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Abstract

In a composite medium that contains close-to-touching inclusions, the pointwise values

of the gradient of the voltage potential may blow up as the distance δ between some

inclusions tends to 0 and as the conductivity contrast degenerates. In a recent paper [9],

we showed that the blow-up rate of the gradient is related to how the eigenvalues of the

associated Neumann-Poincaré operator converge to ± 1

2
as δ → 0, and on the regularity

of the contact. Here, we consider two connected 2-D inclusions, at a distance δ > 0 from

each other. When δ = 0, the contact between the inclusions is of order m ≥ 2. We

numerically determine the asymptotic behavior of the first eigenvalue of the Neumann-

Poincaré operator, in terms of δ and m, and we check that we recover the estimates

obtained in [10].
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1. Eigenvalues of the Neumann-Poincaré Operator for two Inclusions

Let D1, D2 ⊂ R2 be two bounded, smooth inclusions separated by a distance δ > 0. We

assume that D1 and D2 are translates of two reference touching inclusions

D1 = D0
1 + (0, δ/2), D2 = D0

2 + (0,−δ/2).

We assume that D0
1 lies in the lower half–plane x1 < 0, D0

2 in the upper half–plane, and that

they meet at the point 0 tangentially to the x1–axis (see Figure 1.1). We make the following

additional assumptions on the geometry:

A1. The inclusions D0
1 and D0

2 are strictly convex and only meet at the point 0.

A2. Around the point 0, ∂D0
1 and ∂D

0
2 are parametrized by 2 curves (x, ψ1(x)) and (x,−ψ2(x))

respectively. The graph of ψ1 (resp. ψ2) lies below (resp. above) the x–axis.

A3. The boundary ∂D0
i of each inclusion is globally C1,α for some 0 < α ≤ 1.

A4. The function ψ1(x) + ψ2(x) is equivalent to C|x|m as x → 0, where m ≥ 2 is a fixed

integer and C is a positive constant.
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Fig. 1.1. The touching and non–touching configurations.

Let a(X) be a piecewise constant function that takes the value 0 < k 6= 1 in each inclusion

and 1 in R
2 \D1 ∪D2, that is

a(X) = 1 + (k − 1)χD1∪D2
(X),

where χD1∪D2
is the characteristic function of D1 ∪ D2. Given a harmonic function H , we

denote u the solution to the PDE

{

div(a(X)∇u(X)) = 0 in R2

u(X)−H(X)→ 0 as |X | → ∞.
(1.1)

Since H is harmonic in the whole space the regularity of u at a fixed value k, only depends

on the smoothness of the inclusions and of their distribution [15].

One can express u in terms of layer potentials [1, 22]

u(X) = S1ϕ1(X) + S2ϕ2(X) +H(X), (1.2)

where Si denotes the single layer potential on ∂Di, defined for ϕ ∈ H−1/2(∂Di) by

Siϕ(X) =
1

2π

∫

∂Di

ln |X − Y |ϕ(Y ) dσ(Y ).

Denoting the conductivity contrast by

λ =
k + 1

2(k − 1)
∈

(

−∞,−
1

2

)

∪

(

1

2
,+∞

)

and expressing the transmission conditions satisfied by u, one sees that the layer potential

ϕ = (ϕ1, ϕ2) ∈ H−1/2(∂D1)×H−1/2(∂D2) satisfies the system of integral equations

(λI −K∗
δ )

(

ϕ1

ϕ2

)

=

(

∂ν1H|∂D1

∂ν2H|∂D2

)

, (1.3)

where νi(X) denotes the outer normal at a point X ∈ ∂Di. The operator K∗
δ is the Neumann-

Poincaré operator for the system of two inclusions

K∗
δ

(

ϕ1

ϕ2

)

=

(

K∗
1 ∂ν1S2|∂D1

∂ν2S1|∂D2
K∗

2

)(

ϕ1

ϕ2

)

, (1.4)
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where the integral operators K∗
i are defined on H−1/2(∂Di) by

K∗
i ϕ(X) =

1

2π

∫

∂Di

(X − Y ) · νi(X)

|X − Y |2
ϕ(Y ) dσ(Y ).

In such a system of inclusions, for a fixed contrast |λ| > 1
2 , the gradient of the potential is

bounded pointwise [1, 11, 20] independently of δ. This is an important fact from the point of

view of material sciences, where one would like to control the ‘hot spots’ where gradients may

become large [12]. The pointwise control of the gradients is also particularly pertinent in the

context of solid mechanics. For instance, the constitutive laws of classical models of plasticity

or fracture involve pointwise values of the stress tensor. Similar qualitative results hold in this

case [19].

However, the gradients may blow up when both δ → 0 and the material coefficients inside

the inclusions degenerate [11]. How the bounds depend on the inter-inclusion distance in the

case of perfectly conducting inclusions was studied in [8, 25]. Several works study the blow-up

rate of the gradient in terms of both parameter δ → 0, and |λ| → 1
2 when the inclusions are

discs. In this case, the voltage potential u can be represented by a series, that lends itself to a

precise asymptotic analysis [3, 4, 6, 7, 12, 21]. In particular, optimal upper and lower bounds on

∇u were obtained in [4–6].

In a recent work [10], we have used the above integral representation to derive bounds on

∇u, as we had observed that in (1.3) the parameters λ and δ are decoupled since K∗
δ does

not depend on λ. Following [17, 18], we showed that K∗
δ has a spectral decomposition in the

space of single layer potentials. We showed that its spectrum splits into two families of ordered

eigenvalues λδ,±n which satisfy

λδ,+n = −λδ,−n and 0 < λδ,+n <
1

2
.

Consequently, denoting by ϕδ,±
n the associated eigenvectors, the solution to (1.3) can be ex-

pressed as

ϕ =

(

ϕ1

ϕ2

)

=
∑

n≥1

〈

ϕδ,±
n ,

(

∂ν1H|∂D1

∂ν2H|∂D2

)〉

λ− λδ,±n

ϕδ,±
n . (1.5)

This formula indicates that the singularities of u are triggered by the fact that λ − λδ,±n may

become small. Indeed, λ → ± 1
2 as k tends to 0 or to +∞, whereas we have shown that

λδ,±n → ± 1
2 as δ → 0 [10].

We do not know if the expansion (1.5) holds in a pointwise sense, except in the case of

discs [9], where we can then directly relate the bounds on ∇u to the asymptotic behavior of

the eigenvalues. One of the difficulties is that K∗
δ is not self-adjoint. One can nevertheless

symmetrize the operator [17]: The expansion (1.5) holds in the sense of the following inner-

product on the space H−1/2(∂D1)×H−1/2(∂D2)

< ϕ,ψ >S = < −S[ϕ], ψ >L2

:= −

∫

∂D1

S1[ϕ1]ψ1 −

∫

∂D2

S2[ϕ2]ψ2, (1.6)

for which K∗
δ becomes a compact self-adjoint operator, which therefore has a spectral decom-

position. Moreover, this implies that the eigenvalues of K∗
δ can be obtained via a min-max
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principle known as the Poincaré variational problem (in the terminology of [17]). It consists in

optimizing the ratio

J(u) =

∫

D1∪D2

|∇u|2

∫

R2\D1∪D2

|∇u|2
,

among all functions u ∈W 1,2(R2) whose restriction to D = D1 ∪D2 and to D′ = R2 \D1 ∪D2

is harmonic.

Consider the weighted Sobolev space

W1,−1
0 (R2) :=















u(X)

(1 + |X |2)1/2 log(2 + |X |2)
∈ L2(R2)

∇u ∈ L2(R2), u(X) = o(1) as |X | → ∞















,

equipped with the scalar product

∫

R2

∇u · ∇v [22]. We have shown in [10] that the spectrum

of K∗
δ is related to the sprectrum of the operator Tδ defined for u ∈ W 1,−1

0 (R2) by

∀ v ∈W 1,−1
0 (R2),

∫

R2

∇Tδu(X) · ∇v(X) =

∫

D1∪D2

∇u(X) · ∇v(X).

This operator is self adjoint, satisfies ||Tδ|| ≤ 1. Proposition 4 and Lemmas 1 and 2 in [10]

show that its eigenvalues can be grouped in two families βδ,+
n ⊂ [0, 12 ], and β

δ,−
n ⊂ [ 12 , 1], which

are symmetric with respect to 1
2 . The values βδ,−

0 = 1 is an eigenvalue of Tδ, with associated

eigenspace

Ker (I − Tδ) =
{

v|D′ ≡ 0, v|D ∈ H1
0 (D)

}

.

Due to the symmetry, βδ,+
0 = 0 is also an eigenvalue, and its eigenspace is

Ker (Tδ) =
{

v|D′ ∈ W1,−1
0 (D′), v|D ≡ 0

}

∪ Rw0,

where w0 is defined by















∆w0(X) = 0 in D′,

w0(X) = Cj on ∂Dj j = 1, 2,
∫

∂Dj

∂w0

∂ν
= (−1)j j = 1, 2.

(1.7)

The constants C1, C2 ∈ R are chosen so that w0 ∈ W1,−1
0 (R2).

All the other eigenvalues βδ,+
n are given by the following min-max principle

βδ,+
n = min

u ∈ W
1,−1
0 (R2)

u ⊥ w0, w
δ,+
1 , · · · , wδ,+

n

∫

D
|∇u(X)|

2
dX

∫

R2 |∇u(X)|
2
dX

= max
Fn ⊂ W

1,−1
0 (R2)

dim(Fn) = n+ 1

min
u∈Fn

∫

D |∇u(X)|
2
dX

∫

R2 |∇u(X)|2 dX
.
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The eigenvalues of Tδ are related to the λδ,±n ’s by

βδ,±
n =

1

2
− λδ,±n .

The min-max characterization of Tδ allows to derive an asymptotic expansion of the eigen-

values of the Neumann-Poincaré operator (see [10], Theorem 1) as δ → 0.

Theorem 1.1. For two close to touching inclusions with contact of order m, the eigenvalues

of the Neumann-Poincaré operator K∗
δ split in two families (λ±n )n≥1, with

{

λ+n ∼ 1
2 − c+n δ

m−1

m + o(δ
m−1

m ),

λ−n ∼ − 1
2 + c−n δ

m−1

m + o(δ
m−1

m ),
(1.8)

where (c±n )n≥1 are increasing sequences of positive numbers, that only depend on the shapes of

the inclusions, and that satisfy c±n ∼ n as n→ ∞.

In this work, we consider a numerical approximation of the spectral problem for Tδ so as to

give a numerical validation of the rates of convergence of λδ,+1 as δ → 0. The first eigenvalue

λδ,+1 is of importance in applications since it is related to the spectral radius of the operator

K∗
δ , and gives the rate of convergence of Neumann series that appears in solving the integral

equation (1.3) [24].

In Section 2, we show that the asymptotic behavior of the eigenvalues of Tδ can be estimated

by the eigenvalues of an operator of similar type, but defined on a ball BR that contains the

inclusions. In fact, by considering the auxiliary spectral problem in a large ball BR, we reduce

the computation to a bounded domain.

In Section 3, we explain how we discretized the latter spectral problem, by choosing a basis of

functions which are harmonic polynomials on each inclusion, extended as harmonic functions in

BR \D1 ∪D2. Finally, numerical results for βδ,+
1 with different contact orders m are presented

in Section 4.

2. Comparison of Tδ with an Operator Defined on a Bounded Domain

Let R > 2 be large enough, so that D1 ∪D2 ⊂ BR/2 when δ < δ0. It follows from the Riesz

Theorem that for any u ∈ H1
0 (BR), there exists a unique Bδu ∈ H1

0 (BR) such that

∀ v ∈ H1
0 (BR),

∫

BR

∇Bδu(X) · ∇v(X) =

∫

D1∪D2

∇u(X) · ∇v(X).

The operator Bδ maps H1
0 (BR) into itself, and it is easily seen to satisfy ||Bδ|| ≤ 1. The

argument in [10] concerning Tδ shows that Bδ is self adjoint and of Fredholm type, thus has a

spectral decomposition. Let bδ,±n denote its eigenvalues.

Theorem 2.1. Let n ≥ 1. There exists a constant C independent of δ and n such that

1

C
bδ,+n ≤ βδ,+

n ≤ Cbδ,+n . (2.1)

Proof. Let f ∈ H1/2(∂D) and let uf ∈ W 1,−1
0 (R2) and vf ∈ H1

0 (BR) denote the functions

which are harmonic in R2 \D and in BR \D respectively, which are also harmonic in D, and
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which satisfy uf = vf = f on ∂D. We will show that there exists a constant C > 0 independent

of δ and n such that for all f ∈ H1/2(∂D) \ {0},

1

C

∫

D

|∇vf |
2

∫

BR

|∇vf |
2

≤

∫

D

|∇uf |
2

∫

R2

|∇uf |
2

≤ C

∫

D

|∇vf |
2

∫

BR

|∇vf |
2
. (2.2)

The statement of the theorem follows then from the min-max principle for the operators Tδ and

Bδ.

To prove (2.2), we first note that since uf and vf are harmonic in D and coincide on ∂D,

uf ≡ vf on ∂D, so that
∫

D

|∇uf |
2 =

∫

D

|∇vf |
2. (2.3)

Since the extension of vf by 0 outside of BR is a function of W 1,−1
0 (R2), we see that

∫

R2

|∇u|2 ≤ min
w∈W 1,−1

0
(R2)

∫

R2

|∇w|2 ≤

∫

BR

|∇v|2,

which together with (2.3) proves the right-hand inequality in (2.2).

To prove the other inequality, let χ denote a smooth cut-off function, such that χ ≡ 1 in

BR/2 and χ ≡ 0 outside BR. We may also assume that ||χ||W 1,∞ ≤ 1. The function ũf = χuf
lies in H1

0 (BR), and there is a constant C that only depends on R such that
∫

BR\D

|∇ũf |
2 ≤ C

∫

R2\D

|∇uf |
2.

Since ũf = uf = vf on ∂D, it follows from the Dirichlet principle that
∫

BR\D

|∇vf |
2 ≤

∫

BR\D

|∇ũf |
2,

which combined with (2.3) yields the desired inequality. �

3. Discretization

In the sequel, we estimate numerically the rate of convergence to 0 of the first non-degenerate

eigenvalue bδ,+1 , from which, using Theorem 1.1, we will infer the behavior of βδ,+
1 . To this end,

we use the min-max principle to approximate bδ,+1 by

bδ,+1,N = min
u∈VN

∫

D
|∇u(X)|2dX

∫

BR
|∇u(X)|2dX

, (3.1)

where VN is a finite dimensional subspace of H1
0 (BR). We construct approximation spaces VN

in the following fashion Let X1 = (x1 + iy1) ∈ D1, X2 = (x2 + iy2) ∈ D2 and n ∈ N. Define

φ±n,1, φ
±
n,2 : R2 −→ C by φn,1(z) = (z − X1)

n, φn,2(z) = (z − X2)
n, where z = x + iy. Let

wm,m ≥ 1 be the H1
0 (D) functions which are harmonic in BR \D and such that

{

w4n−3 = Re(φn,1) in D1

w4n−3 = 0 in D2,

{

w4n−2 = Im(φn,1) in D1

w4n−2 = 0 in D2,

{

w4n−1 = 0 in D1

w4n−1 = Re(φn,2) in D2,

{

w4n = 0 in D1

w4n = Im(φn,2) in D2.
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Fig. 3.1. Mesh refinement zone.

We consider a conformal triangulation T of BR, which is refined in the neck between the

2 inclusions. The width of the refined zone is chosen so that its thickness is equal to 5δ at its

extremities (see for instance Figures 3.1–3.3) for the case of two discs. Let ŵm,m ≥ 1 denote

the H1 projection of wm on the space of functions which are piecewise linear on T . We define

VN as the vector space generated by the functions ŵm,m ≤ 4N .

We note that the functions wm,m ≥ 1 are linearly independent. Together with the functions

w0,1, w0,2 in H1
0 (BR) defined by ∆w0,i = 0 in BR \D, and

{

w0,1 = 1 in D1

w0,1 = 0 in D2,

{

w0,2 = 0 in D1

w0,2 = 1 in D2,

they from a basis of H1
0 (BR). We also note that the functions w0,i are the eigenfunctions of

Bδ associated to the degenerate mode b0 = 0. To compute the eigenvalues bδ,+1,N , we form the

Fig. 3.2. Mesh for δ = 1

16
.
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matrices A and B with entries

Ai,j =

∫

D1∪D2

∇ŵi · ∇ŵj , Bi,j =

∫

BR

∇ŵi · ∇ŵj ,

and then compute the generalized eigenvalues of the system AU = λBU . We have used the

software Freefem++ [14] to compute the vectors ŵm, and Scilab [23] to solve the above matrix

eigenvalue problem.

Fig. 3.3. Mesh refinement near the contact point.

4. Numerical Results

We deduce from Theorems 1.1 and 2.1 that

log bδ,+1,N ∼ log c+1 +
m− 1

m
log δ

as δ tends to 0. In this section, we draw the graph of log bδ,+1,N as a function of log δ, and

determine numerically its slope m−1
m . We first study the case where the inclusions are two

discs, and then we perturb the inclusions to have a contact point with higher order.

4.1. The case of 2 discs

We start with the case of two discs D1 = Br(0, r +
δ
2 ) and D2 = Br(0, r −

δ
2 ) with r = 2.

Here, X1 and X2 in the construction of VN , are chosen to be the centers of the discs D1 and

D2.

Since the contact of order two, i.e.,

ψ1(x) + ψ2(x) ∼ C|x|2 as x→ 0,

the theoretical slope is 1
2 . Taking N = 39, the graph of log bδ,+1,N tends to the line with equation

t = −0.7934156+0.4307516s (see for instance Figure 4.1). The equation of the line is computed

using the least squares method.

The dimension of the space VN is 4N + 2. Hence, we expect that the numerical slope will

tend to the theoretical one when N becomes larger. Table 4.1 and Figure 4.1 give how does the

numerical slope behave as a function of N , and shows a good agreement with the theoretical

predictions.



Eigenvalues of the Neumann-Poincaré Operator 25

Table 4.1: Numerical slope as a function of N .

Values of N equation of the line approximation

9 t = −1.09526+ 0.2486835s

19 t = −0.9099896+ 0.3700286s

29 t = −0.8575362+ 0.4045268s

39 t = −0.7934156+ 0.4307516s

Fig. 4.1. log bδ,+1,N as function of log δ.

4.2. Contact of order m

Now, we consider shapes with different contact orders, i.e.,

ψ1(x) + ψ2(x) ∼ C|x|m.

Let D1 and D2 be the perturbed half discs defined by (see Figure 4.3)

D1 =
{

− 1 ≤ x ≤ 1, |x|m + δ ≤ y ≤ 1 + δ
}

∪
{

x2 + (y − 1− δ)2 ≤ 1, y ≥ 1 + δ
}

,

D2 =
{

− 1 ≤ x ≤ 1,−|x|m − δ ≥ y ≥ −1− δ
}

∪
{

x2 + (y + 1 + δ)2 ≤ 1, y ≤ −1− δ
}

.

The points X1 and X2 in the construction of the space VN , are the centers of the perturbed

discs. Table 4.2 provides the numerical results for δ between 1
2 and 1

27 , and N = 39.

Table 4.2: Numerical results for δ with different values of m.

m Equation of the line Theoretical slope Error

m = 2 t = −0.7934156+ 0.4307516s 1
2 = 0.5 0.0692484

m = 6 t = −0.1401772+ 0.8003479s 5
6 ≃ 0.83 0.03298543

m = 9 t = −0.2357561+ 0.8508496s 8
9 ≃ 0.89 0.03803929

We remark that the computed slopes are in a good agreement with the expected theoretical

values.
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Fig. 4.2. The effect of the dimension of VN on the values of bδ,+1,N .

Fig. 4.3. Domains D1 and D2

5. Conclusion

We have studied the behavior of the eigenvalues of the Neumann-Poincaré operator for

two close-to-touching inclusions in dimension two. We have validated numerically the rates of

convergence derived in [10]. We continue to study the asymptotic behavior of the spectrum

of the Neumann-Poincaré integral operator for two close-to-touching inclusions in dimension

three. We also plan to extend the results of [9] to general geometries in dimension two. In

dimension three the sizes of the matrices A and B become too large and this may complicate
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the computation of the generalized eigenvalues. In another line of research, we propose to use

an integral equation approach combined with an asymptotic approximation of the kernels of

the off-diagonal operators in the system (1.4) around the contact point. We think that this

approach is more appropriate to dimension three and larger. We will report related results in

future works.
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Mathématiques Pures et Appliquées, 99:2 (2013), 234-249.

[17] D. Khavinson, M. Putinar, and H.S. Shapiro, On Poincaré’s variational problem in potential

theory, Arch. Rational Mech. Anal., 185 (2007), 143-184.



28 E. BONNETIER, F. TRIKI AND C.H. TSOU

[18] M.G. Krein, Compact linear operators on functional spaces with two norms, Sbirnik Praz. Inst.

Mat. Akad. Nauk Ukrainsk SSR 9 (1947), 104-129 (Ukrainian). English translation in: Integral

Equations Oper. Theory 30:2 (1998), 140-162.

[19] Y.Y. Li, and L. Nirenberg, Estimates for elliptic systems from composite material, Comm. Pure

Appl. Math., 56 (2003), 892-925.

[20] Y.Y. Li, and M. Vogelius, Gradient estimates for the solution to divergence form elliptic equations

with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.

[21] X. Markenscoff, Stress amplification in vaninshingly small geometries, Computationnal Mechanics,

19 (1996), 77-83.
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