement in a Stokes flow, a nonsymmetric beat pattern is re-
quired. This is achieved by activating the recovery and power stroke dyneins differently.
In this model the power dyneins are all given the same spring constant, k= 1.5, but the
recovery dyneins are given spring constants k that decrease linearly from 3 at the base
to 0 at the tip. In either stroke all of the power or recovery dyneins are respectively acti-
vated. Note that this is a modification of the model being replicated given in [13] where
the recovery dyneins all have the same spring constant and are only activated up to a cer-
tain height controlled by a curvature based algorithm. Also, the model in [13] enforces
zero flow at a given height above the cilium by virtue of imposing periodic boundary
conditions in both coordinate directions and zero flow at the wall. This is not the case
in the “open top” domain considered here where there is a constant net flow above the
cilium given by Eq. (2.23). The present choice of stiffness constants was made because it
led to more stable power and recovery stroke cycles.

The switching between power strokes and recovery strokes is done by keeping track
of how far one microtubule end slides distally past the other. The RL mode is activated
once the right microtubule extended a specified number of nodes beyond the tip of the
left microtubule. Similarly, the LR mode is activated when the left microtubule extends a
specified number of nodes beyond the tip of the right microtubule. The same switching
distances were not used for all the simulations and the specific switching distances are
stated as their results are discussed below.

The initial spacing, spring constants and height for all simulations are given in Table 2.
With these parameters and a sliding distance of 9 nodes set to switch from LR to RL
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Table 2: Dimensionless parameters used in the 2d cilium structure.

Power dynein stiffness 1.5

Max recovery dynein stiffness 3

Nexin stiffness 110

Vertical filament stiffness 104

Diagonal stiffness 103

Distance between microtubules 0.35

Distance between filaments 0.117

Vertical distance between nodes 0.117

Height of cilium 14.04

Number of nodes in filament 121

Regularization parameter, δ 0.234

modes and a sliding distance of 8 nodes set to switch from RL to LR modes an example
of the resulting beat pattern is given Fig. 7(a).
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Figure 7: (a) Snapshots from the beat cycle of a cilium with periodic spacing of 20 and a sliding distance of
9 nodes and 8 nodes to switch from LR and RL modes respectively. (b) Snapshots from the beat cycle of a
cilium with a sliding distance of 5 and 3 nodes respectively. In both figures the numbers notate the order of
snapshots and the colors vary from blue to red and the opacity decreases as time progresses.

3.3.2 Results

Our integrative model of ciliary beating that is coupled with the surrounding fluid lends
itself to investigating how the beat frequency, fluid transport and synchronization of cilia
depend on the distance between the cilia and periodicity. These hydrodynamic properties
are investigated below.

Past simulations [15, 42] have shown the beat frequency of model cilia to increase in
the presence of neighboring cilia. This observation was investigated here by looking at
the length of time it takes for the cilia to complete a beat when the inter-ciliary spacing is
varied. The cilium was initialized in a vertical position in LR Mode as shown in Fig. 6 and
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(a) The average period for a single cilium for different inter-ciliary distances, L.
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(b) Average net flow per period for periodic cilia with different inter-ciliary distances.

Figure 8: (a) Average period for a single cilium for different inter-ciliary distances, L. The last data entry is
for the case of an isolated cilium (L = ∞). (b) Average net flow per period for periodic cilia with different
inter-ciliary distances. The flow was calculated with numerical integration along a line at the periodic boundary
extending from the wall to 4 cilium lengths above the wall. The flow average shown was obtained by averaging
over the first 5 complete periods where the cilium was initialized as being completely vertical.

the simulation was run until the end of the 5th power stroke with the period calculated
as the average of the final three complete beats. Fig. 8(a) shows a clear trend with the
period increasing as the distance between neighboring cilia (the size of the periodic do-
main) increases. The periods appear to asymptotically approach the period of an isolated
cilium, as should be expected.

For the same inter-ciliary distances the net flow was calculated by numerically inte-
grating the flow along the line at the edge of the periodic boundary extending from the
wall to a height of 4 cilium lengths above the wall. The flow was integrated in the space
dimension with the midpoint rule and a discretization size of 0.25 and integrated across
time with a time step of 0.002. Fig. 8(b) shows the average net flow per period for differ-
ent cilia spacing. The fluid displacement decreases as the inter-ciliary distance increases.
We conclude from Fig. 8 that cilia packed closer together not only beat faster but they
also transport the fluid further each cycle.

Another common interest in cilia is how their beats are coordinated. Much work has
shown that hydrodynamic forces are a key component in the synchronization of cilia
[5, 29, 41, 42]. This is investigated in the present model by looking at two adjacent cilia.
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(a) (b)

(c) (d)

Figure 9: The four initial configurations for two cilia. These configurations can be thought of as starting with
a phase lag of 0◦, 45◦, 90◦and 180◦ , respectively. In these cases the length L of the periodic domain equals
twice the inter-ciliary distance.

Both two isolated cilia (no periodicity) and a periodic array with two cilia in the periodic
box were examined. In these simulations the left and right sliding distances for switching
strokes were reduced from 9 and 8 to 5 and 3 respectively. This was helpful in studying
synchronicity because it allowed the cilia to be placed closer together without running
into each other and because more beats could be completed in a shorter number of time
steps, reducing the computational cost. Fig. 7(b) shows this reduced beat.

Synchronicity was studied in the periodic and isolated regimes while varying two
parameters: the distance between the two cilia was varied between 10 and 100, and four
different initial phase differences were examined that are shown in Fig. 9. The synchro-
nization between the cilia was quantified by computing each cilium’s beat period and the
lag between the ends of the power strokes of each cilium. The steady state was identified
by when these two factors appeared to reach a limit or a steady cycle for the last 25 beats.
The beat period and lag were averaged over those final 25 beats. The lag was measured
in proportion to the time it took the rightmost cilium to complete one cycle and it is al-
ways between 0% and 50%. A 0% lag indicates in-phase motion while a 50% lag indicates
anti-phase motion.

Fig. 10 shows snapshots of the velocity field induced by two cilia with an inter-ciliary
distance of 15 in the periodic regime with a 180◦ initial phase difference. In Fig. 10(a), the
cilium on the left and right are both in recovery strokes, and in subsequent snapshots are
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Figure 10: Four snapshots showing the velocity field induced by two periodic cilia taken 10 non-dimensional
time units apart. The cilia were initialized with a 180◦ phase difference and an inter-ciliary distance of 15.

respectively in power and recovery strokes. Note the variety in the velocity fields with
mixing clearly exhibited in Figs. 10(b), 10(c), and more monotonic transport in Figs. 10(a),
10(d).

In general two steady states were observed. Either the cilia tended to be nearly in
phase, with a lag less than 10%, or nearly out of phase with a lag greater than 40%
(see Fig. 11). In the isolated regime (L=∞), initial phase differences of 0◦, 45◦ and 90◦

all tended toward the in-phase steady state for all inter-ciliary distances; only the ini-
tial phase difference of 180◦ and inter-ciliary distances larger than 70, about five cilium
lengths, resulted in out-of-phase steady states. The circles in Fig. 11 show the computed
lags for the two isolated cilia as a function of inter-ciliary distance for initial phase differ-
ences of 45◦, 90◦ and 180◦.

On the other hand, the periodic regime exhibited a greater tendency toward the out-
of-phase steady state. The squares in Fig. 11 show that for the initial phase difference
of 45◦ (top graph), the in-phase steady state prevailed across all inter-ciliary distances
considered. When the initial phase difference was 90◦ (middle graph), there was a mix
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Figure 11: The average lag between two isolated cilia (circles) and two periodic cilia (squares). The top plot
corresponds to the cilia initialized with a 45◦ phase difference, the middle plot corresponds to the cilia initialized
with a 90◦ phase difference and the bottom plot corresponds to the cilia initialized with a 180◦ phase difference.

of in-phase and out-of-phase steady states. Finally, for the initial phase difference of 180◦

(bottom graph), the steady state was out-of-phase with only one exception. The figure
also shows that when both the isolated and periodic cases tended to an in-phase steady
state, the lags in the periodic case were closer to zero.

Fig. 12 show the average period for the simulations corresponding to Fig. 11. In gen-
eral, for the periodic regime the figure shows that when the steady state is in-phase, the
period is shorter than in the isolated cilia case. Similarly, when the steady state is out-of–
phase, the period is longer than in the isolated cilia case. We point out that a cilium may
trace a steady state cycle consisting of a shorter beat followed by a longer one. In this
case, the two cilia are considered to be in a nearly in-phase steady state as long as the lag
between the switching times after the power stroke is within a small percentage of the
average period.
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Figure 12: The average period for two isolated cilia (circles) and two periodic cilia (squares). The period shown
is the average of the periods of each of the two cilia over the last 25 beats of the simulation. The top plot
corresponds to the cilia initialized with a 45◦ phase difference, the middle plot corresponds to the cilia initialized
with a 90◦ phase difference and the bottom plot corresponds to the cilia initialized with a 180◦ phase difference.

4 Conclusions

We have derived the closed form expression for the fundamental solution of Stokes equa-
tions in two space dimensions with periodic boundary conditions in the x-direction and
a solid plane wall at y= 0. To accommodate the no-slip condition on the wall, the sys-
tem of images was used. The formulation has been derived in the context of regularized
Stokeslets; however, the expression for the traditional (singular) Stokeslet is easily recov-
ered by taking the limit as the regularization parameter approaches zero. Applying this
formulation to compute the swimming speed of an infinite waving sheet and compar-
ing the result with Taylor’s analytic expression for small amplitude waves provided a
validating example of our method, which is not restricted to small amplitude waves. A
second example of a cylinder moving parallel and perpendicular to the wall provided
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further validation of the method and showed that the net force for the parallel motion
is smaller for smaller periodic domains. The net force for the perpendicular motion was
insensitive to the periodic domain size.

The usefulness of the result was further demonstrated by applying it to compute the
flow generated by cilia. The cilium model was adapted from [13] in which dyneins from
one microtubule attach and detach to different sites in the other microtubule. This mech-
anism applied asymmetrically generates a cilium beat that is not prescribed a priori and
produces particle transport. Several properties of cilia such as synchronization and ef-
fective fluid transport were investigated in terms of their dependence on the spacing
between individual cilia in both periodic and isolated regimes.

The computational method developed for singly-periodic flows in two dimensions
bounded by a plane is based on the explicit Green’s function. The closed-form formula
for the velocity makes the method easy to implement as an N-body problem where each
force contributes to the velocity of all points of the cilia. A limitation of our fluid model
is that while the formulation is possible in two dimensions, it does not extend to three
dimensions in a straightforward way, where no closed-form expression for the doubly-
periodic Stokeslet is available and the models have to resort to fast summation techniques
to evaluate series solutions [9, 18, 24, 25, 31, 40]. The cilium model in two dimensions is
limited to two microtubule doublets and can be thought of as representing the motion
of “cilium sheets” extending infinitely into the paper. For this reason, the fluid velocities
in between two cilia tend to have small magnitudes (see e.g. Fig. 10(c)-(d)) compared to
three dimensions where the flow can go around the cilia and develop more substantive
velocities between cilia. In spite of the limitations, the two-dimensional model displays
a rich set of relevant behaviors and provides insights transferrable to three dimensions
related to cilia beat synchronization and the emergent dynamics based on the switching
mechanism between power and recovery strokes.
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