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THE SINGULARITY-SEPARATED METHOD FOR

THE SINGULAR PERTURBATION PROBLEMS IN 1-D

CHUANMIAO CHEN1 AND JING YANG1,2

Abstract. The singularity-separated method(SSM) for the singular perturbation problem −ǫu′′+
bu′ + cu = f(x), u(0) = u(1) = 0, is proposed for the first time. The solution is expressed as
u = w − v, where w is the solution of corresponding third boundary value problem and v is an
exact singular function. We have proved a global regularity, ||w||2 ≤ C, where the constant C is
independent of ǫ, and discussed three kinds of finite element (FE) methods with SSM. Numerical
results show that these FE-solutions have the high accuracy when only one element in boundary
layer is taken.

Key words. Singular perturbation problem, singularity-separated method, third boundary value,
second order regularity, finite elements.

1. Introduction

L.Prandtl in 1904 found that the speed of fluid moved in a pipeline would de-
crease acutely along the wall, which was called boundary layer phenomenon. This
phenomenon is common in many practical fields. Mathematically, if the coefficient
of the highest order derivative term in a differential equation is a small parameter,
its solution often has a boundary layer. It is very difficult to simulate numerically
the singular perturbation solution. In this paper we will propose a new idea to deal
with this difficulty.

We consider one-dimensional singular perturbation problem

(1)

{

Au = −ǫu′′ + bu′ + cu = f(x) in J = [0, 1]
u(0) = 0, u(1) = 0 or u′(1) = 0

where ǫ is a small parameter, e.g., ǫ = 10−3 ∼ 10−10, constants b > 0, c > 0.
The solution has the singularity eb(x−1)/ǫ in the boundary layer near x = 1. De-
note by τ = p0ǫ| ln ǫ|/b the width of boundary layer. Early the finite difference
method(FDM) was used and its error in boundary layer vibrates strongly [11]. For
this situation G.Shishkin[10, 12] proposed a famous Shishkin-mesh, i.e., J is divided
into two subintervals J0 = (0, 1−τ) and J1 = (1−τ, 1), in which the smooth subin-
terval J0 is subdivided into N-uniform meshes with step-size h = (1− τ)/N ≈ 1/N ,
and the boundary layer J1 is subdivided into N-uniform meshes with the much
smaller step-size h′ = τ/N << h. The convergence of FDM under the Shishkin
mesh was studied [1, 10, 12, 13]. Besides, the finite element method (FEM) was
also discussed [4, 8]. The Shishkin-mesh is successful to simulate the singular per-
turbation problems up to now.

We are interesting in (local) discontinuous Galerkin finite element methods(LDG)
much more. It is well-known that LDG can simulate the acute change of singular
solution very well [18]. By introducing a new variable q = u′, the original equation
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(1) becomes a first order elliptic system

(2)







−ǫq′ + bq + cu = f(x),
u′ − q = 0,
u(0) = 0, u(1) = 0 or q(1) = 0,

Celiker-Cockburn [2] discussed the highest order superconvergence for LDG solu-
tion when ǫ = 1. At the same time Xie-Zhang [15, 16, 17] independently studied
LDG method on Shishkin meshes for the singular perturbation problem, and the
vibration of error was weakened greatly. They got the uniform convergence and
superconvergence independent of ǫ.

The accuracy of numerical approximation depends not only on the number of the
grid nodes, but also on the parameter ǫ. The smaller ǫ is, the thinner the boundary
layer is, and the more acutely the solution varies. We feel that Shishkin meshes
have some defects for high dimensional problems. For example, more and more
nodes concentrate in the boundary layer of domain so that the geometrical aspect
ratios of the meshes become very large, even the meshes near corner are extremely
small, thus many troubles will appear in FE-approximation, such as the accuracy,
efficiency, stability and so on. In numerical simulation, we gradually realize that
it is necessary to improve the mathematical expression of singular perturbation
solution. Numerical algorithms strongly depend on the regularity estimates of the
solution, and constructing various singular functions is a fundamental method to
study the regularity. They are systematically summarized in monograph [11], and
the singular functions in 1-D are also discussed in it. Generally speaking, these
singular functions are applied to study the regularity, but (maybe due to their
inexactness) they have not been taken as a correct function to construct a new
high-performance algorithm.

So we propose a new idea, called singularity-separated method(SSM). We de-
compose the original problem into two sub-problems as follows. Firstly introduce
an auxiliary third boundary problem, whose solution has weaker singularity and
the free term f is eliminated. Secondly construct a singular correct function ex-
actly, which is a special solution with homogenous free term f = 0, and is a part
of numerical solution we need. It should be emphasized that these solutions of two
sub-problems have the weaker singularity, which are directly and simply applied
in FE-computation. In particular only one or two elements in boundary layer are
needed, thus the local refinement of Shishkin mesh is not necessary. This is the
main aim of us. Although only one-dimensional case is discussed in this paper, the
theoretical and computational framework proposed are valid for multi-dimensional
singularly perturbed elliptic and convection-diffusion problems, which need some
new analysis techniques yet.

We also have another motivation. The solutions u of fluid dynamics prob-
lems with viscosity, such as Navier-Stokes equation, have classical energy estimate
‖u‖1 ≤ ‖f‖/ǫ2. For small ǫ, the bound becomes awfully large, unless f is also small.
Thus the essential difficulty will occur in studying the solvability by the fixed point
principle and numerical simulations. We want to know that whether SSM can solve
the trouble f . This is an expectation in future.

An outline of this article is as follows. In Section 2, we present the singularity
separated method and state two results which provide the theoretical basis of SSM.
The proofs of those two theorems are carried out in details in Section 3. In Section 4,
we present three kinds of FEMs with SSM and the numerical experiments provided
show the robustness of SSM.
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We use the Sobolev space Wn,p(J) and Hn(J) with norms ||u||n,p,J and ||u||n,J ,
respectively. The index J is often omitted. The constant C is independent of u
and ǫ.

2. The singularity-separated method

Consider the problem (1). The homogenous equation Au = 0 has two eigenvalues

λ1 =
−2c

b +
√
b2 + 4cǫ

≈ −c

b
, λ2 =

b+
√
b2 + 4cǫ

2ǫ
≈ b

ǫ
, λ1 + λ2 =

b

ǫ
.

Let u0 be a special solution of Au = f , its general solution is

(3) u(x) = u0(x)− C1φ1(x)− C2φ2(x), φ1(x) = eλ1x, φ2(x) = eλ2(x−1).

For b = c = 1, f = ex, u0(x) = ex/(2− ǫ) . By u(0) = u(1) = 0, the solution of (1)
is

(4) u(x) =
1

2− ǫ
{ e1−λ2 − 1

1− eλ1−λ2

φ1(x) +
eλ1 − e

1− eλ1−λ2

φ2(x) + ex},

where φ2(1) = 1, φ′
2(1) = O(ǫ−1). Meanwhile φ2(1 − τ) = e−τλ2 = e−p0| ln ǫ| = ǫp0

is very small, and we choose p0 ≥ m+ 1 where m is the degree of FE-solution.
Now we shall rewrite the expression (4). Note that if ǫ = 10−k and k ≥ 3,

φ2(0) = e−λ2 ≈ e−1/ǫ = 10−0.43∗10k ≤ 10−430 = 0 can be neglected. By (3) we
have u(0) = u0(0) − C1 − C2e

−λ2 = 0, u(1) = u0(1) − C1e
λ1 − C2 = 0, and then

define C1 = u0(0) and C2 = u0(1)− u0(0)e
λ1 . So the solution u(x) is composed of

two parts, u = w − v, in which w(x) = u0(x) − C1φ1(x) is the regular term and
v = C2φ2(x) is the singular term. This make us realize the separation of singularity.
For any f(x), how to construct the regular solution w(x) is key. So we propose the
singularity-separated method as follows.

Step 1. Introduce an auxiliary third boundary value problem

(5)

{

Aw = −ǫw′′ + bw′ + cw = f(x),
w(0) = 0, A1w = bw′(1) + cw(1) = f(1)

then ǫw′′(1) = 0 and the singularity of solution is weakened. We shall prove:
Theorem 1. For f(x) ∈ Wn+1,∞(J), the solution of (5) can be decomposed

into

(6) w = F (x) − v(x), F (x) =
n
∑

j=0

ǫjwj(x) + ǫn+1Rn, v = C2φ2(x),

where |C2| ≤ Cǫ2, and there are global regularities

(7)







||wj ||n+2−j,∞,J0 ≤ CM, ||wj ||n+2−j,∞,J1 ≤ CMτ0.5, n ≤ p0 + 2,
||v||m,J0

≤ CMǫ2−m, ||v||m,J1
≤ CMǫ2.5−m, 0 ≤ m ≤ 2,

max |Rn(x)| ≤ CM, ||Rn(x)||1,J ≤ CM, 0 ≤ x ≤ 1,

where M = ||f ||n+1,∞,J and the constant C is independent of ǫ.
Remark 1. In Theorem 1, |C2| ≤ Cǫ2 is key to the most important global

regularity ||w||2 ≤ ||F ||2 + ||v||2 ≤ CM . Because each term ǫjwj in (6) includes a
factor ǫj , F (x) is of the higher regularity.

Step 2. Construct an explicit singular function

(8) g(x) = w(1)φ2(x), φ2(x) = eλ2(x−1),

which satisfies Ag = 0 and then g(1) = w(1) and g(0) = w(1)e−λ2 ≈ 0.
Step 3. The difference z = u− (w − g) satisfies

(9) Az = 0, z(0) = g(0) = w(1)e−λ2 ≈ 0, z(1) = 0.
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By the following Theorem 2, we can think z = 0. Thus we have the decomposition

(10) u(x) = w(x) − g(x) +O(e−b/ǫ), u′(x) = w′(x) − g′(x) +O(e−b/ǫ)/ǫ.

Theorem 2(Estimates of z). The solution z = u− (w − g) of (9) has

(11) |z(x)| ≤ |g(0)|, |z′(x)| ≤ C|g(0)|/ǫ, g(0) = O(e−b/ǫ).

These two theorems above provide theoretical basis for our new high-performance
algorithm.

3. The proofs of Theorem 1 and Theorem 2

Theorem 3. The solution for the problem

(12)

{

Az = −ǫz′′ + bz′ + cz = f,
z(0) = α, z(1) = β

has the estimates

(13) |z(x)| ≤ M = max(|α|, |β|) + Cmax |f(x)|, |z′(x)| ≤ CM/ǫ.

Proof. The first estimate is derived by maximum principle. Actually setting
fm = max|f(x)|, we can construct v = z − fm/c satisfying

(14)

{

Av = −ǫv′′ + bv′ + cv = Az − fm = f − fm ≤ 0,
v(0) = α− fm/c, v(1) = β − fm/c

If v have a positive maximum value v(x0) > 0 at x0 ∈ (0, 1), there are v′(x0) =
0, v′′(x0) < 0, and then Av(x0) > 0 which contradicts (14). So the positive maxi-
mum will occur at the endpoints, and we have v(x) ≤ max{max{v(0), v(1)}, 0} ≤
max{|α|, |β|}. Similarly, we can construct v = z + fm/c and prove v(x) ≥ min
{min{v(0), v(1)}, 0} ≥ −max{|α|, |β|}. Thus the first estimate in (13) follows by
z = v ± fm/c.

Next, multiplying Az = f by x and integrating by parts in (0, x), we have

−ǫxz′ + bxz + ǫz(x)− ǫz(0) +

∫ x

0

(−bz + cxz)dx =

∫ x

0

xfdx.

Thus ǫ|z′|x ≤ CM , and ǫ|z′(x)| ≤ CM for x ≥ 1/2. Similarly, multiplying Az = f
by x− 1 and integrating by parts in (x, 1), we have

ǫ(x− 1)z′(x)− b(x− 1)z(x) + ǫz(1)− ǫz(x)

+c
∫ 1

x (x − 1)zdx−
∫ 1

x bzdx =
∫ 1

x (x− 1)fdx.

If x ≤ 1/2, ǫ|z′(x)| ≤ CM is also obtained. Theorem 3 is proved.
In particular, if f = 0, α = g(0), β = 0, Theorem 2 is a corollary of Theorem 3.
Theorem 4. The energy estimates for the solution w(x) of (5) are

(15)

{

ǫ||w′||2 + |w(1)|2 + ||w||2 ≤ C||f ||2 + Cǫ2|f(1)|2 + Cw2(0),
ǫ|w′(0)|2 + ||w′||2 +max |w(x)|2 ≤ C||f ||2 + Cǫ|f(1)|2 + Cw2(0).

The second estimate is invalid under the first boundary condition w(1) = β.
Proof. Set w(0) = γ. Integrating 2wAw = 2wf over J , and integrating by parts,

under the third boundary condition in (5), we have

(b+ 2cb−1ǫ)w2(1) + 2ǫ||w′||2 + 2c||w||2
= 2(f, w) + 2ǫf(1)w(1)/b− 2ǫw′(0)α+ bγ2.

Using Young’s inequality to eliminate w and w(1) on the right hand side, we get

(16) w2(1) + ǫ||w′||2 + ||w||2 ≤ C||f ||2 + Cǫ2f2(1) + Cǫ2|w′(0)|2 + Cγ2.



106 C. CHEN AND J. YANG

Similarly, integrating 2w′Aw = 2w′f over J and integrating by parts, we have

ǫ|w′(0)|2 + 2b||w′||2 + (c− ǫ(c/b)2)w2(1)
= 2(f, w′) + ǫb−2(f2(1)− 2cf(1)w(1)) + cγ2.

Using Young’s inequality and |w(x)| = |w(0) +
∫ x

0 w′(x)dx| ≤ |γ|+ ||w′||, we get

(17) ǫ|w′(0)|2 + ||w′||2 +max |w(x)|2 ≤ C||f ||2 + Cǫ|f(1)|2 + Cγ2,

which can also be employed to delete |w′(0)|2 in (16). Thus (15) is proved.
Now we turn to
The proof of Theorem 1. For the first order equation

(18) A1w0 = bw′
0 + cw0 = f, w0(0) = 0,

firstly we construct an explicit solution

w0(x) = L(f) = b−1e−cx/b

∫ x

0

ect/bf(t)dt,

where L(f) is an Volterra’s integral operator: L∞ → W 1,∞. Assume that f ∈
Wn+1,∞(J) for some n ≥ 1, and let M = ||f ||n+1,∞,J . By differentiating w0(x),
obviously

(19) ||w0||n+2,∞,J ≤ CM.

To construct the solution F (x) in (6) by w0, substituting F into (5) we have

AF − f =
∑n

j=1 ǫ
j(A1wj − w′′

j−1) + ǫn+1(ARn − w′′
n) = 0,

and define one-by-one

(20)















A1wj = bw′
j + cwj = w′′

j−1,
wj(0) = 0, j = 1, 2, ..., n,
ARn = −ǫR′′

n + bR′
n + cRn = w′′

n,
Rn(0) = 0, bR′

n(1) + cRn(1) = w′′
n(1),

thus wj = L(w′′
j−1) . In view of (19), there are

||w1||n+2−1,∞ ≤ C||w′′
0 ||n ≤ CM, ||w2||n+2−2,∞ ≤ C||w′′

1 ||n−1 ≤ CM

and so on. In general,

(21) ||wj ||n+2−j,∞,J ≤ CM, j = 0, 1, ..., n.

Besides, by Theorem 4 we have

(22) max |Rn(x)|+ ||Rn||1 ≤ C||w′′
n||+ Cǫ0.5|w′′

n(1)| ≤ CM.

Note that the F (x) satisfies AF = f , F (0) = 0 and

A1F (1)− f(1) = A1w0(1) +
∑n

j=1 ǫ
jA1wj(1) + ǫn+1A1Rn(1)− f(1)

= ǫ(
∑n

j=1 ǫ
j−1w′′

j−1(1) + ǫnA1Rn(1)) 6= 0,

thus we have to correct F (x) at x = 1. Setting ǫν = A1F (1) − f(1), and by (21)
and (22), we have

|ν| = |
n
∑

j=1

ǫj−1w′′
j−1(1) + ǫnA1Rn(1)| ≤ CM(

n
∑

j=1

ǫj−1 + ǫn) ≤ CM.

Finally we can express the solution w of (5) in the form

(23) w(x) = F (x)− v(x), v(x) = C2φ2(x), ǫλ2
i + bλi + c = 0, i = 1, 2,
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which satisfies the following boundary conditions

(24)

{

w(0) = F (0)− C2e
−λ2 = −C2e

−λ2 ≈ 0,
(A1w − f)(1) = (A1F − f)(1)− C2(bλ2 + c) = ǫ(ν − C2λ

2
2) = 0.

Thus we can define the constant C2 = νλ−2
2 = O(ǫ2), which is the most important

fact. Based on the estimates ||φ2||J0
≤ ǫp0+0.5 and ||φ2||J1

≤ ||φ2||J ≤ ǫ0.5, the
regularities (7) and Theorem 1 are proved.

We should point out that the proof of the regularity of w seems to be a little
complicated, actually its FE-computation is simple and direct.

4. Singularity-separated FEM

We compute the first order system corresponding to (5),

(25)







−ǫp′ + bw′ + cw = f,
w′ − p = 0,
w(0) = 0, (bp′ + cw)(1) = f(1).

Let τ = p0ǫ| ln ǫ|/b, p0 ≥ m+ 1. Take N0 uniform meshes in J0 = (0, 1 − τ) with
step-size h = (1 − τ)/N0 and nodes xj = jh, j = 0, 1, ..., N0, and take N1 uniform
meshes in J1 with small step-size h′ = τ/N1 ≤ h and nodes xj = xN0

+ (j −N0)h
′,

j = N0+1, ..., N0+N1, which are called N0+N1 meshes. Total number of elements
is N = N0 +N1. For small ǫ, we can even take N1 = 1.

To give a unified formulation for the continuous and discontinuous Galerkin finite
element methods, we denote the m-degree piecewise polynomial space by

Sh
m = {v ∈ Pm(Ij), Ij = (xj , xj+1)}.

Denote the left and right limits v±j = v(xj ± 0) at node xj , and the averaging flux

(or trace) v̂j = (v+j + v−j )/2. If v is continuous in J , then v+j = v−j and v̂j = vj .
Define the inner product

Gj(v
′, ξ) = −(v, ξ′)Ij + (v̂ξ−)j+1 − (v̂ξ+)j , G(v′, ξ) =

N−1
∑

j=0

Gj(v
′, ξ).

We should point out that only two boundary value conditions in (25) are given,
but four freedoms occur, thus we need to supplement two constraints in order
to guarantee the solvability of linear systems of equation. These constraints are
different for different FEMs.

We are interested in three kinds of FEM as follows.
1. Continuous Galerkin finite element method (CG).
The CG-solution {W,P} ∈ Sh

m satisfies

(26)

{

−ǫG(P, ξ) + b(P, ξ) + c(W, ξ) = (f, ξ), ξ ∈ Pm−1,
(W ′ − P, η) = 0, η ∈ Pm−1,

and the trial functions and test functions take the boundary conditions as follows

at x = 0, W = 0, η = 0, P = free, ξ = free,
at x = 1, W = free, η = free, P = (f − cW )/b, ξ = 0,

where {P, ξ} at x = 0 and {W, η} at x = 1 are free, thus their total freedoms are
matched, and the linear system (26) can be solved simultaneously.

2. Local discontinuous Galerkin method(LDG).
In each cell Ij we find {W,P} ∈ Sh

m satisfting

(27)

{

−ǫGj(P
′, ξ) + bGj(W

′, ξ) + c(W, ξ)Ij = (f, ξ)Ij , ξ ∈ Pm,
−Gj(W

′, η) + (P, η)Ij = 0, η ∈ Pm,
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and take the numerical fluxes as follows,

Ŵj =

{

W−
j = 0, j = 0,

W−
j , j = 1, 2 · · ·N ;

P̂j =

{

P+
j , j = 0, 1 · · · , N − 1

(−cŴN + f(1))/b, j = N,

where W+
N = W−

N and P−
0 = P+

0 are postulated. The total freedoms are matched,
so the linear systems of equations in (27) can be solved simultaneously.

3. Average discontinuous Galerkin method (ADG).
In each cell Ij we search for {W,P} ∈ Sh

m such that

(28)

{

−ǫGj(P
′, ξ) + bGj(W

′, ξ) + c(W, ξ)Ij = (f, ξ)Ij , ξ ∈ Pm,
−Gj(W

′, η) + (P, η)Ij = 0, η ∈ Pm,

and take the numerical fluxes (or traces) as follows,

Ŵj =







W+
0 = W−

0 = 0, j = 0,
(W−

j +W+
j )/2, j = 1, 2 · · · , N − 1,

W−
N = W+

N , j = N ;

P̂j =







P−
0 = P+

0 , j = 0,
(P−

j + P+
j )/2, j = 1, 2 · · · , N − 1,

(−cŴN + f(1))/b, j = N.

where W−
N = W+

N and P−
0 = P+

0 are postulated, thus the linear systems of equation
in (28) can be solved simultaneously. Note that the ADG is a symmetrical scheme,
and of several elegant properties [5, 9, 14].

Now we propose the singularity-separated FEM as follows.
1). Compute m-degree(continuous or discontinuous) FE-solutions {W,P} as

before.
2). Construct gh(x) = W (1)φ2(x), which is not a polynomial.
3). Define FE-solutions {U,Q} in (2) by the following expressions

(29) U(x) = W (x)− gh(x), Q(x) = P (x)− g′h(x).

Thus their errors can be expressed by ew = w −W, ep = w′ − P as follows.
Corollary 1. FE-solutions {U,Q} have the error expressions

(30)

{

eu(x) ≡ u(x)− U(x) = ew(x) − êw(1)φ2(x) +O(e−1/ǫ),
eq(x) ≡ p(x) −Q(x) = ep(x)− êw(1)λ2φ2(x) +O(e−1/ǫ/ǫ),

where Ŵ (1) is the flux of FE-solution W (1) and êw(1) = w(1) − Ŵ (1) is the key
error.

We summarize superconvergence results for three classes of FEM as follows.
Lemma 1. If ǫ = 1, for the m-degree FEM, then
1). CG has errors at nodes,{ew, ep} = O(h2m),m ≥ 1, see [3, 6, 7];
2). LDG [2, 18] has errors at nodes, {e−w , e+p } = O(h2m+1),m ≥ 0;
3). ADG [5, 9, 14] has errors at nodes,

{

{êw, êp} = O(h2m), for odd m,
{êw, êp} = O(h2m+2), for even m ≥ 0,

(The latter is the highest superconvergence known till now in various DG-methods).
We think these superconvergence results are valid for singular problems on the

whole.
Numerical comparison of three FEMs. We use the quadratic FEM based

on SSM to solve (2) and (25) with b = c = 1, f = ex. For different ǫ we take
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the same mesh numbers N0 = 10, N1 = 1. The errors for three kinds of FEMs at
x = 1 are listed in table 1. We see that êw(1) is of high accuracy independent of
ǫ, whereas the error êq(1) ≈ êw(1)/ǫ increases greatly, which verifies an important
fact that −êw(1)λ2φ2(x) is the main error source of eq(x) as mentioned in Corol-
lary 1. However, LDG and ADG solutions still have high accuracy thanks to the
high accuracy of êw(1). Under so coarse 10+1 meshgrids, the numerial results are
satisfactory. These properties are available to solve multi-dimensional problems.

Table 1. The errors of quadratic FEMs at x = 1 on 10 + 1 meshes.
CG-method LDG-method ADG-method

ǫ −eq(1) ew(1) −e+q (1) e−w(1) −êq(1) êw(1)

E-3 2.7949E-2 2.7433E-5 8.5292E-4 -1.5933E-9 8.5534E-4 3.4358E-9
E-4 4.9672E-1 4.9713E-5 9.9934E-5 7.5376E-10 9.7497E-5 4.4155E-10
E-5 5.3163E+0 5.3168E-5 1.1288E-4 1.0319E-9 1.9478E-5 9.0529E-11
E-6 5.3530E+1 5.3530E-5 1.0617E-3 1.0607E-9 5.6341E-5 5.4718E-11
E-7 5.3567E+2 5.3567E-5 1.0637E-2 1.0637E-9 5.1196E-4 5.1133E-11
E-8 5.3570E+3 5.3570E-5 1.0640E-1 1.0640E-9 5.0779E-3 5.0774E-11
Rate O(h4/ǫ) O(h4) O(h5/ǫ) O(h5) O(h6/ǫ) O(h6)
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