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FULLY DIAGONALIZED CHEBYSHEV SPECTRAL METHODS

FOR SECOND AND FOURTH ORDER ELLIPTIC

BOUNDARY VALUE PROBLEMS

JING-MIN LI, ZHONG-QING WANG∗, AND HUI-YUAN LI

Abstract. Fully diagonalized Chebyshev spectral methods for solving second and fourth order
elliptic boundary value problems are proposed. They are based on appropriate base functions for
the Galerkin formulations which are complete and biorthogonal with respect to certain Sobolev
inner product. The suggested base functions lead to diagonalization of discrete systems. Ac-
cordingly, both the exact solutions and the approximate solutions can be represented as infinite
and truncated Fourier series. Numerical results demonstrate the effectiveness and the spectral
accuracy.
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1. Introduction

Chebyshev spectral methods for solving ordinary/partial differential equations
on bounded domains have gained a rapid development during the last few decades,
due to the Fast Fourier Transforms (FFT) for Chebyshev polynomials, see [1, 2, 3,
5, 7, 8, 9, 10, 11, 14, 17, 18]. The approximations for the general second and fourth
order equations with constant coefficients (see for instance (19) and (31) below)
also achieve the optimal convergence rates. However, as pointed out in [16], it is
very important to choose an appropriate basis such that the resulting linear system
is as simple as possible.

For the second order equation (19), one usually chose the basis in the early years
as (cf. [6])

VN = span{φ2(x), φ3(x), · · · , φN (x)},
where

φk(x) =

{

Tk(x) − T0(x), k even,
Tk(x) − T1(x), k odd,

with Tk(x) being the kth degree Chebyshev polynomial. Unfortunately this basis
leads to a linear system with full matrix and hence its usage is virtually prohibited
in practice (see [16]). To this end, Shen [16] presented a new basis by choosing
φk(x) = Tk(x)− Tk+2(x). Note that

−(φ′′j , φk)ω =







2π(k + 1)(k + 2), j = k,

4π(k + 1), j = k + 2, k + 4, k + 6, · · · ,
0, j > k or j + k odd,

where ω(x) is the Chebyshev weight function. Hence the matrices of the result-
ing linear systems are sparse and possess special structures. For the fourth order
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equation (31), Shen [16] also proposed a new basis

ψk(x) = Tk(x)−
2(k + 2)

k + 3
Tk+2(x) +

k + 1

k + 3
Tk+4(x), 0 ≤ k ≤ N − 4.

The matrix with the term (ψ′′
j , (ψkω)

′′) in the resulting linear system is not sparse,
but still possesses special structures. Benefiting from these special matrix struc-
tures, Shen [16] further derive some efficient algorithms. However, in many cases,
people still want to obtain a set of Fourier-like basis functions (see [4, 15]), which
are orthogonal to each other with respect to certain Sobolev inner product involving
derivatives, and thus the corresponding algebraic system is diagonal (see [19]).

Recently, Liu, Li and Wang [12, 13] constructed the Fourier-like Sobolev orthog-
onal basis functions based on generalized Laguerre functions, and applied them to
the Dirichlet and Robin boundary value problems of second and fourth order ellip-
tic equations on the half line. The numerical experiments indicate the suggested
algorithms in [12, 13] are simple, fast and stable, and possess high accuracy.

Motivated by [12, 13, 19], the main purpose of this paper is to construct the
Fourier-like basis functions for Chebyshev-Galerkin spectral methods of elliptic
boundary value problems on bounded domain. Since the Chebyshev weight function
will destroy the symmetry in the weak form of differential equations, we cannot de-
sign the basis functions which are mutually orthogonal with respect to the Sobolev
inner product. Alternatively, we shall construct two kinds of basis functions which
are biorthogonal with respect to the Sobolev inner product originated from the
coercive bilinear form of the elliptic equation. For this purpose, we first design
four kinds of special polynomials composed of Chebyshev polynomials, from which
we further derive the basis functions for fully diagonalized Chebyshev-Galerkin
spectral methods, which are biorthogonal with respect to the Sobolev inner prod-
uct. Then stable and efficient algorithms are proposed for second and fourth order
Dirichlet boundary value problems. Particularly, both the exact solutions and the
approximate solutions can be represented as infinite and truncated Fourier series,
respectively.

The remainder of the paper is organized as follows. In Section 2, we first make
conventions on the frequently used notations, and then design four kinds of spe-
cial polynomials and introduce their basic properties. In Section 3, we construct
the biorthogonal basis functions with respect to the Sobolev inner product associ-
ated with the second order Dirichlet boundary value problems, and present some
numerical results. Section 4 is then devoted to the implementation of the fully
diagonalized Chebyshev-Galerkin spectral methods for the fourth order Dirichlet
boundary value problems. The final section is for some concluding remarks.

2. Chebyshev polynomials

2.1. Notations and preliminaries. Let I = (−1, 1) and χ(x) be a weight func-
tion. Define

L2
χ(I) = {v | v is measurable on I and ‖v‖χ <∞},

with the following inner product and norm,

(u, v)χ =

∫

I

u(x)v(x)χ(x)dx, ‖v‖χ = (v, v)
1

2

χ , ∀u, v ∈ L2
χ(I).

For simplicity, we denote dkv
dxk = v(k), d2v

dx2 = v′′ and dv
dx

= v′. For any integer m ≥ 0,
we define

Hm
χ (I) = {v | v(k) ∈ L2

χ(I), 0 ≤ k ≤ m},
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with the following semi-norm and norm,

|v|m,χ = ‖v(m)‖χ, ‖v‖m,χ =
(

m
∑

k=0

|v|2k,χ
)

1

2

.

In cases where no confusion arises, χ may be dropped from the notations whenever
χ(x) ≡ 1. Specifically, we shall use the Chebyshev weight function ω(x) = 1√

1−x2
in

the subsequent sections. We also denote by Pk the space of polynomials of degree
≤ k.

2.2. Some basic properties. Let Tn(x), x ∈ (−1, 1) be the standard Chebyshev
polynomial of degree n. We recall that Tn(x) is the eigenfunction of the singular
Sturm-Liouville problem:

(1) (1− x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0, n ≥ 0.

The Chebyshev polynomials satisfy the following recurrence relations (cf. [20]),

(2) Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1,

(3) 2Tn(x) =
1

n+ 1
T ′
n+1(x) −

1

n− 1
T ′
n−1(x), n ≥ 2,

(4) (1 − x2)T ′
n(x) =

n

2
Tn−1(x)−

n

2
Tn+1(x),

with T0(x) = 1 and T1(x) = x.

The Chebyshev polynomials are orthogonal with respect to the weight function
ω(x), namely,

(5) (Tn, Tm)ω =
c̃nπ

2
δm,n,

where δm,n is the Kronecker symbol, c̃0 = 2 and c̃n = 1 for n ≥ 1.
Next, let Tj(x) ≡ 0 for any j < 0. We consider the following four kinds of

polynomials which will be used for constructing new biorthogonal basis functions
in the fully diagonalized Chebyshev spectral methods.

(6) φn(x) =
Tn(x) − Tn−2(x)

2(n− 1)
, n ≥ 2,

(7) ψn(x) =
(1 + δn,2)Tn(x)− (2− δn,3)Tn−2(x) + Tn−4(x)

2n
, n ≥ 2,

(8) Rn(x) =
(n− 3)Tn(x) − 2(n− 2)Tn−2(x) + (n− 1)Tn−4(x)

2(n− 1)(n− 3)
, n ≥ 4,

(9)

Sn(x) =
1

2n

[

Tn(x)− (4 − δn,5 − δn,6 − δn,7)Tn−2(x)

+(6− 3δn,4 − 4δn,5 − 3δn,6 − 3δn,7)Tn−4(x)

−(4− 3δn,6 − 3δn,7)Tn−6(x) + Tn−8(x)
]

, n ≥ 4.

Lemma 2.1. For any n ≥ 2, we have

(10)
(

φn(x)ω(x)
)′

= Tn−1(x)ω(x).
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Proof. Clearly,

( φn(x)√
1− x2

)′
=

√
1− x2φ′n(x)− (

√
1− x2)′φn(x)

1− x2

=
T ′
n(x) − T ′

n−2(x)

2(n− 1)
√
1− x2

+
x(Tn(x) − Tn−2(x))

2(n− 1)(1− x2)
3

2

(4)
=

T ′
n(x) − T ′

n−2(x)

2(n− 1)
√
1− x2

− xT ′
n−1(x)

(n− 1)2
√
1− x2

=
(n− 1)(T ′

n(x)− T ′
n−2(x)) − 2xT ′

n−1(x)

2(n− 1)2
√
1− x2

(2)
=

(n− 1)(T ′
n(x)− T ′

n−2(x)) − (T ′
n(x) + T ′

n−2(x)− 2Tn−1(x))

2(n− 1)2
√
1− x2

=
(n− 2)T ′

n(x) − nT ′
n−2(x) + 2Tn−1(x)

2(n− 1)2
√
1− x2

(3)
=

Tn−1(x)√
1− x2

.

This ends the proof. �

Lemma 2.2. For any n ≥ 2, we have

(11) ψ′
n(x) = (1 + δn,2)Tn−1(x)−

n− 4

n
Tn−3(x).

Moreover, for m,n ≥ 2, the following results hold:

((ωφm)′, ψ′
n) =

π

2
×















1 + δn,2, n = m,

4− n

n
, n = m+ 2,

0, otherwise;

(12)

(φm, ψ
′
n)ω =

π

4(m− 1)
×































4− n

n
, n = m+ 3,

1 +
n− 4

n
(1 + δn,3), n = m+ 1,

−1− δn,2, n = m− 1,

0, otherwise;

(13)

(φm, ψn)ω =
π

8n(m− 1)
×







































1, n = m+ 4,

−3− δn,4, n = m+ 2,

(1 + δn,2)(3− δn,3), n = m,

−1− δn,2, n = m− 2,

0, otherwise.

(14)
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Proof. We first verify the result (11). Clearly, by (3) we know that

(15)
T ′
n(x) = 2nTn−1(x) +

n

n− 2
T ′
n−2(x), n > 2,

T ′
n−2(x) = 2(n− 2)Tn−3(x) +

n− 2

n− 4
T ′
n−4(x), n > 4.

Hence, a direct computation gives that for n > 4,

ψ′
n(x) = Tn−1(x) −

n− 4

n
Tn−3(x).

Moreover, it is obvious that the results (11) hold for n = 2, 3, 4. This ends the
proof of (11). Further, by using (10), (11) and (5), we can derive readily the results
(12)-(14). �

Lemma 2.3. For any n ≥ 4, we have

(16)
(Rn(x)ω(x))

′ = (Tn−1(x)− Tn−3(x))ω(x),

(Rn(x)ω(x))
′′ = 2(n− 2)Tn−2(x)ω(x).

Proof. By (10), we deduce that for any n ≥ 4,

(Rn(x)ω(x))
′ =

( (n− 3)Tn(x)− 2(n− 2)Tn−2(x) + (n− 1)Tn−4(x)

2(n− 1)(n− 3)
ω(x)

)′

=
(

(Tn(x) − Tn−2(x)

2(n− 1)
− Tn−2(x)− Tn−4(x)

2(n− 3)

)

ω(x)
)′

=
(

Tn−1(x)− Tn−3(x)
)

ω(x).

This, along with (10), gives that

(Rn(x)ω(x))
′′ =

(

(

Tn−1(x) − Tn−3(x)
)

ω(x)
)′

= 2(n− 2)Tn−2(x)ω(x).

Thus, we obtain the desired results. �

Lemma 2.4. For any n ≥ 4, we have

(17)

S ′
n(x) = Tn−1(x)−

3n− 8− 3δn,5 − 4δn,6 − 5δn,7
n

Tn−3(x)

+
(3n− 16)(1− δn,6)

n(1 + 4δn,7)
Tn−5(x) −

(n− 8)(1− δn,6)(1 − δn,7)

n
Tn−7(x),

S ′′
n(x) = 2(n− 1)Tn−2(x)−

4(n− 2− δn,6)(n− 6− 2δn,6)(1 + δn,5)

n(1 + δn,4)(1 − 2δn,7)
Tn−4(x)

+
2(n− 7 + 3δn,6 + 3δn,7)(n− 8 + 5δn,6 + 5δn,7)

n
Tn−6(x).
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Proof. By (15) and (3), we get that for any n ≥ 8,
(18)

S ′
n(x) =

1

2n

(

Tn(x) − 4Tn−2(x) + 6Tn−4(x)− 4Tn−6(x) + Tn−8(x)
)′

=
1

2n

(

2nTn−1(x) +
n

n− 2
T ′
n−2(x) − 4T ′

n−2(x) + 6T ′
n−4(x)− 4T ′

n−6(x)

−2(n− 8)Tn−7(x) +
n− 8

n− 6
T ′
n−6(x)

)

=
1

2n

(

2nTn−1(x)−
3n− 8

n− 2
T ′
n−2(x) + 6T ′

n−4(x)

−3n− 16

n− 6
T ′
n−6(x)− 2(n− 8)Tn−7(x)

)

=
1

2n

(

2nTn−1(x)−
3n− 8

n− 4
T ′
n−4(x)− 2(3n− 8)Tn−3(x) + 6T ′

n−4(x)

−3n− 16

n− 4
T ′
n−4(x) + 2(3n− 16)Tn−5(x)− 2(n− 8)Tn−7(x)

)

= Tn−1(x) −
3n− 8

n
Tn−3(x) +

3n− 16

n
Tn−5(x)−

n− 8

n
Tn−7(x).

This leads to the first result of (17) for n ≥ 8. It remains to verify the second result
of (17). In fact, by (18) we deduce that for n ≥ 8,

S ′′
n(x) = T ′

n−1(x) −
3n− 8

n
T ′
n−3(x) +

3n− 16

n
T ′
n−5(x)−

n− 8

n
T ′
n−7(x)

(15)
= 2(n− 1)Tn−2(x) +

n− 1

n− 3
T ′
n−3(x)−

3n− 8

n
T ′
n−3(x) +

3n− 16

n
T ′
n−5(x)

− (n− 7)(n− 8)

n(n− 5)
T ′
n−5(x) +

2(n− 7)(n− 8)

n
Tn−6(x)

= 2(n− 1)Tn−2(x) +
2(n− 7)(n− 8)

n
Tn−6(x)

−2(n− 2)(n− 6)

n

(T ′
n−3(x)

n− 3
− T ′

n−5(x)

n− 5

)

= 2(n− 1)Tn−2(x) −
4(n− 2)(n− 6)

n
Tn−4(x) +

2(n− 7)(n− 8)

n
Tn−6(x).

This yields the second result of (17) for n ≥ 8. Moreover, it is easy to verify the
results of (17) for any 4 ≤ n ≤ 7. This ends the proof. �

3. A fully diagonalized Chebyshev spectral method for second-order

problem

In this section, we propose a fully diagonalized Chebyshev spectral method for
solving second-order elliptic boundary value problem. The main idea is to find
biorthogonal polynomials with respect to the coercive bilinear form arising from
differential equations, such that both the exact solution and the approximate solu-
tion can be explicitly expressed as a Fourier series.

3.1. Second-order elliptic boundary value problem. Consider the second-
order homogeneous elliptic boundary value problem:

(19)

{

−ǫu′′(x) + λu(x) = f(x), x ∈ I,

u(±1) = 0,

where ǫ > 0 and λ ≥ 0 are given constants.
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Let H1
0,ω(I) = {u ∈ H1

ω(I) : u(±1) = 0}. Then, a weak formulation of (19) is to

find u ∈ H1
0,ω(I) such that

(20) 〈u, v〉1,I := ǫ(u′, (vω)′) + λ(u, v)ω = (f, v)ω, ∀v ∈ H1
0,ω(I).

Clearly, we have (cf. [7])

〈u, u〉1,I ≥ c‖u‖21,ω, |〈u, v〉1,I | ≤ c‖u‖1,ω‖v‖1,ω.

Hence, by Lax-Milgram lemma, (20) admits a unique solution if f ∈ (H1
0,ω(I))

′.
Next, denote

P
0
N := {u ∈ PN : u(±1) = 0}.

The Chebyshev spectral scheme for (19) is to find uN ∈ P
0
N , such that for any

vN ∈ P
0
N ,

(21) 〈uN , vN 〉1,I = (f, vN )ω .

For an efficient approximation scheme, one usually chooses the linear combina-
tion of Chebyshev polynomials {Tn(x) − Tn−2(x)}n≥2 as the basis functions for
problem (21) (cf. [16]). However, this formulation will only lead to a sparse lin-
ear system. Here, we are eager for an ideal approximation scheme whose total
stiff matrix, in analogue to the Fourier spectral method for periodic problem, is
diagonal.

3.2. The diagonalized Chebyshev spectral method. The diagonalized Cheby-
shev spectral method is to construct new basis functions {rn(x)}n≥2 and {sn(x)}n≥2,
which are biorthogonal with respect to the Sobolev inner product 〈u, v〉1,I .

Lemma 3.1. Assume that for any n ≤ 1, rn(x) = sn(x) ≡ 0, and

r2(x) := ψ2(x) =
T2(x)−T0(x)

2 ∈ P
0
2, s2(x) := φ2(x) =

T2(x)−T0(x)
2 ∈ P

0
2,

r3(x) := ψ3(x) =
T3(x)−T1(x)

6 ∈ P
0
3, s3(x) := φ3(x) =

T3(x)−T1(x)
4 ∈ P

0
3.

Let rn(x) ∈ P
0
n and sn(x) ∈ P

0
n, whose leading coefficients are respectively the same

as the polynomials ψn(x) and φn(x), satisfying the biorthogonality with respect to

the Sobolev inner product 〈·, ·〉1,I ,

(22) 〈rn, sm〉1,I = ηmδm,n, m, n ≥ 2.

Then the following recurrence relations hold:

(23) ψn(x) = rn(x) + an−2rn−2(x) + bn−4rn−4(x), ∀n ≥ 2,

(24) φn(x) = sn(x) + cn−2sn−2(x), ∀n ≥ 2,
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where φn(x) and ψn(x) are defined in (6) and (7), and

ηn =
(1 + δn,2)πǫ

2
+

(1 + δn,2)(3− δn,3)πλ

8n(n− 1)

− (1 + δn,4)πλ

8(n− 1)(n− 2)

((n− 4)πǫ

2nηn−2
+

(3 + δn,4)πλ

8n(n− 3)ηn−2

)

+
(1 + δn,4)πλ

8(n− 1)(n− 2)

( (1 + δn,6)π
2λ2

64n(n− 3)(n− 4)(n− 5)ηn−4ηn−2

)

, n ≥ 6,

bn−4 =
πλ

8n(n− 5)ηn−4
, n ≥ 6,

cn−2 = − (1 + δn,4)πλ

8(n− 1)(n− 2)ηn−2
, n ≥ 4,

an−2 = − (n− 4)πǫ

2nηn−2
− (3 + δn,4)πλ

8n(n− 3)ηn−2

+
(1 + δn,6)π

2λ2

64n(n− 3)(n− 4)(n− 5)ηn−2ηn−4
, n ≥ 6.

Particularly,

a2 = − λ

8ǫ+ 3
, a3 = − 24ǫ+ 9λ

120ǫ+ 10λ
, η2 = πǫ+

3πλ

8
, η3 =

πǫ

2
+
πλ

24
,

η4 =
πǫ

2
+
πλ

32
− πλ2

192ǫ+ 72λ
, η5 =

πǫ

2
+

3πλ

160
− 8πǫλ+ 3πλ2

3840ǫ+ 320λ
.

Proof. Let

(25) ψn(x) = rn(x)+

n−1
∑

k=2

an,krk(x), φn(x) = sn(x)+

n−1
∑

k=2

cn,ksk(x), n ≥ 4.

We first use mathematical induction to verify (23) and (24). According to the
definitions,

ψ4 = T4(x)−2T2(x)+T0(x)
8 = r4(x) + a4,3r3(x) + a4,2r2(x),

φ4 = T4(x)−T2(x)
6 = s4(x) + c4,3s3(x) + c4,2s2(x).

Then, by (11), (10), (6), (7) and (5) we know that

〈ψ4, φ3〉1,I = ǫ(ψ′
4, (φ3ω)

′) + λ(ψ4, φ3)ω

= ǫ(T3, T2)ω + λ(T4−2T2+T0

8 , T3−T1

4 )ω = 0.

On the other hand, by (22) we get

〈ψ4, φ3〉1,I = 〈r4 + a4,3r3 + a4,2r2, s3〉1,I = a4,3η3.

Hence, we have a4,3 = 0, which means ψ4(x) = r4(x)+a4,2r2(x). Similarly, we have

〈ψ3, φ4〉1,I = ǫ(ψ′
3, (φ4ω)

′) + λ(ψ3, φ4)ω

= ǫ(T2 +
T0

3 , T3)ω + λ(T3−T1

6 , T4−T2

6 )ω = 0,

and

(26) 〈ψ3, φ4〉1,I = 〈r3, s4 + c4,3s3 + c4,2s2〉1,I = c4,3η3.

Thereby, we have c4,3 = 0, which means φ4(x) = s4(x) + c4,2s2(x), In the same
manner, we can verify the results of (23) and (24) for n = 5, 6.
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Next, assume that for any 2 ≤ k ≤ n− 1 and n ≥ 7,

ψk(x) = rk(x) + ak,k−2rk−2(x) + ak,k−4rk−4(x), φk(x) = sk(x) + ck,k−2sk−2(x).

We shall prove that for n ≥ 7,

ψn(x) = rn(x) + an,n−2rn−2(x) + an,n−4rn−4(x), φn(x) = sn(x) + cn,n−2sn−2(x).

Clearly, by (7) and (25) we have for n ≥ 7,

〈ψn, φj〉1,I = 〈rn +
n−1
∑

k=2

an,krk, φj〉1,I =
〈Tn − 2Tn−2 + Tn−4

2n
, φj

〉

1,I
.

Taking j = 2, 3, · · · , n − 5, successively and using the induction assumption, we
derive readily that an,j = 0 for any 2 ≤ j ≤ n− 5. Hence, we have

ψn(x) = rn(x) + an,n−1rn−1(x) + an,n−2rn−2(x) + an,n−3rn−3(x) + an.n−4rn−4(x).

Moreover, by (11), (10), (7), (6), (5), (22) and the induction assumption, we know
that for n ≥ 7,

〈ψn, φn−3〉1,I = ǫ(ψ′
n, (φn−3ω)

′) + λ(ψn, φn−3)ω

= ǫ(Tn−1 − n−4
n
Tn−3, Tn−4)ω + λ(Tn−2Tn−2+Tn−4

2n ,
Tn−3−Tn−5

2(n−4) )ω = 0,

and

〈ψn, φn−3〉1,I = 〈rn + an,n−1rn−1 + an,n−2rn−2 + an,n−3rn−3

+an,n−4rn−4, sn−3 + cn−3,n−5sn−5〉1,I
= an,n−3ηn−3.

Hence, we get an,n−3 = 0. Similarly, we have an,n−1 = 0. This means

ψn(x) = rn(x) + an,n−2rn−2(x) + an,n−4rn−4(x).

In the same manner, we derive

φn(x) = sn(x) + cn,n−2sn−2(x).

For simplicity of notations, we take an−2 := an,n−2, bn−4 := an,n−4 and cn−2 :=
cn,n−2, then we obtain the results (23) and (24).

It remains to confirm the coefficients an−2, bn−4, cn−2 and ηn. By using (12),
(14) and (22), we know that for n ≥ 4,

(27) 〈ψn−2, φn〉1,I = ǫ(ψ′
n−2, (φnω)

′) + λ(ψn−2, φn)ω = − (1 + δn,4)πλ

8(n− 1)(n− 2)
,

and

(28) 〈ψn−2, φn〉1,I = 〈rn−2+an−4rn−4+bn−6rn−6, sn+cn−2sn−2〉1,I = cn−2ηn−2.

Hence

(29) cn−2ηn−2 = − (1 + δn,4)πλ

8(n− 1)(n− 2)
, n ≥ 4.

Similarly, by using

〈ψj , φn〉1,I = ǫ(ψ′
j , (φnω)

′)+λ(ψj , φn)ω = 〈rj+aj−2rj−2+bj−4rj−4, sn+cn−2sn−2〉1,I
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and taking j = n, n+ 2, n+ 4, respectively, we get that for n ≥ 2,

(30)

ηn + an−2cn−2ηn−2 =
(1 + δn,2)πǫ

2
+

(1 + δn,2)(3− δn,3)πλ

8n(n− 1)
,

anηn + bn−2cn−2ηn−2 = − (n− 2)πǫ

2(n+ 2)
− (3 + δn,2)πλ

8(n− 1)(n+ 2)
,

bnηn =
πλ

8(n− 1)(n+ 4)
.

A combination of (29) and (30) gives that

ηn =
(1 + δn,2)πǫ

2
+

(1 + δn,2)(3− δn,3)πλ

8n(n− 1)

− (1 + δn,4)πλ

8(n− 1)(n− 2)

( (n− 4)πǫ

2nηn−2
+

(3 + δn,4)πλ

8n(n− 3)ηn−2

)

+
(1 + δn,4)πλ

8(n− 1)(n− 2)

( (1 + δn,6)π
2λ2

64n(n− 3)(n− 4)(n− 5)ηn−4ηn−2

)

, n ≥ 6,

bn =
πλ

8(n− 1)(n+ 4)ηn
, n ≥ 2,

cn−2 = − (1 + δn,4)πλ

8(n− 1)(n− 2)ηn−2
, n ≥ 4,

an = − (n− 2)πǫ

2(n+ 2)ηn
− (3 + δn,2)πλ

8(n− 1)(n+ 2)ηn

+
(1 + δn,4)π

2λ2

64(n− 1)(n− 2)(n− 3)(n+ 2)ηn−2ηn
, n ≥ 4.

Moreover, by (11), (10), (7), (6), (5) and (22), we derive

η2 = 〈r2, s2〉1,I = 〈ψ2, φ2〉1,I = πǫ+
3πλ

8
, η3 = 〈r3, s3〉1,I = 〈ψ3, φ3〉1,I =

πǫ

2
+
πλ

24
.

Similarly

a2η2 = 〈r4 + a2r2, s2〉1,I = 〈ψ4, φ2〉1,I = ǫ(ψ′
4, (φ2ω)

′) + λ(ψ4, φ2)ω

= ǫ(T3, T1)ω + λ(T4−2T2+T0

8 , T2−T0

2 )ω = −πλ
8
,

a3η3 = 〈r5 + a3r3, s3〉1,I = 〈ψ5, φ3〉1,I = ǫ(ψ′
5, (φ3ω)

′) + λ(ψ5, φ3)ω

= ǫ(T4 − 1
5T2, T2)ω + λ(T5−2T3+T1

10 , T3−T1

4 )ω = −πǫ
10

− 3πλ

80
.

Therefore

a2 = − λ

8ǫ+ 3λ
, a3 = − 24ǫ+ 9λ

120ǫ+ 10λ
.

In the same manner, we obtain

η4 =
πǫ

2
+
πλ

32
− πλ2

192ǫ+ 72λ
, η5 =

πǫ

2
+

3πλ

160
− 8πǫλ+ 3πλ2

3840ǫ+ 320λ
.

This ends the proof. �
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Theorem 3.1. Let u and uN be the solutions of (19) and (21), respectively. Then

both u and uN have the explicit representations in {rn(x)},

u(x) =

∞
∑

k=2

ûkrk(x), uN (x) =

N
∑

k=2

ûkrk(x),

ûk =
1

ηk
〈u, sk〉1,I =

1

ηk
(f, sk)ω .

3.3. Numerical results. In this subsection, we examine the effectiveness and the
accuracy of the fully diagonalized Chebyshev spectral method for solving second-
order elliptic equations on I = (−1, 1). The righthand term {(f, sk)ω}Nk=2, as well
as the discrete errors, is evaluated through the Chebyshev-Gauss quadrature with
2N + 1 nodes.

We take ǫ = 1 and λ = 1 in (19) and consider the following two cases:

• u(x) = e−x(x2 − 1), where the solution is smooth. In Figure 1, we plot the
log10 of the discrete L2-errors.

• u(x) = sin(10x)(x2 − 1), where the solution is oscillating. In Figure 2, we
plot the log10 of the discrete L2-errors.

The two near straight lines indicate that the L2-errors decay like e−cN .
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4. A fully diagonalized Chebyshev spectral method for fourth-order prob-

lem

In this section, we propose a fully diagonalized Chebyshev spectral method for
solving fourth-order elliptic boundary value problem. We shall also find biorthogo-
nal polynomials with respect to the coercive bilinear form, such that both the exact
solution and the approximate solution can be explicitly expressed as a Fourier series.

4.1. Fourth-order elliptic boundary value problem. Consider the fourth or-
der homogeneous elliptic boundary value problem:

(31)

{

u(4)(x)− r1u
′′(x) + r2u(x) = f(x), x ∈ I,

u(±1) = u′(±1) = 0,

where r1 ≥ 0 and r2 ≥ 0 are given constants.
Let H2

0,ω(I) = {u ∈ H2
ω(I) : u(±1) = u′(±1) = 0}. Then, a weak formulation of

(31) is to find u ∈ H2
0,ω(I) such that

(32) 〈u, v〉2,I := (u′′, (vω)′′) + r1(u
′, (vω)′) + r2(u, v)ω = (f, v)ω, ∀v ∈ H2

0,ω(I).
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Next, denote

X
0
N := {u ∈ PN : u(±1) = u′(±1) = 0}.

The Chebyshev spectral scheme for (32) is to find uN ∈ X
0
N , such that for any

vN ∈ X
0
N ,

(33) 〈uN , vN 〉2,I = (f, vN )ω .

4.2. The diagonalized Chebyshev spectral method. The diagonalized Cheby-
shev spectral method is to construct new basis functions {pn(x)}n≥4 and {qn(x)}n≥4,
which are biorthogonal with respect to the Sobolev inner product 〈u, v〉2,I .

Lemma 4.1. Assume that for any n ≤ 3, pn(x) = qn(x) ≡ 0, and

p4(x) := S4(x) =
T4(x)−4T2(x)+3T0(x)

8 ∈ X
0
4,

q4(x) := R4(x) =
T4(x)−4T2(x)+3T0(x)

6 ∈ X
0
4,

p5(x) := S5(x) =
T5(x)−3T3(x)+2T1(x)

10 ∈ X
0
5,

q5(x) := R5(x) =
T5(x)−3T3(x)+2T1(x)

8 ∈ X
0
5.

Let pn(x) ∈ X
0
n and qn(x) ∈ X

0
n, whose leading coefficients are respectively the same

as the polynomials Sn(x) and Rn(x), satisfying the biorthogonality with respect to

the Sobolev inner product 〈·, ·〉2,I ,

(34) 〈pn, qm〉2,I = ρmδm,n, m, n ≥ 4.

Then the following recurrence relations hold:

(35)
Sn(x) =pn(x) + an−2pn−2(x) + bn−4pn−4(x)

+ cn−6pn−6(x) + dn−8pn−8(x), ∀n ≥ 4,

(36) Rn(x) = qn(x) + en−2qn−2(x) + hn−4qn−4(x), ∀n ≥ 4,
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where Rn(x) and Sn(x) are defined in (8) and (9), ρn ≡ 0 for any n ≤ 3 and

(i). ρn + an−2en−2ρn−2 + bn−4hn−4ρn−4

= 2π(n− 1)(n− 2) +
(4n− 8− 3δn,5 − 4δn,6 − 5δn,7)πr1

2n

+
πr2

8n(n− 1)
+

(n− 2)(4− δn,5 − δn,6 − δn,7)πr2
4n(n− 1)(n− 3)

+
(6 − 3δn,4 − 4δn,5 − 3δn,6 − 3δn,7)(1 + δn,4)πr2

8n(n− 3)
, n ≥ 4,

(ii). anρn + bn−2en−2ρn−2 + cn−4hn−4ρn−4

=− 4π(n− δn,4)(n− 4− 2δn,4)(n− 2)

(n+ 2)(1− 2δn,5)
− (3n− 10)(1− δn,4)πr1

2(n+ 2)(1 + 4δn,5)

− (3n− 2− 4δn,4 − 5δn,5)πr1
2(n+ 2)

− (4 − δn,4 − δn,5)πr2
8(n− 1)(n+ 2)

− (6 − 3δn,4 − 3δn,5)(n− 2)πr2
4(n− 1)(n+ 2)(n− 3)

− (4− 3δn,4 − 3δn,5)(1 + δn,4)πr2
8(n+ 2)(n− 3)

, n ≥ 4,

(iii). enρn + an−2hn−2ρn−2

=− πr1

2
− πr2

4(n− 1)(n+ 1)
− (4− δn,5 − δn,6 − δn,7)πr2

8n(n− 1)
, n ≥ 4,

(iv). hnρn =
πr2

8n(n+ 1)
, n ≥ 4,

(v). bnρn + cn−2en−2ρn−2 + dn−4hn−4ρn−4

=
2(n− 2)(n− 3)(n− 4)π

n+ 4
+

(2n− 4)πr1
n+ 4

+
(7n− 17)πr2

4(n− 1)(n− 3)(n+ 4)
+

(1 + δn,4)πr2
8(n− 3)(n+ 4)

, n ≥ 4,

(vi). cnρn + dn−2en−2ρn−2 = − (n− 2)πr1
2(n+ 6)

− (3n− 8)πr2
4(n− 1)(n− 3)(n+ 6)

, n ≥ 4,

(vii). dnρn =
πr2

8(n− 1)(n+ 8)
, n ≥ 4.

Proof. Let

(37) Sn(x) = pn(x)+

n−1
∑

k=4

an,kpk(x), Rn(x) = qn(x)+

n−1
∑

k=4

cn,kqk(x), n ≥ 6.
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We first use mathematical induction to verify (35) and (36). According to the
definitions of (8) and (9),

S6(x) =
T6(x)− 3T4(x) + 3T2(x) − T0(x)

12
= p6(x) + a6,5p5(x) + a6,4p4(x),

R6(x) =
3T6(x) − 8T4(x) + 5T2(x)

30
= q6(x) + c6,5q5(x) + c6,4q4(x).

Then, by (16), (17), (8), (9) and (5) we know that

〈S6,R5〉2,I = (S ′′
6 , (R5ω)

′′) + r1(S ′
6, (R5ω)

′) + r2(S6,R5)ω

= (10T4 + 4T2 + 2T0(x), 6T3)ω + r1(T5 − T3, T4 − T2)ω

+r2(
T6(x)− 3T4(x) + 3T2(x) − T0

12
,
T5 − 3T3 + 2T1

8
)ω

= 0.

On the other hand, by (34) we get

〈S6,R5〉2,I = 〈p6 + a6,5p5 + a6,4p4, q5〉2,I = a6,5ρ5.

Hence, we have a6,5 = 0, which means S6(x) = p6(x)+a6,4p4(x). Similarly, we have

〈S5,R6〉2,I = (S ′′
5 , (R6ω)

′′) + r1(S ′
5, (R6ω)

′) + r2(S5,R6)ω

= (8T3 +
24
5 T1, 8T4)ω + r1(T4 − 4

5T2 − 1
5T0, T5 − T3)ω

+r2(
1
10T5 − 3

10T3 +
1
5T1,

1
10T6 − 4

15T4 +
1
6T2)ω

= 0,

and

(38) 〈S5,R6〉2,I = 〈p5, q6 + c6,5q5 + c6,4q4〉2,I = c6,5ρ5.

Thereby, we have c6,5 = 0, which means R6(x) = q6(x) + c6,4q4(x). In the same
manner, we can verify the results of (35) and (36) for 7 ≤ n ≤ 12.

Next, assume that for any 4 ≤ k ≤ n− 1 and n ≥ 13,

Sk(x) = pk(x) + ak,k−2pk−2(x) + ak,k−4pk−4(x) + ak,k−6pk−6(x) + ak,k−8pk−8(x),

Rk(x) = qk(x) + ck,k−2qk−2(x) + ck,k−4qk−4(x).

We shall prove that for n ≥ 13,

Sn(x) = pn(x) + an,n−2pn−2(x) + an,n−4pn−4(x) + an,n−6pn−6(x) + an,n−8pn−8(x),

Rn(x) = qn(x) + cn,n−2qn−2(x) + cn,n−4qn−4(x).

Clearly, by (9), (37), (16) and (17), we have that for n ≥ 13,

〈Sn,Rj〉2,I =〈pn +
n−1
∑

k=4

an,kpk,Rj〉2,I

=
〈Tn − 4Tn−2 + 6Tn−4 − 4Tn−6 + Tn−8

2n
,Rj

〉

2,I
.

Taking j = 4, 5, · · · , n − 9, successively and using the induction assumption, we
derive readily that an,j = 0 for any 4 ≤ j ≤ n− 9. Hence, we have

Sn(x) = pn(x) + an,n−1pn−1(x) + an,n−2pn−2(x)

+an,n−3pn−3(x) + an,n−4pn−4(x) + an,n−5pn−5(x) + an,n−6pn−6(x)

+an,n−7pn−7(x) + an,n−8pn−8(x).
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Moreover, by (17), (16), (9), (8), (5) and (34) and the induction assumption, we
know that for n ≥ 13,

〈Sn,Rn−7〉2,I = (S ′′
n , (Rn−7ω)

′′) + r1(S ′
n, (Rn−7ω)

′) + r2(Sn,Rn−7)ω

= (2(n− 1)Tn−2 − 4(n−2)(n−6)
n

Tn−4 +
2(n−7)(n−8)

n
Tn−6, 2(n− 9)Tn−9)ω

+r1(Tn−1 − 3n−8
n

Tn−3 +
3n−16

n
Tn−5 − n−8

n
Tn−7, Tn−8 − Tn−10)ω

+r2(
Tn−4Tn−2+6Tn−4−4Tn−6+Tn−8

2n ,
(n−10)Tn−7−2(n−9)Tn−9+(n−8)Tn−11

2(n−8)(n−10) )ω

= 0,

and

〈Sn,Rn−7〉2,I = 〈pn + an,n−1pn−1 + an,n−2pn−2 + an,n−3pn−3 + an,n−4pn−4

+an,n−5pn−5 + an,n−6pn−6 + an,n−7pn−7 + an,n−8pn−8,

qn−7 + cn−7,n−9qn−9 + cn−7,n−11qn−11〉2,I
= an,n−7ρn−7.

Hence, we get an,n−7 = 0. Similarly, we have an,n−5 = an,n−3 = an,n−1 = 0. This
means

Sn(x) = pn(x) + an,n−2pn−2(x) + an,n−4pn−4(x) + an,n−6pn−6(x) + an,n−8pn−8(x).

In the same manner, we derive that

Rn(x) = qn(x) + cn,n−2qn−2(x) + cn,n−4qn−4(x).

For simplicity of notations, we take an−2 := an,n−2, bn−4 := an,n−4, cn−6 := an,n−6,

dn−8 := an,n−8 and en−2 := cn,n−2, hn−4 := cn,n−4, then we obtain the results of
(35) and (36).

It remains to confirm the coefficients an−2, bn−4, cn−6, dn−8, en−2, hn−4 and ρn.
By using (17), (16), (9), (8), (5) and (34), we know that for n ≥ 8,
(39)
〈Sn−4,Rn〉2,I = (S ′′

n−4, (Rnω)
′′) + r1(S ′

n−4, (Rnω)
′) + r2(Sn−4,Rn)ω

= (2(n− 5)Tn−6 − 4(n−6)(n−10)(1+δn,9)
(n−4)(1+δn,8)

Tn−8 +
2(n−11)(n−12)
(n−4)(1+δn,10)

Tn−10, 2(n− 2)Tn−2)ω

+r1(Tn−5 − 3n−20−3δn,9

n−4 Tn−7 +
3n−28
n−4 Tn−9 − n−12

(n−4)(1+δn,11)
Tn−11, Tn−1 − Tn−3)ω

+r2(
1

2(n−4)Tn−4 − 4−δn,9

2(n−4)Tn−6 +
6−3δn,8−4δn,9

2(n−4) Tn−8 − 2
n−4Tn−10 +

1
2(n−4)Tn−12,

1
2(n−1)Tn − n−2

(n−1)(n−3)Tn−2 +
1

2(n−3)Tn−4)ω

= πr2
8(n−3)(n−4) ,

and
(40)

〈Sn−4,Rn〉2,I = 〈pn−4 + an−6pn−6 + bn−8pn−8 + cn−10pn−10 + dn−12pn−12,

qn + en−2qn−2 + hn−4qn−4〉2,I = hn−4ρn−4.

Hence

(41) hn−4ρn−4 =
πr2

8(n− 3)(n− 4)
, n ≥ 8.
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Similarly, by using

〈Sj ,Rn〉2,I = (S ′′
j , (Rnω)

′′) + r1(S ′
j , (Rnω)

′) + r2(Sj ,Rn)ω

= 〈pj + aj−2pj−2 + bj−4pj−4 + cj−6pj−6 + dj−8pj−8,

qn + en−2qn−2 + hn−4qn−4〉2,I
and taking j = n − 2, n, n + 2, n + 4, n + 6, n + 8, respectively, we derive the
results of (i)-(vii) in Lemma 4.1. This ends the proof. �

Theorem 4.1. Let u and uN be the solutions of (31) and (33), respectively. Then

both u and uN have the explicit representations in {pn(x)},

u(x) =

∞
∑

k=4

ûkpk(x), uN (x) =

N
∑

k=4

ûkpk(x),

ûk =
1

ρk
〈u, qk〉2,I =

1

ρk
(f, qk)ω.

4.3. Numerical results. In this subsection, we examine the effectiveness and the
accuracy of the fully diagonalized Chebyshev spectral method for solving fourth-
order elliptic equations on I = (−1, 1). The righthand terms {(f, qk)ω}Nk=4, as well
as the discrete errors, is also evaluated through the Chebyshev-Gauss quadrature
with 2N + 1 nodes.

We take r1 = 1 and r2 = 1 in (31) and consider the following two cases:

• u(x) = e−x(x2 − 1)2, where the solution is smooth. In Figure 3, we plot
the log10 of the discrete L2-errors.

• u(x) = sin(10x)(x2 − 1)2, where the solution is oscillating. In Figure 4, we
plot the log10 of the discrete L2-errors.

The two near straight lines indicate that the L2-errors decay like e−cN .
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5. Concluding Remarks

In this paper, we construct two kinds of basis functions which are biorthogonal
with respect to the Sobolev inner product originated from the coercive bilinear
form of the elliptic equation. We also propose stable and efficient algorithms for
second and fourth order Dirichlet boundary value problems. Particularly, both the
exact solutions and the approximate solutions can be represented as infinite and
truncated Fourier series, respectively. Numerical experiments demonstrate that the
suggested methods possess high-order accuracy. Although we only consider two
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model problems in this paper, the main idea and technology are also suitable for
some other problems, such as the Neumann and Robin boundary value problems.
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