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Abstract. The purpose of this paper is to derive the generalized conjugate residual
(GCR) algorithm for finding the least squares solution on a class of Sylvester matrix
equations. We prove that if the system is inconsistent, the least squares solution can be
obtained within finite iterative steps in the absence of round-off errors. Furthermore,
we provide a method for choosing the initial matrix to obtain the minimum norm least
squares solution of the problem. Finally, we give some numerical examples to illustrate
the performance of GCR algorithm.
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1. Introduction

Matrix equations appear frequently in many areas of applied mathematics and play
important roles in many applications, such as control theory and system theory [25–27].
For example, the descriptor linear system

A1 ẋ + A1 ẋ + B0u= 0 (1.1)

captures the dynamic behavior of many physical systems in practice [29–31] and the sec-
ond order linear system

A2 ẍ + A1 ẋ + A1 ẋ + B0u= 0 (1.2)

has wide applications in vibration and structural analysis, robotics control and spacecraft
control [32, 33]. It is known that certain control problems, such as pole/eigenstructure
assignment and observer design are closely related to the generalized Sylvester matrix
equations (1.1) and (1.2). To solve the additive decomposition problem of a transfer
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matrix [34], we need to find the solution pair (X , Y ) of the generalized coupled Sylvester
matrix equations







AX − Y B = C ,

DX − Y E = F.
(1.3)

In this paper, we consider the solution of the following matrix equations






A1X B1 = C1,

A2X B2 = C2,
(1.4)

where A1 ∈ Rp×m, B1 ∈ Rn×q, C1 ∈ Rp×q and A2 ∈ Rr×m, B2 ∈ Rn×s, C2 ∈ Rr×s are given
matrices, and X ∈ Rm×n is an unknown matrix to be determined.

There have been many papers considering various solutions of the matrix equatio-
ns(1.4). For instance, Mitra [1, 2] gave conditions for the existence of a solution and a
representation of the general common solution to the system (1.4). Navarra et al. [3]
derived the sufficient and necessary conditions for the existence of a common solution to
the system (1.4). Yuan [4] obtained an analytical expression of the least squares solu-
tion of the system (1.4) by using the generalized singular value decomposition (GSVD) of
matrices. Sheng and Chen [5] presented a finite iterative method when the system (1.4)
is consistent. Cai and Chen [6] constructed an iterative algorithm for the least squares
bisymmetric solution of the matrix equations (1.4) by applying the theory of convex anal-
ysis. In [24], Dehghan and Hajarian presented an algorithm for solving matrix equations
(1.4) in order to obtain (R,S)-symmetric and (R,S)-skew symmetric solution. An efficient
iterative method was proposed for finding the generalized centro-symmetric solution of
the matrix equations (1.4) by Dehghan and Hajarian [43]. Chen et al. [38] obtained com-
mon symmetric least squares solutions of the matrix equations (1.4) by using the LSQR
iterative method. Wang et al. [42] presented a direct method to solve the least squares
Hermitian problem of the complex matrix equations (AX B, CX D) = (E, F) with the help of
matrix-vector product and the Moore-Penrose generalized inverse.

In the past decades, most of the proposed iterative algorithms for solving linear matrix
equations were obtained from the extension of algorithms which were previously intro-
duced for solving the linear system of equations Ax = b. See for [7–13,39,40]. For exam-
ple, Bai proposed a Hermitian and skew-Hermitian splitting (HSS) iteration algorithm to
solve the Sylvester matrix equation

AX + X B = F, (1.5)

with non-Hermitian and positive definite/semi-definite matrices [44]. A nested splitting
conjugate gradient (NSCG) iteration method [45] was proposed for solving the matrix
equation

AX B = C . (1.6)
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Based on the conjugate gradient algorithm, several iterative algorithms were proposed for
solving the (coupled) linear matrix equations [14–17]. The matrix forms of CGS, GPBiCG,
QMRCGSTAB, BiCOR, Bi-CGSTAB, CORS, BiCG, Bi-CR and CGLS algorithms were given to
solve linear matrix equations [18–22,41].

Inspired by the previous works, in this paper, we are devoted to obtain the generalized
conjugate residual (GCR) algorithm for finding the least squares solution of the matrix
equations (1.4). When the system (1.4) is inconsistent, we prove that the least squares
solution of the system (1.4) can be obtained within finite iterative steps in the absence of
round-off errors. Moreover, the least Frobenius norm least squares solution can be derived
by finding the special type of the initial matrix.

For convenience, we use the following notations throughout this paper. Let Rm×n be
the sets of all real m × n matrices. We abbreviate Rn×1 as Rn. For A ∈ Rm×n, we write
AT ,‖A‖F , t r(A) and A−1 to denote transpose, Frobenius norm, the trace and the inverse
of matrix A, respectively. For any matrix A = (ai j), B = (bi j), matrix A⊗ B denotes the
Kronecker product defined as A⊗ B = (ai jB). For the matrix X = (x1, x2, · · · , xn) ∈ Rm×n,
vec(X ) denotes the vec operator defined as vec(X ) = (x T

1 , x T
2 , · · · , x T

n )
T ∈ Rmn.

The rest of this paper is organized as follows. In Section 2, we introduce a matrix
form of generalized conjugate residual (GCR) algorithm to solve Sylvester matrix equations
(1.4) over the least squares solution. Then we prove that if the system is inconsistent, the
least squares solution can be obtained within finite iterative steps in the absence of round-
off errors. In Section 3, we provide a method for choosing the initial matrix to obtain the
least Frobenius norm least squares solution of the system (1.4). In Section 4, we present
some numerical experiments. The paper ends up with conclusions in Section 5.

2. The generalized conjugate residual algorithm for solving the matrix

equations (1.4)

First, we give the definition of the inner product. In the space Rm×n over the field R,
the inner product can be defined as

〈A, B〉 = t r(BT A). (2.1)

The norm of a matrix generated by this inner product space is denoted by ‖ · ‖. Then, for
A∈ Rm×n, we have

‖A‖2 = 〈A, A〉= t r(AT A) = ‖A‖2F ,

〈A, B〉 = 〈vec(A), vec(B)〉. (2.2)

In addition, from the definition of the inner product and the properties of matrix trace, we
have the following results:

〈A, B〉 = t r
�

BT A
�

= t r
�

ABT
�

= t r
�

BAT
�

= t r
�

AT B
�

= 〈B, A〉.

So far, many iterative methods have been proposed for solving the linear equations

Ax = b, A∈ Rn×n, b ∈ Rn, (2.3)
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Algorithm 2.1 GCR Algorithm.

1 Initial vector: x0 ∈ Rn arbitrary, r0 = b− Ax0, p0 = r0, k := 0.

2 Recursions:

αk =
(rk,Apk)

(Apk,Apk)
, xk+1 = xk +αkpk, rk+1 = rk −αkApk,

β k
i = −

(Ark+1,Api)

(Api,Api)
, for i = 0,1, · · · , k, pk+1 = rk+1+

k
∑

i=0

β k
i pi .

where A is positive definite matrix, i.e., the symmetric part of A, H = (A+AT )/2 is symmet-
ric positive definite matrix. Generalized conjugate residual method is one of the iterative
methods. The ordinary generalized conjugate residual (GCR) to solve Eq. (2.3) is as fol-
lows [37].

For the convenience of discussion in what follows, we adopt the following notation:

G(Y ) = AT
1 A1Y B1BT

1 + AT
2 A2Y B2BT

2 . (2.4)

It is easy to prove that G is a linear operator.
Now, we construct the following generalized conjugate residual algorithm (GCR) with

the matrix form for finding the least squares solution of the system (1.4).

Remark 2.1. In the implementation of the Algorithm 2.2, in order to save memory re-
quirements, we can calculate Qk+1 from Eq. (2.5). Obviously, we have

Qk+1 = Sk+1+

k
∑

s=0

β (k)s Qs. (2.7)

To prove the convergence property of Algorithm 2.2, we first establish the following lem-
mas.

Lemma 2.1. Let the sequence {Qk} be generated by Algorithm 2.2. Then we have

〈Q i ,Q j〉 = 0, i, j = 0,1, · · · , k, i 6= j. (2.8)

Proof. First, we prove
〈Q i,Q j〉 = 0, 0≤ i < j ≤ k. (2.9)

By mathematical induction, for k = 1, by using update rules of Qk and Pk, the definition of
β (k)s , we obtain

〈Q0,Q1〉 =〈Q0, G(P1)〉= 〈Q0, G(R̃1 + β
(0)
0 P0)〉

=〈Q0, G(R̃1)〉+ β
(0)
0 〈Q0, G(P0)〉= 〈Q0,S1〉+ β

(0)
0 〈Q0,Q0〉

=〈Q0,S1〉 −
〈S1,Q0〉

〈Q0,Q0〉
〈Q0,Q0〉= 0.
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Algorithm 2.2 Generalized Conjugate Residual Algorithm with matrix form.

Input appropriate dimensionality matrices A1 ∈ Rp×m, B1 ∈ Rn×q, C1 ∈ Rp×q and A2 ∈
Rr×m, B2 ∈ Rn×s, C2 ∈ Rr×s in (1.4). Choose the initial matrix X0 ∈ Rm×n.

1 Compute

R
(1)
0 = C1 − A1X0B1, R

(2)
0 = C2 − A2X0B2, R̃0 = AT

1 R
(1)
0 BT

1 + AT
2 R
(2)
0 BT

2 .

Set P0 = R̃0 and k := 0.

2 If ‖R̃k‖= 0, stop; otherwise, go to Step 3.

3 Compute

Qk = AT
1 A1PkB1BT

1 + AT
2 A2PkB2BT

2 ¬ G(Pk).

Update the sequence Xk+1 = Xk +αkPk. Compute

R
(1)
k+1 = C1− A1Xk+1B1, R

(2)
k+1 = C2 − A2Xk+1B2.

Update the sequences

R̃k+1 = AT
1 R
(1)
k+1BT

1 + AT
2 R
(2)
k+1BT

2 = R̃k −αkQk,

Sk+1 = AT
1 A1R̃k+1B1BT

1 + AT
2 A2R̃k+1B2BT

2 ¬ G(R̃k+1)

Pk+1 = R̃k+1+

k
∑

s=0

β (k)s Ps, (2.5)

where

αk =
〈R̃k,Qk〉

〈Qk,Qk〉
, β (k)s =

〈Sk+1,Qs〉

〈Qs,Qs〉
, s = 0,1, · · · , k. (2.6)

4 Set k := k+ 1, return to Step 2.

Suppose that (2.9) holds for k = l. For k = l + 1, according to the update rules of Qk, Pk,
the relation (2.6) and induction principle, we have

〈Q i,Q l+1〉=〈Q i, G(Pl+1)〉= 〈Q i , G(R̃l+1+

l
∑

s=0

β (l)s Ps)〉

=〈Q i, G(R̃l+1)〉+
l
∑

s=0

β (l)s 〈Q i, G(Ps)〉= 〈Q i,Sl+1〉+
l
∑

s=0

β (l)s 〈Q i ,Qs〉

=〈Q i,Sl+1〉+ β
(l)

i
〈Q i ,Q i〉= 〈Q i ,Sl+1〉 −

〈Sl+1,Q i〉

〈Q i,Q i〉
〈Q i,Q i〉 = 0.
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So the relation (2.9) holds for k = l+1. By the induction principle, the relation (2.9) holds
for all 0≤ i < j ≤ k. For i > j, from the symmetry of inner product, we have

〈Q i ,Q j〉= 〈Q j ,Q i〉= 0,

which completes the proof. �

Lemma 2.2. Let the sequences {Qk}, {R̃k} and {Sk} be generated by Algorithm 2.2. Then the

following results hold:

(1) 〈R̃i ,Q j〉 = 0, i, j = 0,1, · · · , k, i > j;

(2) 〈R̃i ,Q j〉 = 〈R̃0,Q j〉, i, j = 0,1, · · · , k, i ≤ j;

(3) 〈R̃i ,Q i〉 = 〈R̃i,Si〉;

(4) 〈R̃i ,S j〉 = 0, i, j = 0,1, · · · , k, i > j.

Proof. (1) We apply mathematical induction. For i = 1, together the update rule of R̃k

with the relation (2.6) yields

〈R̃1,Q0〉=〈R̃0 −α0Q0,Q0〉 = 〈R̃0,Q0〉 −α0〈Q0,Q0〉

=〈R̃0,Q0〉 −
〈R̃0,Q0〉

〈Q0,Q0〉
〈Q0,Q0〉 = 0.

Assume that 〈R̃l ,Q j〉 = 0 for all l > j, we shall show that 〈R̃l+1,Q j〉 = 0 for all l + 1 > j.
According to the update rule of R̃k, we get

〈R̃l+1,Q j〉 = 〈R̃l −αlQ l ,Q j〉 = 〈R̃l ,Q j〉 −αl〈Q l ,Q j〉.

For j < l, combining the induction principle with Lemma 2.1 yields 〈R̃l+1,Q j〉 = 0. For
j = l, using the relation (2.6), we obtain

〈R̃l+1,Q l〉= 〈R̃l ,Q l〉 −αl〈Q l ,Q l〉 = 〈R̃l ,Q l〉 −
〈R̃l ,Q l〉

〈Q l ,Q l〉
〈Q l ,Q l〉 = 0.

Thus we draw the conclusion by induction.
(2) By mathematical induction, for i = 0, the result is trivial. Assume that 〈R̃i ,Q j〉 =

〈R̃0,Q j〉 for i = l < j, then using Algorithm 2.1 and Lemma 2.1, we have

〈R̃l+1,Q j〉= 〈R̃l −αlQ l ,Q j〉 = 〈R̃l ,Q j〉 −αl〈Q l ,Q j〉= 〈R̃l ,Q j〉 = · · ·= 〈R̃0,Q j〉.

By the induction principle, we obtain this result.
(3) By the first claim of Lemma 2.2 and the relation (2.7), we get

〈R̃i,Q i〉=
D

R̃i,Si +

i−1
∑

s=0

β (i)s Qs

E

= 〈R̃i ,Si〉+
D

R̃i,
i−1
∑

s=0

β (i)s Qs

E

=〈R̃i,Si〉+
i−1
∑

s=0

β (i)s 〈R̃i,Qs〉 = 〈R̃i,Si〉.
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(4) From the update rule of R̃k and the definition of S j , we have

〈R̃i,S j〉=〈R̃i, G(R̃ j)〉 =

*

R̃i, G(Pj −
j−1
∑

s=0

β j−1
s Ps)

+

=〈R̃i, G(Pj)〉 −

*

R̃i,
j−1
∑

s=0

β j−1
s G(Ps)

+

=〈R̃i,Q j〉 −
j−1
∑

s=0

β j−1
s 〈R̃i ,Qs〉.

Combining this with the first claim of Lemma 2.2 yields

〈R̃i,S j〉 = 〈R̃i ,Q j〉 −
j−1
∑

s=0

β j−1
s 〈R̃i,Qs〉= 0, ∀i > j.

This completes the proof. �

Lemma 2.3. Let the sequences {Qk}, {R̃k} and {Pk} be generated by Algorithm 2.2. If B1BT
1 ⊗

AT
1 A1 + B2BT

2 ⊗ AT
2 A2 is an positive definite matrix and R̃k 6= 0, then Qk 6= 0 and Pk 6= 0.

Proof. Using the third claim of Lemma 2.2, the update rule of Sk and the relation (2.4),
we obtain

〈R̃k,Qk〉 =〈R̃k,Sk〉=



R̃k, G(R̃k)
�

=



R̃k,AT
1 A1R̃kB1BT

1 + AT
2 A2R̃kB2BT

2

�

=



R̃k,AT
1 A1R̃kB1BT

1

�

+



R̃k,AT
2 A2R̃kB2BT

2

�

=
D

vec(R̃k), (B1BT
1 ⊗ AT

1 A1)vec(R̃k)
E

+
D

vec(R̃k), (B2BT
2 ⊗ AT

2 A2)vec(R̃k)
E

=
D

vec(R̃k),
�

B1BT
1 ⊗ AT

1 A1 + B2BT
2 ⊗ AT

2 A2
�

vec(R̃k)
E

. (2.10)

As R̃k 6= 0, we have vec(R̃k) 6= 0. Since B1BT
1 ⊗ AT

1 A1 + B2BT
2 ⊗ AT

2 A2 is an positive definite
matrix, we immediately have

〈R̃k,Qk〉=
D

vec(R̃k),
�

B1BT
1 ⊗ AT

1 A1 + B2BT
2 ⊗ AT

2 A2
�

vec(R̃k)
E

> 0.

Hence Qk 6= 0.
On the other hand, notice that

Qk = G(Pk) = AT
1 A1PkB1BT

1 + AT
2 A2PkB2BT

2 ,

from the definition of the Kronecker product and vec operator, we have

vec(Qk) =
�

B1BT
1 ⊗ AT

1 A1 + B2BT
2 ⊗ AT

2 A2

�

vec(Pk).
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Therefore

vec(Pk) 6= 0,

due to Qk 6= 0. Hence Pk 6= 0. The proof is completed. �

Remark 2.2. B1BT
1⊗AT

1 A1+B2BT
2⊗AT

2 A2 is an positive definite matrix if one of the following
conditions is satisfied:
(1) A1 is full column rank matrix, B1 is full row rank matrix.
(2) A2 is full column rank matrix, B2 is full row rank matrix.

Hence, the assumption is reasonable.

For convenience, we introduce the following notations.

Γ =







BT
1 ⊗ A1

BT
2 ⊗ A2






, b =







vec(C1)

vec(C2)






. (2.11)

Remark 2.3. If the condition (1) or the condition (2) of Remark 2.2 satisfies, then rank(Γ) =
mn. Moreover, if rank(Γ, b) 6= rank(Γ), then the system (1.4) is inconsistent.

Lemma 2.4. For any initial matrix X0, we have

‖R̃k+1‖ =




AT
1 (C1 −A1Xk+1B1)B

T
1 + AT

2 (C2− A2Xk+1B2)B
T
2







=min
X∈Tk





AT
1 (C1 − A1X B1)B

T
1 + AT

2 (C2− A2X B2)B
T
2





, (2.12)

where Xk+1 is generated by Algorithm 2.2 at the (k+1)-th iteration step and Tk denotes an

affine space which has the following form

Tk = X0 + span{P0, P1, · · · , Pk}, (2.13)

where Pk is generated by Algorithm 2.2 at the k-th iteration step.

Proof. According to the expression in Eq. (2.13), for any X ∈ Tk, there exists scalars
β0,β1, · · · ,βk such that

X = X0 +

k
∑

s=0

βsPs. (2.14)

We introduce a scalar function f (β0,β1, · · · ,βk) by formula

f (β0,β1, · · · ,βk) =




AT
1 (C1− A1X B1)B

T
1 + AT

2 (C2 − A2X B2)B
T
2







2
. (2.15)
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Substituting Eq. (2.14) into Eq. (2.15), we have

f (β0,β1, · · · ,βk) =




AT
1 (C1− A1X B1)B

T
1 + AT

2 (C2− A2X B2)B
T
2







2

=








AT
1

�

C1− A1(X0+

k
∑

s=0

βsPs)B1

�

BT
1 + AT

2

�

C2 − A2(X0+

k
∑

s=0

βsPs)B2

�

BT
2










2

=








AT
1(C1−A1X0B1)B

T
1 +AT

2 (C2 −A2X0B2)B
T
2 −

k
∑

s=0

βs(A
T
1A1PsB1B

T
1 +AT

2A2PsB2B
T
2 )










2

=








R̃0−
k
∑

s=0

βsQs










2

=‖R̃0‖
2 +

k
∑

s=0

β2
s ‖Qs‖

2 − 2
k
∑

s=0

βs〈R̃0,Qs〉,

where the last equality use Lemma 2.1. Clearly, the function f (β0,β1, · · · ,βk) is continu-
ous and differentiable with respect to the variables β0,β1, · · · ,βk. Next, we minimize the
function f (β0,β1, · · · ,βk). Obviously, the minimum of this function occurs when

∂ f (β0,β1, · · · ,βk)

βs

= 2βs‖Qs‖
2 − 2〈R̃0,Qs〉= 0. (2.16)

Solving Eq. (2.16) gives

βs =
〈R̃0,Qs〉

〈Qs,Qs〉
=
〈R̃s,Qs〉

〈Qs,Qs〉
= αs, s = 0,1,2, · · · , k, (2.17)

where the second equality use the second claim of Lemma 2.2. This implies that when

Xk+1 = X0 +

k
∑

s=0

αsPs,

the matrix Xk+1 minimizes the residual ‖R̃k+1‖ in the affine space Tk. This completes the
proof. �

According to Algorithm 2.2, if matrix equations (1.4) is inconsistent, then we will
obtain the least squares solution. That is, we have the following conclusion.

Theorem 2.1. Consider Algorithm 2.2. If ‖R̃k‖ = 0, then the matrix Xk is the least squares

solution of the matrix equations (1.4).

Proof. If ‖R̃k‖= 0, then R̃k = 0. According to Algorithm 2.2, we have

R
(1)
k
= C1 − A1XkB1, R

(2)
k
= C2− A2XkB2, (2.18a)

R̃k = AT
1 R
(1)
k

BT
1 + AT

2 R
(2)
k

BT
2 = 0. (2.18b)
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Substituting Eq. (2.18a) into Eq. (2.18b) gives

R̃k = AT
1 (C1− A1XkB1)B

T
1 + AT

2 (C2− A2XkB2)B
T
2 = 0. (2.19)

Simplifying Eq. (2.19) yields

AT
1 A1XkB1BT

1 + AT
2 A2XkB2BT

2 = AT
1 C1BT

1 + AT
2 C2BT

2 . (2.20)

By using vector operator and the Kronecker product, the relation (2.20) can be written as

�

B1 ⊗ AT
1

�

vec(C1) +
�

B2 ⊗ AT
2

�

vec(C2)

=
�

B1BT
1 ⊗ AT

1 A1
�

vec(Xk) +
�

B2BT
2 ⊗ AT

2 A2
�

vec(Xk)

=
�

B1 ⊗ AT
1

��

BT
1 ⊗ A1
�

vec(Xk) +
�

B2 ⊗AT
2

��

BT
2 ⊗ A2
�

vec(Xk). (2.21)

With these preparations, Eq. (2.21) can be rewritten in detail as

�

B1 ⊗AT
1 B2 ⊗ AT

2

�







BT
1 ⊗ A1

BT
2 ⊗ A2






vec(Xk)

=

�

B1 ⊗AT
1 B2 ⊗ AT

2

�







vec(C1)

vec(C2)






.

Denote

Γ =







BT
1 ⊗ A1

BT
2 ⊗ A2






, b =







vec(C1)

vec(C2)






, x(k) = vec(Xk).

Then

ΓTΓx(k) = ΓT b. (2.22)

Since the equations Γx = b is equivalent to the matrix equations (1.4) and Eq. (2.22) is
the normal equations of Γx = b, the matrix Xk is the least squares solution of the matrix
equations (1.4). Thus the proof is completed. �

Theorem 2.2. If B1BT
1 ⊗ AT

1 A1 + B2BT
2 ⊗ AT

2 A2 is an positive definite matrix, then for any

initial iterative matrix X0, the least squares solution of the system (1.4) can be derived in at

most mn iteration steps by Algorithm 2.2.

Proof. Assume that R̃k 6= 0 for k = 0,1,2, · · · , mn− 1. It follows from Lemma 2.3 that
Qk 6= 0, Pk 6= 0, k = 0,1, · · · , mn − 1. Then Qmn, Pmn can be derived by Algorithm 2.2.
According to Lemma 2.1, we know that 〈Q i,Q j〉 = 0 for all i, j = 0,1, · · · , mn−1, i 6= j. So
the matrix sequence of Q0,Q1, · · · ,Qmn−1 is an orthogonal basis of the linear space Rm×n.
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Moreover, according to Lemma 2.4, the matrix Xmn minimizes the residual ‖R̃mn‖ in the
affine space Tmn−1, that is

‖R̃mn‖
2 = min

X∈Tmn−1





AT
1 (C1− A1X B1)B

T
1 + AT

2 (C2 −A2X B2)B
T
2







2

=min
βs








R̃0−
mn−1
∑

s=0

βsQs










2
.

Hence ‖R̃mn‖ = 0, which completes the proof. �

3. The least Frobenius norm least squares solution

When the system (1.4) is inconsistent, its least squares solution is not unique. There-
fore, we need to find the unique least Frobenius norm least squares solution. First, we
introduce the following lemmas.

Lemma 3.1. ([35]) Suppose that A ∈ Rm×n, c ∈ Rm and the consistent system of linear

equations Ax = c has a solution x∗ ∈ R(AT ), then x∗ is the unique least Frobenius norm

solution of Ax = c.

Lemma 3.2. ([35]) Suppose that A ∈ Rm×n, c ∈ Rm and the system of linear equations

Ax = c is inconsistent. If x∗ ∈ R(AT ), then x∗ is the unique least Frobenius norm least

squares solution of Ax = c.

Theorem 3.1. Suppose that the system (1.4) is inconsistent, if we choose the initial matrix

X0 = AT
1 U0BT

1 + AT
2 V0BT

2 , (3.1)

where U0 ∈ Rp×q, V0 ∈ Rr×s are arbitrary matrices (especially, take X0 = 0 ∈ Rm×n), then the

solution X ∗ given by Algorithm 2.2 is the unique least Frobenius norm least squares solution

of the system (1.4).

Proof. If X0 has the form of the relation (3.1), then by Algorithm 2.2, we have

X1 =X0 +α0P0 = X0 +α0R̃0

=AT
1 U0BT

1 + AT
2 V0BT

2 +α0

�

AT
1 R
(1)
0 BT

1 + AT
2 R
(2)
0 BT

2

�

=AT
1

h

U0 +α0R
(1)
0

i

BT
1 + AT

2

h

V0 +α0R
(2)
0

i

BT
2 .

Let U1 = U0 +α0R
(1)
0 and V1 = V0 +α0R

(2)
0 . Then X1 = AT

1 U1BT
1 + AT

2 V1BT
2 . Note that

P1 =R̃1 + β
(0)
0 P0

=AT
1 R
(1)
1 BT

1 + AT
2 R
(2)
1 BT

2 + β
(0)
0

�

AT
1 R
(1)
0 BT

1 + AT
2 R
(2)
0 BT

2

�

=AT
1

h

R
(1)
1 + β

(0)
0 R

(1)
0

i

BT
1 + AT

2

h

R
(2)
1 + β

(0)
0 R

(2)
0

i

BT
2 .
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Let L1 = R
(1)
1 + β

(0)
0 R

(1)
0 , T1 = R

(2)
1 + β

(0)
0 R

(2)
0 . Then P1 = AT

1 L1BT
1 + AT

2 T1BT
2 . Hence, we

have

X2 =X1+α1P1

=AT
1 U1BT

1 + AT
2 V1BT

2 +α1

�

AT
1 L1BT

1 + AT
2 T1BT

2

�

=AT
1

�

U1 +α1 L1

�

BT
1 + AT

2

�

V1 +α1T1

�

BT
2

=AT
1 U2BT

1 + AT
2 V2BT

2 ,

where U2 = U1 +α1 L1 and V2 = V1 +α1T1. By parity of reasoning, we can prove that

Xk = AT
1 UkBT

1 + AT
2 VkBT

2 ,

where Uk ∈ Rp×q, Vk ∈ Rr×s. This fact together with Theorem 2.2 yields

X ∗ = AT
1 UBT

1 + AT
2 V BT

2 , (3.2)

where U ∈ Rp×q, V ∈ Rr×s. The above equality together with the definition of Kronecker
product yields

vec(X ∗) =(B1 ⊗ AT
1 )vec(U) + (B2 ⊗ AT

2 )vec(V )

=

�

B1 ⊗ AT
1 B2 ⊗ AT

2

�







vec(U)

vec(V )






.

Hence

vec(X ∗) ∈ R















BT
1 ⊗ A1

BT
2 ⊗ A2







T








.

This together with Lemma 3.2 that X ∗ is the unique least Frobenius norm least squares
solution of the system (1.4). The proof is completed. �

4. Numerical experiments

In this section, we report some numerical results to support our Algorithm 2.2. All of
the tests were run on the Intel (R) Core (TM), where the CPU is 2.40 GHz and the memory
is 8.0 GB, the programming language was MATLAB R2015a. In view of the influence of
round-off errors, we regard a matrix T as the zero matrix if 〈T, T 〉 < 10−9, where 〈·, ·〉
denotes the inner product defined by (2.1).

For convenience, we demonstrate the effectiveness of Algorithm 2.2 from the residual
of matrix equations (1.4) (denoted by ’Err(k)’) and the residual of normal equations (2.22)
(denoted by ‘Frr(k)’). Here, ‘Err(k)’ and ‘Frr(k)’ are defined as

Err(k) = ‖C1 − A1XkB1‖
2 + ‖C2 − A2XkB2‖

2,

F r r(k) = ‖R̃k‖ = ‖A
T
1 C1BT

1 + AT
2 C2BT

2 − AT
1 A1XkB1BT

1 − AT
2 A2XkB2BT

2 ‖, (4.1)

where R̃k is generated by Algorithm 2.2.
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Example 4.1. We consider Eq. (1.4) with the following matrices:

A1 =













12.1577 8.9748 5.8313

1.3548 7.9965 6.9825

3.3212 6.1529 3.2933













, B1 =













8.2788 3.3999 5.8149

0.3207 11.4671 9.3768

8.2714 2.4607 3.4779













,

A2 =













4.3601 2.3787 8.5835

7.8889 5.4365 6.9820

0.9240 1.0482 10.3374













, B2 =













9.5053 6.6178 0.1976

5.1627 4.1757 9.6429

3.2639 1.4782 12.7037













,

C1 =













3.5398 5.9863 6.1785

0.2062 4.1403 0.7021

6.8148 7.9625 3.6928













, C2 =













4.2386 2.9019 4.2779

4.6741 10.5454 2.6719

6.5669 5.5812 10.5374













.

Choosing the arbitrary initial matrix X0, such as

X0 =













4.6157 4.3330 1.7898

7.1564 11.8424 6.3333

5.7774 3.9305 9.2400













.

We obtain the least squares solution after 10 iterations by using Algorithm 2.2:

X10 =













0.1815 0.0004 −0.1684

−0.1652 −0.0127 0.2015

−0.0053 0.0905 0.0022













.

At this moment, Err(k), Frr(k) and the norm of Xk are

Err(10) = 119.1892, Frr(10) = 3.1895−10, ‖X10‖ = 0.3709.

If we choose the initial matrices X0 as the form of (3.1), we can get the least Frobenius
norm least squares solution of Example 4.1. Especially, we can choose X0 = 03×3. After 10
iteration steps, we obtain the least Frobenius norm least squares solution X10 and

Err(10) = 119.1892, Frr(10) = 4.4236−13, ‖X10‖ = 0.3709.

The relationship between the number of iterations and Frr(k) is shown in Fig. 1.
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Iteration number
1 2 3 4 5 6 7 8 9 10 11 12

F
rr
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)
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10-5

100

105

least squares solution
the least Frobenius norm  least squares solution

Figure 1: The relationship between the number of iterations and the norm of Frr(k) for Example 4.1.

Example 4.2. We consider Eq. (1.4) with the following matrices:

A1 =



















10.2594 0.4182 3.5446 6.7664

1.3787 5.0694 4.1063 9.8830

2.1780 6.1644 13.8435 7.6683

1.8214 9.3966 9.4558 7.3670



















, B1 =













9.6238 6.8018 6.0264

2.4417 8.2785 7.5052

2.9551 4.1159 8.8353













,

A2 =







2.1773 3.0891 7.8287 0.0980

1.2565 7.2610 6.9379 8.4321






, B2 =













12.2233 3.7819 2.2428

7.7095 10.0434 2.6905

0.4266 7.2951 9.7303













,

C1 =



















5.5179 7.1957 3.4645

5.8357 9.9616 8.8654

5.1182 3.5453 4.5469

0.8259 9.7126 4.1343



















, C2 =







4.7749 2.3644 8.2964

6.2372 1.7712 7.6692






.

Choosing the arbitrary initial matrices X0, such as

X0 =



















9.3448 4.8976 0.4417

1.0789 1.9325 5.5730

1.8223 8.9589 7.7250

0.9910 0.9909 3.1194



















.
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Iteration number
2 4 6 8 10 12 14

F
rr

(k
)
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100

105

least squares solution
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Figure 2: The relationship between the number of iterations and the norm of Frr(k) for Example 4.2.

We use Algorithm 2.2 and after 14 iterations, we obtain the least squares solution:

X14 =



















0.0079 0.1080 −0.0831

−0.0700 0.1450 −0.0317

0.0362 −0.0981 0.0743

0.0606 −0.0195 0.0120



















.

At this moment, Err(k), Frr(k) and the norm of Xk are

Err(14) = 147.5996, Frr(14) = 7.3182−10, ‖X14‖ = 0.2573.

If we choose the initial matrix X0 as the form of (3.1), we can get the least Frobenius
norm least squares solution of Example 4.2. Especially, we can choose X0 = 04×3. Using
Algorithm 2.2 and only 13 iteration numbers, we obtain the least Frobenius norm least
squares solution:

X13 =



















0.0079 0.1080 −0.0831

−0.0700 0.1450 −0.0317

0.0362 −0.0981 0.0743

0.0606 −0.0195 0.0120



















.

At this moment, Err(k), Frr(k) and the norm of Xk are

Err(13) = 147.5996, Frr(13) = 8.2875−13, ‖X13‖ = 0.2573.

The relationship between the number of iterations and Frr(k) is shown in Fig. 2.

Example 4.3. In this example, we compare our algorithm (Extended GCR) with the ex-
tended LSQR method (LSQR-M) [38] and the Algorithm 2.1 in [6]. We consider Eq. (1.4)
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Figure 3: The residual norms Frr(k) for Example 4.3.

with the following matrices:

A1 = t r iu(rand(n, n), 1) + diag(2+ diag(rand(n))) ∈ Rn×n,

B1 = t r il(rand(n, n), 1) + diag(3+ diag(rand(n))) ∈ Rn×n,

A2 = t r il(rand(n, n), 1)− diag(4+ diag(rand(n)))∈ Rn×n,

B2 = t r iu(rand(n, n), n) + diag(2.5+ diag(rand(n))) ∈ Rn×n,

C1 = C2 = rand(n, n) ∈ Rn×n.

When n = 40, the convergence curves of mentioned algorithms with X0 = 0 are obtained
for the Frobenius norm of the residual

F r r(k) =




AT
1 C1BT

1 + AT
2 C2BT

2 − AT
1 A1XkB1BT

1 − AT
2 A2XkB2BT

2





.

From Fig. 3, it is observe that the iteration number of the GCR algorithm is much less
than the other tested methods. Moreover, we list the iteration steps, the CPU time and the
residual norm (Frr) in Table 1. From Table 1, we know that the CPU time of our algorithm
is much less than LSQR-M.

Example 4.4. In this example, we compare our algorithm (Extended GCR) with the ex-
tended LSQR method (LSQR-M) [38] and the Algorithm 2.1 in [6]. We consider Eq. (1.4)

Table 1: Numerical results for Example 4.3.

Iteration# CPU Residual norms (Frr)

Extended GCR 98 0.1312 2.0340e-13

LSQR-M [38] 928 0.3309 9.7583e-10

Algorithm 2.1 [6] 124 0.0877 9.1908e-10



156 B. H. Huang and C. F. Ma

Iteration number
200 400 600 800 1000 1200

F
rr

(k
)

10-10

10-5

100

105

Extended  GCR
LSQR-M
Algorithm 2.1 in [6]

Figure 4: The residual norms Frr(k) for Example 4.4.

with the following matrices:

A1 = t r iu(rand(n, n), 2)− diag(6+ diag(rand(n)))∈ Rn×n,

B1 = t r il(rand(n, n), 1) + diag(3+ diag(rand(n))) ∈ Rn×n,

A2 = rand(n, n)+ diag(4+ diag(rand(n))) ∈ Rn×n,

B2 = rand(n, n)− diag(2.5+ diag(rand(n))) ∈ Rn×n,

C1 = C2 = rand(n, n) ∈ Rn×n.

When n = 40, the mentioned algorithms are applied with X0 = 0 to obtain Xk. In Fig. 4,
the convergence histories of mentioned methods are depicted where

F r r(k) =




AT
1 C1BT

1 + AT
2 C2BT

2 − AT
1 A1XkB1BT

1 − AT
2 A2XkB2BT

2





.

From Fig. 4, it is easy to see that the iteration number of the GCR algorithm is much less
than the other tested methods. Table 2 shows that the CPU time of our algorithm is much
less than LSQR-M and our algorithm is efficient.

Table 2: Numerical results for Example 4.4.

Iteration# CPU Residual norms (Frr)

Extended GCR 114 0.1735 6.3347e-10

LSQR-M [38] 1027 0.4226 9.9172e-10

Algorithm 2.1 [6] 144 0.0923 9.0964e-10

5. Conclusions

Based on the generalized conjugate residual (GCR) algorithm, we have constructed
and analyzed Algorithm 2.2 for computing the least squares solution of the Sylvester mat-
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rix equations (1.4). When the system is inconsistent, we prove that the least squares
solution can be obtained within finite iterative steps in the absence of round-off errors.
Furthermore, we show that the least Frobenius norm least squares solution can be obtained
by choosing a special kind of initial matrix. In addition, we present numerical examples,
which demonstrate that Algorithm 2.2 is efficient.
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