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Abstract. We introduce an optimization model of the support vector regression with the group
lasso regularization and develop a class of efficient two-step fixed-point proximity algorithms to
solve it numerically. To overcome the difficulty brought by the non-differentiability of the group
lasso regularization term and the loss function in the proposed model, we characterize its solutions

as fixed-points of a nonlinear map defined in terms of the proximity operators of the functions
appearing in the objective function of the model. We then propose a class of two-step fixed-
point algorithms to solve numerically the optimization problem based on the fixed-point equation.
We establish convergence results of the proposed algorithms. Numerical experiments with both

synthetic data and real-world benchmark data are presented to demonstrate the advantages of
the proposed model and algorithms.
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1. Introduction

The support vector machine (SVM) has been widely used in many applications
including text/image recognition [8, 35], face detection [29], bioinformatics [4, 6],
since its introduction in [13]. In general, we could consider SVM in two main
categories [15, 31, 36]: support vector classification (SVC) [16, 18] and support
vector regression (SVR) [2, 32, 33]. The standard ℓ2-norm SVC aims at finding
the best hyperplane that has the largest distance to the nearest points of each
class. It turns out that this hyperplane is determined by a small fraction of the
training points that are called the support vectors. The standard ℓ2-norm SVR
performs in an analogical way. It maximizes the margin from the hyperplane to the
furthest point to get the best fitting hyperplane. Similarly, this hyperplane is also
determined by only a small subset of the training points. In this paper we shall
focus on SVR.

For the purpose of promoting sparsity of the support vectors, the SVM with
the ℓ1-norm regularizer [31, 36, 38] was put forward. It is well received that the
ℓ1-norm regularizer produces sparse solutions [34]. In particular, the ℓ1-SVM has
been proven to be advantageous when there are redundant noise features [38] and
to have shorter training time than the standard ℓ2-SVM [20]. A natural extension
of the ℓ1-norm regularization is the group lasso regularization that could be viewed
as a group-wise ℓ1-norm. It has been shown in [19, 26, 37] that group lasso reg-
ularization overwhelms the ℓ1-norm regularization when the optimal variable has
the group structure. The group lasso regularization performs better when the re-
gression problem has the prior information with group structure [14, 26, 37]. On
the other hand, applications with cluster structure have been observed in practice
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[10, 25]. Therefore, in this paper we shall consider the SVM model with the group
lasso regularization.

The main challenge of solving the SVM model with the group lasso regularization
comes from the non-differentiability of the SVM loss functions and the group lasso
regularization term. A popular technique [9, 11] is to solve a smooth approxima-
tion of the original model instead. However, it may bring an extra approximation
error term and thus we prefer solving the original model rather than a smooth
approximation.

The goal of this paper is to develop numerical algorithms of solving the original
SVR model with the group lasso regularization. Specifically, we shall employ the
techniques of proximity operators to construct a two-step fixed-point proximity
algorithm. We point out that fixed-point proximity algorithms have been popular
in solving non-differentiable optimization models in image processing [21, 22, 27, 28]
and machine learning [1, 23, 24]. We shall first characterize solutions of the non-
differential model as fixed-points of certain nonlinear map defined in terms of the
proximity operator of the convex functions involved in the objective function. We
then employ a matrix splitting technique to derive a class of two-step algorithms
to compute the fixed points.

The rest of this paper is organized as follows. In Section 2, we introduce the
optimization model of the group lasso regularized SVR. In Section 3, we characterize
solutions of the proposed model as the fixed-points of a nonlinear map defined in
terms of the proximity operators of the convex functions appearing in the objective
function. We develop a class of two-step proximity algorithms for computing the
fixed-points and present its convergence analysis in Section 4. We demonstrate the
performance of the proposed model and algorithms in Section 5 through numerical
experiments with both synthetic data and real-world benchmark data. We draw a
conclusion in Section 6.

2. SVR with Group Lasso Regularization

In this section, we shall introduce the model of the SVR with group lasso reg-
ularization. To this end, we first recall the models of the standard ℓ2-norm SVR
(ℓ2-SVR) and the variant ℓ1-norm SVR (ℓ1-SVR).

We start with the notation used throughout this paper. We denote by Rm the
usual m-dimensional Euclidean space and define

Rm+ := {x ∈ Rm : xi ≥ 0}.

For a positive integer m ∈ N, we set Nm := {1, 2, . . . ,m}. The standard inner
product is defined for any x,y ∈ Rm by

⟨x,y⟩ :=
∑
i∈Nm

xiyi.

For p ∈ N2, we define the ℓp norm for x ∈ Rm by

∥x∥p =

(
m∑
i=1

|xi|p
)1/p

.

We next recall the SVR models. Given instances {(xi, yi) : i ∈ Nm} ⊆ Rn × R,
the standard ℓ2-norm soft margin SVR aims at finding the best hyperplane that
has the largest margin to the farthest training points. This leads to the following
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optimization problem

(1)

min

{
1

2
∥w∥22 +

C

m

∑
i∈Nm

(ξi + ξ∗i ) : w ∈ Rm, ξ, ξ∗ ∈ Rm+ , b ∈ R

}
subject to ⟨w,xi⟩+ b− yi ≤ ϵ+ ξi,

yi − ⟨w,xi⟩ − b ≤ ϵ+ ξ∗i , i ∈ Nm,

where ϵ > 0 is a prescribed real number. The desired determined function f is
given by

f(x) = ⟨w,x⟩+ b, for x ∈ Rn.
By the theory of Lagrangian multipliers, the solution w of problem (1) has the form

w =
∑
i∈Nm

αixi, for some αi ∈ R+,

and only a small fraction of αi, i ∈ Nm are non-zero. The training point xi cor-
responding to the non-zero parameter αi is called support vector. By defining
ϵ-insensitive loss function [36]

L̃ϵ(w,xi, yi, b) := max
{
⟨w,xi⟩+ b− yi| − ϵ, 0

}
,

problem (1) has an equivalent unconstrained form [31]:

min

{
1

2
∥w∥22 +

C

m

∑
i∈Nm

L̃ϵ(w,xi, yi, b) : w ∈ Rm, b ∈ R
}
.

The notion of kernels [13, 31, 36] was introduced to handle the nonlinear problem
by implicitly mapping the inputs into high-dimensional feature spaces and replacing
the inner product with the kernel evaluation. Therefore, when a kernel function
K(·, ·) is given on Rm×Rm, and the standard ℓ2-SVR performs on the corresponding
feature space, the optimization problem is as follows:

min

{
1

2

∑
i∈Nm

∑
j∈Nm

αiαjK(xi,xj) +
C

m

∑
i∈Nm

Lϵ(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
,

where the loss function

(2) Lϵ(α,xi, yi, b) := max


∣∣∣∣∣∣
∑
j∈Nm

αjK(xi,xj) + b− yi

∣∣∣∣∣∣− ϵ, 0

 ,

and the prediction function f has the form

f(x) =
∑
j∈Nm

αjK(xj ,x) + b.

In order to further promote sparsity of the support vectors and use the liner
combination of the training points as a representation of the solution, SVR with
the ℓ1 norm regularizer [36, 31, 38] is put forward by using a different regularizer,
that is, the ℓ1-norm of the coefficient α ∈ Rm, as

(3) min

{
∥α∥1 + C

∑
i∈Nm

Lϵ(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
.

The ℓ1-SVR (3) is advantageous when there are redundant noise features [38].
By redundant noise features, we mean that the dictionary of basis functions has
redundant basis functions. Usually, it has shorter training time than the standard
ℓ2-SVM (1) [20]. However, when the data set has a cluster structure, that is, the
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variable in problem (3) has a group sparse property, the ℓ1-norm regularization
might not generate a group sparse solution in general. This requires a model to
take advantage of the cluster structure in the data set.

We next introduce the SVR with group lasso regularization which serves this
purpose. Suppose that the m-dimensional variable can be divided into l disjoint
groups Gj , j ∈ Nl. For α ∈ Rm we define

αGi := (αj : j ∈ Gi).

The group lasso regularized SVR can be written as

(4) min

{∑
i∈Nl

δi∥αGi
∥2 + C

∑
i∈Nm

Lϵ(α,xi, yi, b) : α ∈ Rm, b ∈ R
}
,

where δi > 0, i ∈ Nl are prescribed parameters. Note that the group lasso is the
sum of the ℓ2-norm of the variable groups, and it would promote solutions that
preserve the structure information, or more precisely, the group sparsity [14, 19,
26, 37]. We also remark that both the group lasso term and the loss function in
(4) are non-differentiable, which brings challenges to solve this model numerically.
A popular approach is to use some differentiable approximations [11] of the group
lasso term, or use the squared ϵ-sensitive loss function [31] instead of solving the
approximate smooth models. However, this might bring extra approximation errors
to the original model and we prefer solving the original model in this paper. In
what follows, we refer to the proposed group lasso model (4) as GL-SVR.

We next rewrite problem (4) in a compact form to facilitate the development of
our algorithms. To this end, we define for any s ∈ Rm+1

(5) φg(s) :=
∑
i∈Nl+1

δi∥sGi∥2.

Here, Gi’s and δi’s are given groups and parameters for i ∈ Nl, and for i = l + 1,
we set Gi = {m+ 1} and δi = 0. We also define for any s ∈ Rm

(6) ψϵ,y(s) := C
∑
i∈Nm

(|si − yi| − ϵ|)+,

where |t|+ := max{|t|, 0}, t ∈ R. Let u ∈ Rm+1 be the vector coupling the variables

α ∈ Rm and b ∈ R in (4) as u :=

(
α
b

)
, K be the kernel matrix defined by

K := [K(xi,xj)]i,j∈Nm ,

1 be the m× 1 vector of all ones, and B be the m× (m+ 1) matrix defined by

(7) B := [K 1].

It follows from a direct computation that the GL-SVR model (4) is equivalent to

(8) min{φg(u) + ψϵ,y(Bu) : u ∈ Rm+1}.

We observe from the above formulation that both φg and ψϵ,y are non-differentiable
functions, and this results in the computational difficulty of solving this model.
However, though non-differentiable, we shall show it in Section 4 that their prox-
imity operators have closed form, which makes it amenable to develop proximity
algorithms for it.
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3. A Characterization of the Solution

In this section, we shall characterize the solutions of model (8) as fixed-points
of the proximity operators of the functions appearing in the objective function. It
will enable us to develop the proximity algorithms in Section 4. To this end, we
first review several necessary notions and results.

We begin by recalling the notions of the proximity operator. We denote by
Γ0(Rd) the class of all lower semi continuous convex functions f : Rm → (−∞,+∞]
such that

dom(f) := {x ∈ Rm : f(x) < +∞} ̸= ∅.
The proximity operator of a function f ∈ Γ0(Rn) is defined for z ∈ Rm by

proxf (z) := argmin{1
2
∥x− z∥2 + f(x) : x ∈ Rm}.

This operator has many good mathematical properties, see [30] for a survey. In
particular, we show its connection to the subdifferential of a convex function, which
plays a crucial role in developing the fixed-point chracterization of the solution of
(8). We next review the definition of the subdifferential. The subdifferential of a
function f ∈ Γ0(Rm) at z ∈ Rm is defined by

∂f(z) := {y : y ∈ Rm and f(x) ≥ f(z) + ⟨y,x− z⟩ for all x ∈ Rm}.

A relation [3, 27] between the proximity operator and the subdifferential may be
described for f ∈ Γ0(Rm) and z ∈ Rm as

(9) x ∈ ∂f(z) if and only if z = proxf (x+ z).

It follows immediately from (9) that

(10) x ∈ ∂f(z) if and only if x = (I− proxf )(x+ z),

where I is the identity matrix.
We are now ready to present a characterization of solutions of problem (8). The

proof of the following theorem originates from [27]. We outline it for the convenience
of the reader.

Theorem 1. A vector u ∈ Rm+1 is a minimizer of problem (8) if and only if there
exist λ, β > 0 and q ∈ Rm such that

(11)
u = prox 1

λφg
(u− Cβ

λ
B⊤q)

q = (I− prox 1
Cβψϵ,y

)(Bu+ q).

Proof. We first show the necessity. Suppose that u is a minimizer of (8). It follows
from Fermat’s rule (see [3], chap. 16) and the chain rule [3] that

0 ∈ ∂(φg(u) + ψϵ,y(Bu)) = ∂φg (u) + BT∂ψϵ,y (Bw).

Since both φg and ψϵ,y are convex and the subdifferential of a convex function is a
nonempty set [3], for any positive numbers λ and β, there exist

(12) p ∈ ∂ 1
λφg

(u) and q ∈ ∂ 1
Cβψϵ,y

(Bu)

such that

(13) 0 = λp+ CβBTq.

Since

q ∈ ∂ 1
Cβψϵ,y

(Bu),
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the second equality of (11) follows from the relation (10) between the proximity
operator and the subdifferential of a convex function. Moreover, from (13) and

the first inclusion of (12), we obtain Cβ
λ B⊤q ∈ ∂ 1

λφg
(u), which together with (9)

implies the first equality of (11).
We next show the sufficiency. It follows from (11) and the relations (9) and (10)

that

−CβB
Tq

λ
∈ ∂ 1

λφg
(u) and q ∈ ∂ 1

Cβψϵ,y
(Bu),

which imply that

0 = −CβBTq + CβBTq ∈ ∂φg (u) + BT∂ψϵ,y (Bu).

That is,
0 ∈ ∂(φg(u) + ψϵ,y(Bu)).

By Fermat’s rule, u is a minimizer of (8). �
We observe from the above Theorem that the minimization problem (8) is trans-

ferred into a fixed point problem. This equivalent reformulation brings convenience
in both designing numerical algorithms and conducting the convergence analysis as
we shall see in Section 4.

For the simplicity presentation, we rewrite the characterization (11) into a com-
pact form by coupling the two equations together. We define a vector v ∈ R2m+1

coupling the vectors u ∈ Rm+1 and q ∈ Rm as

v :=

(
u
q

)
,

and an operator T : R2m+1 → R2m+1 coupling the proximity operator of the
function 1

λφg and the operator of I− prox 1
Cβψϵ,y

as for any v ∈ R2m+1

(14) T (v) :=

(
prox 1

λφg
(u)

I− prox 1
Cβψϵ,y

(q)

)
.

Let

(15) P :=
λ

Cβ
I.

The characterization (11) can be reformulated as

(16) v = T ◦ E(v),

where

(17) E :=

[
I −P−1B⊤

B I

]
.

4. A Class of Two-Step Fixed-Point Proximity Algorithms

In this section, we shall develop efficient algorithms to solve the fixed-point
problem (16). In particular, we first show that due to the non-expansivity of the
matrix E, the algorithm generated by directly applying the Picard iteration on
equation (16) may not be convergent. We shall then introduce a matrix splitting
technique to derive a two-step iteration scheme and prove its convergence, following
the approach developed in [21]. Moreover, we shall also show that the two-step
iterative scheme will also speed up the convergence through numerical experiments
in Section 5.

We first study the Picard iteration algorithm of solving the fixed-point equation
(16) directly. Given the matrix B, the positive parameters C, λ and β. Choose u0
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and q0 as the initial points. Let v0 := (w0, q0)⊤, T be defined by (14), and E be
defined by (17). The Picard iterative sequence {vk}k∈N of T ◦ E is generated by
the following iteration

(18) vk+1 = T ◦ E(vk).

We point out that the convergence of the above sequence depends on whether the
operator T ◦ E is firmly nonexpansive. We next give a brief review of the definition
and some properties of firmly nonexpansive operators. We denote by S+ the set of
symmetric positive definite matrices. An operator S is called firmly nonexpansive
with respect to R ∈ S+ if

∥S(v1)− S(v2)∥2R ≤ ⟨S(v1)− S(v2),R(v1 − v2)⟩.

Here, ∥x∥R := ⟨x,x⟩R is the norm induced by the wighted inner product defined
by ⟨x,y⟩R := ⟨x,Ry⟩. It has been shown in [5] that the sequence {Skw0 : k ∈ N}
converges to a fixed-point of S for any initial w0 when S is firmly nonexpansive
with respect to a certain positve definite matrix R.

It has been proved in [12] that the proximity operators are firmly nonexpansive,
that is, the operator T is firmly nonexpansive. If E were also nonexpansive, then
the composition T ◦ E would be nonexpansive [5]. However, as we can see in
the following result, the matrix E in (16) is not nonexpansive. The proof of the
following proposition originates from [21]. We also outline it for the convenience of
the reader.

Proposition 1. If E is the operator defined in (17),

∥E∥R := sup{∥Ev∥R, ∥v∥R = 1},

and

(19) R :=

(
P 0
0 I

)
,

where P is defined by (15), then ∥E∥R > 1 and E is not nonexpansive.

Proof. We show the desired result by a direct computation of ∥E∥R. For any v =
(u, q) ∈ R2m+1 with ∥v∥2R = 1, it follows from the definition of E in (17) that

∥Ev∥2R = ∥u∥2P − 2⟨u,P−1BTq⟩P + ∥P−1BTq∥2P + ∥q∥22 + 2⟨q,Bu⟩+ ∥Bu∥22.

Note that ∥v∥2R = ∥u∥2P + ∥q∥22 = 1, and ⟨u,P−1BTq⟩P = ⟨q,Bu⟩. It follows that

∥Ev∥2R = 1 + ∥P−1BTq∥2P + Bu∥22.

Since B is non-singular, there exists a non-zero vector v = (u, q) with ∥v∥R = 1
such that

∥P−1BTq∥2P + ∥Bu∥22 > 0.

Therefore, by the definition of ∥E∥R, we have that ∥E∥R > 1. �

We point out that the Picard iteration (18) may not yield a convergent sequence
since E is not non-expansive. To overcome this difficulty, we shall split the expan-
sive matrix E to derive an equivalent fixed point formulation of a non-expansive
operator.

To this end, we first show how to split the matrix E to obtain a two-step iterative
scheme. We choose appropriate matrices M1,M2 (which would be specified later in
this section) and decompose the matrix E as

E = (E−M1 −M2) +M1 +M2.
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Equation (16) can then be rewritten as

(20) v = T ◦ ((E−M1 −M2)v +M1v +M2v).

Instead of using the Picard iteration (18), we consider the following iteration

(21) vk+1 = T ◦ ((E−M1 −M2)v
k+1 +M1v

k +M2v
k−1).

We observe from the above iterative scheme that it is an implicit scheme. How-
ever, one can choose M1 and M2 such that E−M1 −M2 is strictly block upper (or
lower) triangular and it would lead to an explicit iterative scheme, since v has two
blocks w and y. We also observe that the above iteration is a two-step scheme that
makes each iteration more efficient and speeds up the overall convergence, as we
can see from the numerical experiments in Section 5.

We next make specific choices of the matrices M1 and M2 to split the expansive
matrix E. Namely, we choose

(22) M1 :=

[
I (1− θ)P−1BT

(1 + θ)B I

]
, M2 :=

[
0 0

−θB 0

]
,

where θ is a constant to be specified later in convergence analysis. Substituting M1

and M2 into iterative scheme (21), we have the following iterative scheme

(23)

qk+1 = (I− prox 1
Cβψϵ,y

)(qk + B(uk + θ(uk − uk−1)))

uk+1 = prox 1
λφg

(uk − Cβ

λ
B⊤(qk+1 + (1− θ)(qk+1 − qk))).

It can be directly observed that the above iteration scheme has an explicit form.
We are now ready to present a two-step fixed-point proximity algorithm for solving
GL-SVR.

Algorithm 1 Two-step Fixed-Point Proximity Algorithm (TFP2A)

Given: the matrix B, the positive parameters C, θ, λ and β.
Initialization: u0, and q0.
repeat

Step 1: qk+1 = (I− prox 1
Cβψϵ,y

)(qk + B(uk + θ(uk − uk−1)))

Step 2: uk+1 = prox 1
λφg

(uk − Cβ
λ B⊤(qk+1 + (1− θ)(qk+1 − qk)))

until “convergence”

We remark that compared with the original Picard iteration scheme (18), the
proposed TFP2A splits the expansive operator, and results in a nonexpansive iter-
ative scheme, as we shall see in the convergence analysis to be presented later. We
also remark that both proximity operators in TFP2A can be explicitly calculated.

Efficient implementation of Algorithm 1 requires the availability of closed forms
of the proximity operator of the functions ψϵ,y and φg. We first compute the
proximity operator of the function ψϵ,y. To do this, we define a function ϕϵ : Rm →
R as for any z ∈ Rm

(24) ϕϵ(z) :=
∑
i∈Nm

(|zi| − ϵ)+.
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Proposition 2. If ϕϵ is defined by (24), then for any z ∈ Rn and β > 0, we have
that if ϵ ≥ C

2β ,

(25) (prox 1
β ϕϵ

(z))j =



zj − C
β , if zj ≥ ϵ+ C

β

ϵ, if ϵ ≤ zj < ϵ+ C
β

zj , if ϵ− C
β ≤ zj < ϵ

zj +
C
β , if −ϵ ≤ zj < ϵ− C

β

−ϵ, if −ϵ− C
β ≤ zj < −ϵ

zj +
C
β , if zj < −ϵ− C

β

, j ∈ Nn,

if ϵ < C
2β ,

(26) (prox 1
β ϕϵ

(z))j =



zj − C
β , if zj ≥ ϵ+ C

β

ϵ, if ϵ ≤ zj < ϵ+ C
β

zj , if −ϵ ≤ zj < ϵ

−ϵ, if −ϵ− C
β ≤ zj < −ϵ

zj +
C
β , if zj < −ϵ− C

β

, j ∈ Nn.

Proof. Note that the proximity operator of ϕϵ can be computed component-wise.
For each 1 ≤ j ≤ n, we have

(27) (prox 1
β ϕϵ

(z))j = argmin

{
1

2
(xj − zj)

2 +
C

β
(|xj | − ϵ)+ : xj ∈ R

}
.

Let

f(xj) :=
1

2
(xj − zj)

2 +
1

β
(xj)+ and t := argminf(xj).

When ϵ ≥ C
2β , we compute t in cases zj ≥ ϵ + C

β , ϵ ≤ zj < ϵ + C
β , ϵ −

C
β ≤ zj < ϵ,

−ϵ ≤ zj < ϵ− C
β , −ϵ−

C
β ≤ zj < −ϵ and zj < −ϵ− C

β . For the first case zj ≥ ϵ+ C
β ,

when xj ≥ ϵ, we have that

f(xj) =
1

2
(xj − zj)

2 +
C

β
(xj − ϵ).

Since zj − C
β ≥ ϵ, we have that the minimizer of f(xj) on [ϵ,∞) is zj − C

β and

f(ϵ) ≥ f(zj − C
β ). When −ϵ ≤ xj < ϵ, we have that

f(xj) =
1

2
(xj − zj)

2.

Since zj > ϵ, f(xj) decreases on [−ϵ, ϵ) and it follows that f(−ϵ) > f(ϵ). When
xj < −ϵ, then we have

f(xj) =
1

2
(xj − zj)

2 +
C

β
(−xj − ϵ).

Since zj +
C
β > ϵ, f(xj) decreases on (−∞,−ϵ). Therefore, the minimizer of f(xj)

on R is zj− C
β . The minimizer of the other cases can be computed in a similar way.

On the other hand, when ϵ < C
2β , we can obtain equation (26) by a similar

computation as above. �

To derive the proximity operator of function ψϵ,y, we recall a fact in [30]. Suppose
that f, g ∈ Γ0(Rm). If f(x) = g(x+ a) for any x,a ∈ Rm, then

(28) proxf (x) = proxg(x+ a)− a.
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Note that for any z ∈ Rm, ψϵ,y(z) = ϕϵ(z − y), where y is a vector consisting of
the labels yi, i ∈ Nm. It follows from (28) that

proxψϵ,y
(z) = proxϕϵ

(z − y) + y.

We next compute the operator of function φg.

Proposition 3. If φg is defined by (24), then for any z ∈ Rm+1 and λ > 0, we
have that

(29) (prox 1
λφg

(z))Gj = max

{
∥zGj∥2 −

δj
λ
, 0

}
zGj

∥zGj∥2
.

Proof. It suffices to compute the proximity operator at z group-wise, since the
groups of the variable z are non-overlapped. Note that for each group, we need to
compute a proximity operator of the ℓ2-norm at the group of the variable. And it
has been shown in [28] that for any s ∈ Rd and λ > 0, the proximity operator of
1
λ∥s∥2 is

(30) prox 1
λ∥·∥2

(s) = max

{
∥s∥2 −

1

λ
, 0

}
s

∥s∥2
.

Therefore, for each group Gj , j ∈ Nl+1, by replacing the parameter 1
λ by

δj
λ in (30),

we have equation (29). �
The rest of this section is devoted to convergence analysis of the proposed

TFP2A. To this end, we first review the definition of weakly firmly nonexpansive
introduced originally in [21].

Suppose that for any y,z ∈ R2m+1 there exists x ∈ R2m+1 such that

(31) x = T (E0x+M1y +M2z),

where E0 = E − M1 − M2 and E,M1,M2 are defined by (17) and (22). Let M :=
{M1,M2}. We define a mapping TM : R4m+2 → R2m+1 as

(32) TM : (y,z) → {x : x ∈ Rd, (x,y, z) satisfies equation (31)}.
We say an operator TM : R2d → Rd is weakly firmly nonexpansive with respect to

a matrix set M := {M̃1, M̃2} if for any (xi,ui,zi) ∈ gra(TM), the graph of TM,
for i = 1, 2,

(33) ⟨x2 − x1, (M̃1 + M̃2)(x2 − x1)⟩ ≤ ⟨x2 − x1, M̃1(u2 − u1) + M̃2(z2 − z1)⟩.
We first show that the mapping in TFP2A is weakly firmly nonexpansive map-

ping and then employ the results in [21] to derive the convergence analysis of
TFP2A.

Lemma 1. If TM is an operator defined by (32) with the set M = {M1,M2} defined
by (22), then TM is continuous weakly firmly nonexpansive with respect to M.

Proof. We first show the weakly firmly nonexpansivity of the operator TM. Recall-
ing the definition of the operator TM, we obtain that for any (xi,yi, zi) ∈ gra(TM),

xi = T ((E−M1 −M2)xi +M1yi +M2zi), i = 1, 2.

Since the operator T defined by (14) is firmly nonexpansive, we have that

(34) ∥x2−x1∥2 ≤ ⟨x2−x1, (E−M1−M2)(x2−x1)+M1(y2−y1)+M2(z2−z1)⟩.
By the definition of the matrix E in (17), we have that

(35) E = I+ R−1SB, where R is defined by (19), SB :=

(
0 −B⊤

B 0

)
.
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Substituting equality (35) into inequality (34) and noticing the fact that

⟨x2 − x1,SB(x2 − x1)⟩ = 0,

we have the desired inequality (33), which means TM is weakly firmly nonexpansive.
The continuity of TM follows from the continuity of the operator T in (14), and

this ends the proof. �

We are now ready to present the main convergence result of TFP2A.

Theorem 2. Suppose B is the matrix defined in (7). If θ ∈ R and positive constants
C, λ, β satisfy

(36)
β(1− θ)2

λ
<

1

C∥B∥22
,

and

(37)
max{Cβλ , 1}

1− |1− θ|
√

Cβ
λ ∥B∥2

|θ|∥B∥2 <
1

2
,

then the sequence {uk}k∈N generated by TFP2A converges to a solution of problem
(8).

Proof. By Lemma 1, we have that TM is weakly firmly nonexpansive. Since

P =
λ

Cβ
I,

it follows from a direct computation from (36) and (37) that

|1− θ|∥BP− 1
2 ∥2 < 1,

and
max{∥P−1∥2, 1}

1− |1− θ|∥BP− 1
2 ∥2

|θ|∥B∥2 <
1

2
.

This implies that H̃ := R(M̃1 + 2M̃2) is symmetric positive definite and∥∥∥H̃− 1
2RM̃2H̃

− 1
2

∥∥∥
2
<

1

2
,

where R are defined by (19). By Theorem 4.6 in [21], the sequence {vk} generated
by (21) converges to a fixed point v∗ of TM, that is,

v∗ = TM(v∗,v∗).

We let v∗ = (u∗, q∗). It follows that u∗ is a solution of problem (8). Since {vk}
converges to v∗, we also have {uk} converges to u∗, which finishes the proof. �

5. Numerical Experiments

In this section, we present numerical results to demonstrate the advantages of the
proposed GL-SVR model and the TFP2A algorithm. Specifically, we first conduct
a numerical experiment to show that on a simulation data set with group structure,
the proposed model is more effective than the standard ℓ1-norm SVR. We further
compare TFP2A with ADMM on two real-world benchmark data sets to show the
efficiency of TFP2A. All the numerical experiments are implemented on a personal
computer with a 2.6 GHz Intel Core i5 CPU and an 8G RAM memory.
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(a) ℓ1-SVR (b) GL-SVR

Figure 1. The result of training ℓ1-SVR and GL-SVR.

5.1. Simulation Data. The simulation data set contains 100 instances as training
data and 100 instances as testing data. They are generated randomly on the domain
[0, 1] × [0, 1]. We denote the whole data set as Xwhole and the set of the first 100
training instances as Xtrain. The labels of the instances in Xwhole are generated
by a group sparse kernel combination of the instances in Xtrain. That is, for each
xi ∈ Xwhole, i ∈ N200, we generate the corresponding label yi as

yi =
∑
j∈N100

αjK(xj ,xi) + b,

where xj ∈ Xtrain, j ∈ N100, and the coefficients αj , j ∈ N100 are divided into 10
groups. αj in odd groups are randomly set as 1 or −1, and αj in even groups are
set as 0. Here, we choose Gaussian kernel

K(x,y) := exp(−g∥x− y∥2), x,y ∈ R2

as the base kernel with parameter g = 1, and offset b = −0.5.
We compare the performance of ℓ1-SVR (3) and GL-SVR (4) on this simulation

data set. We apply the proximity algorithm proposed in [23] to solve the ℓ1-SVR
model, and use TFP2A to solve GL-SVR (4). We use the same Gaussian kernel
with parameter g = 1 and the same model parameter ϵ = 0.01. And parameters of
the algorithms are tuned to approximately achieve the best performance for each
model, while maintaining the same sparsity of each solution in order to be fair. We
compare the testing mean squared error (MSE) and the number of support vectors
of the two models. The numerical result is presented in Table 1. We further

Table 1. Comparison of ℓ1-SVM and GL-SVM in the mean
squared error (MSE) and numbers of support vectors (SVs).

Simulation MSE SVs
ℓ1-SVR 3.68×10−4 41
GL-SVR 1.30 ×10−4 40

visualize the estimated coefficients derived from the two models in Figure 1. The
estimated coefficients of the two models are illustrated in Figures 1. Clearly, in the
left figure, the solution of ℓ1-SVR is globally sparse; while in the right figure, the
solution of GL-SVR is sparse in groups.
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We observe from Table 1 and Figure 1 that the solution of Gl-SVR achieves
sparsity in groups and has a smaller MSE than ℓ1-SVR does, when the data set has
a group structure.

5.2. Real World Data. We next compare TFP2A with ADMM for solving GL-
SVR on two real world data sets from [7]. To this end, we first describe an ADMM
algorithm for solving GL-SVR model (8), followed by a detailed discussion on the
comparison of the proposed TFP2A and ADMM from the multi-step point of view.

We now describe the ADMM algorithm for solving problem (8). Given the matrix
B, the positive parameters C, µ and γ, we choose u0, z0, and x0 as initial points
and define the iteration scheme as below. For k = 0, 1, . . ., we generate uk+1, zk+1,
and xk+1 from uk, zk, and xk via the alternating iteration

(38)

zk+1 = proxγψϵ,y
(Buk + xk)

xk+1 = xk + Buk − zk+1

uk+1 = proxµφg
(uk − µ

γ
BT (Buk − zk+1 + xk+1)).

The algorithm parameters µ and γ are chosen to satisfy

0 < µ ≤ γ

∥B∥22
to ensure convergence of the algorithm. We remark that this scheme follows from
the augmented Lagrangian and a linearized technique, see [17, 30] for more details.

For convenience of understanding the difference between TFP2A and ADMM,
we reformulate the above ADMM iteration scheme (38) as follows. Let

qk := xk, γ :=
1

Cβ
, µ :=

1

λ
.

It follows from a direct computation that (38) is equivalent to

qk+1 = (I− prox 1
Cβψϵ,y

)(Buk + qk)

uk+1 = prox 1
λφg

(uk − Cβ

λ
B⊤(2qk+1 − qk)).

We further write it in a compact form by coupling the two equations together.
Introducing vk := (uk, qk)⊤,

Ē0 :=

[
0 −2P−1B
0 0

]
, M̄1 :=

[
I P−1B⊤

B I

]
, M̄2 :=

[
0 0
0 0

]
,

the above iteration scheme is equivalently rewritten as

vk+1 = T
(
Ē0v

k+1 + M̄1v
k + M̄2v

k−1
)
,

where T is as defined in (16).
It can be directly observed that the above iteration scheme is the same as (23)

with θ = 0. Moreover, in the above ADMM scheme, the matrix M̄2 is zero, which
means that the information vk−1 is not used for updating vk+1. That is, ADMM
is a one-step iteration method, while TFP2A is a two-step iteration method by
choosing the parameter θ appropriately. In general, the more information is used
in each iteration, the faster the algorithm converges. We shall further confirm the
advantages of TFP2A through presenting several numerical results on two real-
world benchmark data sets.

The first data set is “Housing” with 506 instances and each instance has 13
features. We use 300 instances as training data and the other 206 as testing data.
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The second data set is “Mg” with 1385 instances and each instance has 6 features.
We set 1000 instances as training data and the other 385 as testing data. We use
the same Gaussian kernel and the same regularized parameters C, ϵ, and δi, i ∈ Nm
for both algorithms. The stopping criterion is set to be the relative error between
the successive iterations less than a given tolerance, which we set as 10−7 in this
experiment. In each algorithm, the parameters are tuned to approximately achieve
the best prediction performance. We present the comparisons of MSE on testing
data, the iteration numbers, and computational time for training of TFP2A and
ADMM in Table 2.

Table 2. Comparison of ADMM and TFP2A in MSE, iteration
numbers and training time. For “Housing” and “Mg”, the param-
eter θ of TFP2A is set as 1.3 and 1.6, respectively.

Housing Mg
MSE iteration time MSE iteration time

ADMM 50.80 2059 1.60s 0.04 714 9.94s
TFP2A 50.74 648 0.47s 0.04 238 2.61s

We remark that both algorithms have similar MSE since they are essentially
solving the same model. However, TFP2A requires a much shorter training time
and less iterations than ADMM in both data sets.

6. Conclusions

We introduce the group lasso regularized SVR model and develop a novel two-
step fixed-point proximity algorithm to solve it. We establish the convergence result
of the proposed two-step fixed-point proximity algorithm. We perform numerical
experiments on both synthetic data sets and real-world benchmark data sets to
test the proposed model and algorithm. The numerical results demonstrate that
the proposed GL-SVR performs better that the standard ℓ1-SVR when the under-
lying data set has the group sparse structure, and the proposed algorithm is more
computationally efficient than ADMM on the two real-world benchmark data sets.
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