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Abstract. Based on the shift-splitting technique and the idea of Hermitian and skew-

Hermitian splitting, a fast shift-splitting iteration method is proposed for solving non-

singular and singular nonsymmetric saddle point problems in this paper. Convergence

and semi-convergence of the proposed iteration method for nonsingular and singular

cases are carefully studied, respectively. Numerical experiments are implemented to

demonstrate the feasibility and effectiveness of the proposed method.
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1. Introduction

Consider the following nonsymmetric saddle point problems

�

A BT

−B 0

��

x

y

�

=

�

f

g

�

, (1.1)

where A ∈ Rn×n is a nonsymmetric positive definite matrix, B ∈ Rm×n is a rectangular

matrix with m ≤ n, f ∈ Rn and g ∈ Rm are given vectors.

The saddle point problems (1.1) arise in a variety of scientific and engineering appli-

cations, such as computational fluid dynamics [13], mixed finite element approximation

of elliptic partial differential equations [20] and Lagrange-type methods for constrained

nonconvex optimization problems [27]. For a survey, we refer the readers to [13].

Since the matrices A and B are usually large and sparse, it may be more attractive to use

iterative methods than direct methods for the solution of the saddle point problem (1.1). In

the case that the matrix B has full row rank, many efficient iteration methods were proposed

to solve the saddle point problems, for example, Uzawa-type methods [1, 2, 11, 15, 16],

matrix splitting methods [5, 7–9, 23], residual algorithm [3], relaxation iterative methods

[10,22] and so on.
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When the matrix B is rank deficient, the coefficient matrix of the equation (1.1) is singu-

lar, and the linear system (1.1) is called singular saddle point problems. There exist a lot of

methods for solving singular saddle point problems in the literature. Generalized successive

overrelaxation method was studied in [34], and the semi-convergence of this method was

proved when it is applied to solve singular saddle point problems. Minimum residual and

conjugate gradient methods were proposed for solving the rank-deficient saddle point prob-

lems in [21,31], respectively. Inexact Uzawa method, which covers the Uzawa method, the

preconditioned Uzawa method, and the parameterized method as special cases, was dis-

cussed for singular saddle point problems in [33], and the semi-convergence result under

restrictions was proved by verifying two necessary and sufficient conditions. More nu-

merical methods for singular saddle point problems could be found in [4, 19, 32] and the

references therein.

In this paper, we construct a fast shift-splitting iteration method for nonsymmetric sad-

dle point problems based on the ideas of the shift-splitting iteration method [12, 18] and

the Hermitian and skew-Hermitian splitting technique [9,23,35]. The idea of shift-splitting

iteration method was first proposed by Bai, Yin and Su in [12] for solving a class of non-

Hermitian positive definite linear systems. Then, it was extended by Cao, Du and Niu

in [17] to solve saddle point problems, and generalized by Salkuyeh for saddle point prob-

lems in [28]. After that, for nonsymmetric saddle point problems, Cao et al. in [18, 19]

proposed the generalized shift-splitting (GSS) method

1

2

�

αI + A BT

−B β I

��

x (k+1)

y(k+1)

�

=
1

2

�

αI − A −BT

B β I

��

x (k)

y(k)

�

+

�

f

g

�

, (1.2)

and Zhou et al. in [35] presented the modified shift-splitting (MSS) method

1

2

�

αI + 2H BT

−B αI

��

x (k+1)

y(k+1)

�

=
1

2

�

αI − 2S −BT

B αI

��

x (k)

y(k)

�

+

�

f

g

�

, (1.3)

where α and β are two given positive constants, I is the identity matrix with appropriate di-

mension, and the matrices H and S are the symmetric (Hermitian) part and skew-symmetric

(skew-Hermitian) part of the matrix A, respectively, i.e., H = 1
2(A+ AT ), S = 1

2 (A− AT ).

Recently, Shen et al. applied the GSS iteration method to solve a broad class of nonsin-

gular and singular generalized saddle point problems in [29]. In this paper, a fast shift-

splitting iteration method is studied, which can be regarded as a special case of the BASI

(block alternating splitting implicit) method proposed by Bai in [24]. Convergence and

semi-convergence theories of this method for nonsingular and singular cases are carefully

analyzed, respectively. Numerical experiments further show that the proposed method is

efficient and feasible.

This paper is organized as follows. In Section 2, a fast shift-splitting iteration method

for nonsymmetric saddle point problems is established. In Section 3, the convergence of

the fast shift-splitting iteration method for nonsingular case is analyzed. In Section 4, semi-

convergence of the fast shift-splitting iteration method for singular case is studied. In Sec-

tion 5, numerical experiments are presented to illustrate the effectiveness and feasibility of

the proposed method. Finally, a brief conclusion is given.
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2. The Fast Shift-Splitting Iteration Method

Denote

A =

�

A BT

−B 0

�

, w=

�

x

y

�

, b =

�

f

g

�

,

then the equation (1.1) can be rewritten as

Aw= b. (2.1)

The coefficient matrix A can be split as follow

A =M −N =

�

αI +H BT

−B αI

�

−

�

αI − S 0

0 αI

�

,

where α > 0 is a constant, the matrices H and S are the symmetric (Hermitian) part and

skew-symmetric (skew-Hermitian) part of the matrix A, respectively. By this special split-

ting, a fast shift-splitting iteration method can be defined as follow.

The fast shift-splitting (FSS) iteration method: Given an initial guess ((x (0))T , (y(0))T )T ,

for k = 0,1,2, · · · until ((x (k))T , (y(k))T )T converges, compute

�

αI +H BT

−B αI

��

x (k+1)

y(k+1)

�

=

�

αI − S 0

0 αI

��

x (k)

y(k)

�

+

�

f

g

�

. (2.2)

It is obvious that the matrixM is invertible for nonsingular saddle point problems as

long as α > 0. For singular case, the matrixM is also invertible because of

�

I 0

B(αI +H)−1 I

��

αI +H BT

−B αI

��

I −(αI +H)−1BT

0 I

�

=

�

αI +H 0

0 αI + B(αI +H)−1BT

�

.

Thus, for both nonsingular and singular saddle point problems, the iterative scheme

(2.2) can be rewritten as

�

x (k+1)

y(k+1)

�

= Γ

�

x (k)

y(k)

�

+M−1

�

f

g

�

, (2.3)

where

Γ =

�

αI +H BT

−B αI

�−1�

αI − S 0

0 αI

�

(2.4)

is the iteration matrix of FSS iteration method.

As a matter of fact, any matrix splitting can not only automatically lead to a splitting

iteration method, but also naturally induce a preconditioner for Krylov subspace methods
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like GMRES, or its restarted version. The preconditioner corresponding to the FSS method

(2.2) is given by

M =

�

αI +H BT

−B αI

�

,

which is called the FSS preconditioner for the saddle point matrix A .

At each step of the FSS iteration (2.2) or applying preconditionerM within a Krylov

subspace methods, a linear system with M as the coefficient matrix needs to be solved.

That is to say, linear systems of the formM z = r needs to be solved for a given vector r at

each step. Since the matrixM has the following matrix factorization

M =

�

I 1
αBT

0 I

��

αI +H + 1
αBT B 0

0 αI

��

I 0

− 1
αB I

�

. (2.5)

Let r = (rT
1 , rT

2 )
T and z = (zT

1 , zT
2 )

T , where r1, z1 ∈ R
n and r2, z2 ∈ R

m. Then by (2.5), we

have
�

z1

z2

�

=

�

I 0
1
αB I

��

αI +H + 1
αBT B 0

0 αI

�−1�

I − 1
αBT

0 I

��

r1

r2

�

. (2.6)

Hence, the following algorithmic version of the FSS iteration method can be derived.

Algorithms 2.1

For a given vector r = (rT
1 , rT

2 )
T , the vector z = (zT

1 , zT
2 )

T can be computed by (2.6)

according to the following steps:

1. t1 = r1 −
1
αBT r2;

2. solve (αI +H + 1
αBT B)z1 = t1;

3. z2 =
1
α (r2 + Bz1).

In the Algorithm 2.1, a linear system with coefficient matrix αI +H + 1
αBT B is required

to be solved at each iteration. Since the coefficient matrix is symmetric positive definite for

any α > 0, the sub-linear system with the coefficient matrix αI + H + 1
αBT B can be solved

by the conjugate gradient (CG) method or some direct methods, such as, Cholesky or LU

factorization in combination with AMD or column AMD reordering [17,18].

In the following two sections, we will discuss the convergence and semi-convergence

of the FSS method for nonsingular and singular saddle point problems, respectively.

3. Convergence analysis for nonsingular case

Let ρ(Γ ) be the spectral radius of the iteration matrix Γ . Then for nonsingular saddle

point problems, the FSS iteration method is convergent if and only if ρ(Γ ) < 1. To get a

convergence condition, some lemmas are given initially.

Lemma 3.1. Let A be nonsymmetric positive definite and B be full row rank. Let λ be an

eigenvalue of the matrix Γ and [u∗, v∗]∗ be the corresponding eigenvector, then λ 6= 1.
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Proof. From (2.4) we have

�

αI − S 0

0 αI

��

u

v

�

=

�

αI +H BT

−B αI

��

λu

λv

�

, (3.1)

If λ= 1, then from (3.1) we have

�

A BT

−B 0

��

u

v

�

= 0.

Since the coefficient matrix is nonsingular, we have u = 0 and v = 0, which contradicts

with the assumption that [u∗, v∗]∗ is an eigenvector of the iteration matrix Γ . So λ 6= 1.

Lemma 3.2 ( [23]). If S is a skew-Hermitian matrix, then iS (i is the imaginary unit) is a

Hermitian matrix and u∗Su is a purely imaginary number or zero for all u ∈ Cn.

Lemma 3.3 ( [26]). Both roots of the complex quadratic equation λ2 + φλ + ϕ = 0 have

modulus less than one if and only if |φ − φ̄ϕ| + |ϕ|2 < 1, where φ̄ denotes the conjugate

complex of φ.

Theorem 3.1. Let A be nonsymmetric positive definite and B be full row rank. Let λ be an

eigenvalue of the matrix Γ and [u∗, v∗]∗ be the corresponding eigenvector. Denote

a =
u∗Hu

u∗u
, b =

u∗BT Bu

u∗u
, il =

u∗Su

u∗u
, (3.2)

where l is a real number. Then, the FSS iteration method is convergent if and only if the

parameter α satisfies the following conditions

�

α2l2 < α2a2 + b2 + 2aα3 + 2bα2 + 2abα,

4a2α4 + 2aα3(a2 + 4b− l2) + (5a2 b+ 4b2 − 3b2l2)α2 + 4ab2α+ b3 > 0.
(3.3)

Proof. From (3.1) we have

�

(λ− 1)αu+λBT v +λHu+ Su = 0,

λBu+ (1−λ)αv = 0.
(3.4)

By Lemma 3.1, we know that λ 6= 1. In addition, we can get u 6= 0. Otherwise, by (3.4)

we have (1−λ)αv = 0. Then, it follows that v = 0, which contradicts with the assumption

that [u∗, v∗]∗ is an eigenvector. Now, solving v from the second equation of (3.4) and

substituting it into the first one, we have

α2(λ− 1)2u+α(λ− 1)(λH + S)u+λ2BT Bu = 0. (3.5)

Multiplying u∗

u∗u to both two sides of the equation (3.5) from the left yields

(α2 + aα+ b)λ2 + (−aα− 2α2 + ilα)λ+α2 − ilα = 0. (3.6)
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Since a > 0, b ≥ 0 and α > 0, it follows that α2 + aα+ b 6= 0. Then the quadratic equation

(3.6) can be written as λ2 +φλ+ϕ = 0, where

φ =
−aα− 2α2 + ilα

α2 + aα+ b
, ϕ =

α2 − ilα

α2 + aα+ b
.

By Lemma 3.3, we know that |λ| < 1 if and only if |φ − φ̄ϕ| + |ϕ|2 < 1. Define three

auxiliary functions

h1(α) = α
4 +α2l2,

h2(α) = (α
2 + aα+ b)2,

h3(α) = (a
2α2 + abα+ 2aα3 + 2bα2 − l2α2)2 +α2l2 b2,

then we have

|φ − φ̄ϕ|+ |ϕ|2 =
h1(α) +
p

h3(α)

h2(α)
,

and |φ − φ̄ϕ|+ |ϕ|2 < 1 if and only if

h1(α)− h2(α) < 0, and
�

h1(α)− h2(α)
�2
− h3(α) > 0.

By careful calculation, we obtain that the FSS iteration method is convergent if and only if

the parameter α satisfies the inequalities (3.3). Hence, the proof is completed.

Next, the special consequences of Theorem 3.1 is discussed.

From the inequalities (3.3), it can be seen that the FSS method is convergent when a > l

and 5l2+4b > 3bl2. If α is located in the small neighborhood of zero, the inequalities (3.3)

always hold true. Besides, when matrix A is symmetric positive definite, the conditions (3.3)

are reduced to α > 0 since H = A and S = 0.

4. Semi-Convergence Analysis for Singular Case

In this section, we discuss the semi-convergence property of the FSS iteration method

(2.2) for solving singular saddle point problems. Firstly, some lemmas are introduced. Let

σ(A), ρ(A), null(A) and index(A) be the spectral set, the spectral radius, the null subspace

and the index of the matrix A, respectively.

The following lemma describes the semi-convergence property about the iteration scheme

(2.3) when A is singular.

Lemma 4.1 ( [14]). The iteration scheme (2.3) is semi-convergent if and only if the following

two conditions are satisfied:

(1) The elementary divisors of the iteration matrix Γ associated with λ= 1 ∈ σ(Γ ) are linear,

i.e., rank(I − Γ )2 = rank(I − Γ ), or equivalently, index(I − Γ ) = 1;

(2) The pseudo-spectral radius satisfies γ(Γ ) =max{|λ|, λ ∈ σ(Γ ), λ 6= 1}< 1.
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4.1. The condition for rank(I − Γ )2 = rank(I − Γ )

Theorem 4.1. Let A be nonsymmetric positive definite and B be rank deficient. Assume that

α > 0 and Γ is the iteration matrix of the FSS iteration method, then rank(I−Γ )2 = rank(I−Γ ).

Proof. Since Γ =M−1N = I −M−1A , rank(I − Γ )2 = rank(I − Γ ) holds if

null
�

(M−1A )2
�

= null(M−1A ).

It is obvious that null((M−1A )2) ⊇ null(M−1A ). Now, we only need show

null
�

(M−1A )2
�

⊆ null(M−1A ). (4.1)

Let p =
� p1

p2

�

∈ null((M−1A )2) with p1 ∈ R
n and p2 ∈ R

m. It must be satisfied

(M−1A )2p = 0. Denote by q = M−1A p. Let q =
� q1

q2

�

∈ Rn+m. To prove (4.1),

we only need to prove q = 0, i.e. q1 = 0 and q2 = 0. On one hand, we have

�

q1

q2

�

=

�

αI +H BT

−B αI

�−1 �

A BT

−B 0

��

p1

p2

�

=

�

I 0
1
αB I

��

(αI +H + 1
αBT B)−1 0

0 1
α I

��

I − 1
αBT

0 I

��

A BT

−B 0

��

p1

p2

�

,

which can be rewritten as






q1 =
�

αI +H + 1
αBT B
�−1 �

A+ 1
αBT B
�

p1 +
�

αI +H + 1
αBT B
�−1

BT p2,

q2 =
�

1
α

�

αI +H + 1
αBT B
�−1 �

A+ 1
αBT B
�

− 1
αB
�

p1 +
1
αB
�

αI +H + 1
αBT B
�−1

BT p2.

(4.2)

On the other hand, note that null(M−1A ) = null(A ), then (M−1A )2p = 0 is equivalent

to A q = 0, i.e.,
�

Aq1 + BT q2 = 0,

−Bq1 = 0.
(4.3)

Since the matrix A is nonsingular, solving q1 from the first equality of (4.3) and substituting

it into the second equality of (4.3) gives BA−1BT q2 = 0, which means qT
2

BA−1BT q2 =

(BT q2)
T A−1(BT q2) = 0. Owing to the positive definiteness of the matrix A−1, we obtain

BT q2 = 0. Substituting it into the first equality of (4.3), we get q1 = 0.

Since q1 = 0, the first equality of (4.2) becomes

�

αI +H +
1

α
BT B

�−1�

A+
1

α
BT B

�

p1 +

�

αI +H +
1

α
BT B

�−1

BT p2 = 0.

Taking it into the second equality of (4.2) gives q2 = −
1
αBp1. Since BT q2 = 0, we have

pT
1 BT Bp1 = 0, which implies Bp1 = 0 i.e., q2 = 0. Hence, we obtain q = [qT

1 ,qT
2 ]

T = 0.

Thus, the proof is completed.
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4.2. The condition for γ(Γ ) < 1

In order to discuss the condition for γ(Γ ) < 1, without loss of generality, we assume

that the rank of the rank deficient matrix B ∈ Rm×n is r(< m). Let B = U
� Br

0

�

V T be

the singular value decomposition of the matrix B, where U ∈ Rm×m and V ∈ Rn×n are

orthogonal matrices, Br = [Σr 0] ∈ Rr×n with Σr = diag(σ1,σ2, · · · ,σr) ∈ R
r×r . Denote

Â= V T AV, Ĥ = V T HV, Ŝ = V T SV and

Ω=

�

αI 0

0 αI

�

, A1 =

�

H BT

−B 0

�

and A2 =

�

S 0

0 0

�

,

then iteration matrix can be rewritten as Γ = (Ω+A1)
−1(Ω−A2).

In addition, consider the block diagonal matrix

P =

�

V 0

0 U

�

∈ R(m+n)×(m+n),

which is an orthogonal matrix. Then, the iteration matrix Γ is similar to the following

matrix

Γ̃ = PT
Γ P

= PT (Ω+A1)
−1(Ω−A2)P

= (PT (Ω+A1)P)
−1(PT (Ω−A2)P)

=

�

αI + V T HV V T BT U

−U T BV αI

�−1�

αI − V T SV 0

0 αI

�

=





αI + V T HV BT
r 0

−Br αI 0

0 0 αI





−1



αI − V T SV 0 0

0 αI 0

0 0 αI





=





�

αI + V T HV BT
r

−Br αI

�−1�

αI − V T SV 0

0 αI

�

0

0 I





=

�

(Ω+ Â1)
−1(Ω− Â2) 0

0 I

�

,

where

Â1 =

�

Ĥ BT
r

−Br 0

�

, and Â2 =

�

Ŝ 0

0 0

�

,

are all (n+r)×(n+r)matrices. Since Â is positive definite, and Br is full row rank, verifying

the condition for γ(Γ ) < 1 is equivalent to studying the convergence of the FSS iteration

method which is used to solve the following nonsingular saddle point problems
�

Â BT
r

−Br 0

��

x̂

ŷ

�

=

�

f̂

ĝ

�

.



180 Q.-Y. Dou, J.-F. Yin and Z.-Y. Liao

Let [û∗, v̂∗] be an eigenvector corresponding to an eigenvalue of the iteration matrix Γ̄ =

(Ω+ Â1)
−1(Ω− Â2). Denote

â =
û∗Ĥû

û∗û
, b̂ =

û∗BT
r

Br û

û∗û
, i l̂ =

û∗Ŝû

û∗û
. (4.4)

Then, similar to the proof of Theorem 3.1, the condition forρ(Γ̄ ) < 1 can be easily obtained.

Thus, the condition for γ(Γ ) < 1 can be derived. We summarize the above discussion in the

following theorem.

Theorem 4.2. Let A∈ Rn×n be nonsymmetric positive definite and B ∈ Rm×n be of rank defi-

cient. Suppose that α > 0 is a given constant. Then the pseudo-spectral radius of the matrix Γ

is less than 1, i.e., γ(Γ ) < 1 if and only if the parameter α satisfies the following conditions

�

α2 l̂2 < α2â2 + b̂2 + 2âα3 + 2 b̂α2 + 2â b̂α,

4â2α4 + 2âα3(â2 + 4 b̂− l̂2) + (5â2 b̂+ 4 b̂2 − 3 b̂2 l̂2)α2 + 4â b̂2α+ b̂3 > 0.
(4.5)

The following theorem readily follows from Lemma 4.1, Theorem 4.1 and Theorem 4.2.

Theorem 4.3. Let A be nonsymmetric positive definite and B be of rank deficient. Suppose

that α > 0 is a given constant. Then the FSS iteration method is semi-convergent for solving

singular saddle point problems if and only if the parameter α satisfies the inequalities (4.5).

5. Numerical Experiments

In this section, some numerical experiments are presented to illustrate the feasibility

and effectiveness of the FSS iteration method for nonsingular and singular saddle point

problems (1.1). To show the advantages of the FSS iteration method over the GSS method

in [18] and MSS method in [35], we compare the numerical results of these methods in the

sense of the number of iteration steps (denoted by ‘IT’) and elapsed CPU time (denoted by

‘CPU’). Numerical results of the well-known GMRES method and the preconditioned GM-

RES methods are also given, which can further show that the induced FSS preconditioner

is much better than the induced GSS and MSS preconditioners for solving nonsymmetric

saddle point problems (1.1). The GSS and MSS preconditioners, which are induced by the

iteration methods (1.2) and (1.3), are defined by

PGSS =
1

2

�

αI + A BT

−B β I

�

, and PMSS =
1

2

�

αI + 2H BT

−B αI

�

,

respectively. Correspondingly, we use PFSS to denote the FSS preconditioner which is de-

fined in Section 2.

In the following numerical experiments, the optimal parameters in the iteration meth-

ods are found by experiments, resulting in the least iteration number. The same parameters

are used for the GSS, MSS and FSS preconditioners. It should be noted that ’I ’ denotes

the GMRES method without preconditioning in the following given tables. In all the test
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problems discussed in this section, the sub-linear systems are solved by direct methods. In

Matlab, this corresponds to compute the Cholesky or LU factorization in combination with

AMD or column AMD reordering. The initial vector is set to be the zero vector and the

iterations are terminated if the current iterations satisfy RES := ‖b−Awk‖2/‖b‖2 < 10−6.

All tests are performed on a computer with Intel Core i5 CPU 2.50 GHz, 4.0GB memory.

5.1. Nonsingular case

Example 5.1. The nonsingular saddle point problem arising from a model Stokes equation

has the following coefficient sub-matrices [17]:

A=

�

I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

�

∈ R2q2×2q2

, BT =

�

I ⊗ F

F ⊗ I

�

∈ R2q2×q2

and

T =
ν

h2
· tridiag(−1,2,−1) +

1

2h
· tridiag(−1,0,1) ∈ Rq×q,

F =
1

h
· tridiag(−1,1,0) ∈ Rq×q.

Here, ⊗ denotes the Kronecker product symbol, ν is the viscosity scalar and h = 1
q+1 is the

discretization mesh size.

In this example, we choose ν = 1 and ν = 0.1. For each ν, four different q are used,

i.e., q = 16,32,64,128.

In Table 1, numerical results of the GSS, MSS and FSS iteration methods with ν = 1

are given. The optimal parameters of the three methods are also presented. From Table 1,

Table 1: Numerial results of iteration methods for Example 5.1 (ν= 1).

q

Method 16 32 64 128

α 255 750 920 2000

β 1 1 1 1

GSS IT 57 99 159 279

CPU 0.17 1.44 9.35 79.33

RES 9.84e-7 9.39e-7 9.33e-7 9.78e-7

α 0.6 0.5 0.3 0.25

IT 34 42 55 66

MSS CPU 0.09 0.63 3.33 18.60

RES 8.71e-7 7.25e-7 9.69e-7 7.43e-7

α 0.01 0.001 0.001 0.001

IT 5 4 4 3

FSS CPU 0.05 0.06 0.25 0.87

RES 2.45e-7 3.88e-7 9.24e-8 4.49e-7
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Table 2: Numerial results of preonditioned GMRES methods for Example 5.1 (ν= 1).

q

Preconditioner 16 32 64 128

IT 93 183 318 589

I CPU 0.18 2.25 22.86 200.26

RES 8.31e-7 9.04e-7 9.88e-7 9.98e-7

IT 17 19 20 22

PGSS CPU 0.12 0.60 3.44 17.88

RES 4.63e-7 4.85e-7 9.91e-7 7.11e-7

IT 20 18 28 12

PMSS CPU 0.14 0.58 4.75 9.57

RES 9.91e-7 6.74e-7 9.25e-7 9.69e-7

IT 4 5 4 3

PFSS CPU 0.04 0.14 0.63 2.25

RES 6.12e-7 1.82e-8 4.63e-7 4.28e-7

it is seen that the iteration steps and the elapsed CPU time of the proposed FSS iteration

method are much less than those of the other two methods. These results show that the

proposed FSS iteration method is the most efficient among the three methods.

In Table 2, numerical results of the GMRES and the preconditioned GMRES methods

with the GSS, MSS and FSS preconditioners are given for ν = 1. Numerical results show

that the GSS, MSS and FSS preconditioners can accelerate the convergence rate of the

GMRES greatly. Besides, both the iteration steps and the elapsed CPU time show that the

proposed FSS preconditioner is much more efficient than the other two preconditioners.

In Table 3, numerical results and the optimal parameters of the GSS, MSS and FSS

iteration methods for ν= 0.1 are given. From Table 3, it is seen that FSS iteration method

with the optimal iteration parameters succeeds to quickly produce approximate solutions.

Moreover, the FSS method always outperforms the other methods considerably in terms of

iteration steps and CPU time.

Numerical results for the GMRES and the three preconditioned GMRES methods with

ν = 0.1 are given in Table 4. It is seen that the FSS preconditioner outperforms the other

two preconditoners considerably from the viewpoint of both iteration steps and CPU time.

In Table 5, numerical results of direct method and FSS method which employs conjugate

gradient (CG) method as its inner processes for ν = 1 are given. Note that the number in

brackets is average iteration steps of CG method. It is seen that when the grid size is less

than or equal to 256× 256, direct method has obvious advantage in CPU time. But when

the grid size is larger than or equal to 512×512, the FSS iteration method is superior to the

direct method considerably in CPU time. It means that the FSS iteration method is feasible

for large and sparse saddle point problems.



A Fast Shift-Splitting Iteration Method for Nonsymmetric Saddle Point Problems 183

Table 3: Numerial results of iteration methods for Example 5.1 (ν = 0.1).

q

Method 16 32 64 128

α 20 40 90 200

β 9.993 9.992 9.991 10

GSS IT 52 93 161 280

CPU 0.14 1.34 12.16 81.856

RES 7.67e-7 9.70e-7 9.40e-7 9.98e-7

α 17 13.7 12 12

IT 82 121 174 269

MSS CPU 0.19 1.75 13.23 78.29

RES 8.90e-7 9.75e-7 9.71e-7 9.94e-7

α 2.7 2 1 0.6

IT 37 42 40 34

FSS CPU 0.09 0.61 3.08 9.83

RES 9.47e-7 8.10e-7 8.96e-7 9.12e-7

Table 4: Numerial results of preonditioned GMRES methods for Example 5.1 (ν= 0.1).

q

Preconditioner 16 32 64 128

IT 105 208 421 825

I CPU 0.24 3.01 39.83 415.65

RES 9.26e-7 9.00e-7 9.98e-7 9.86e-7

IT 38 38 46 51

PGSS CPU 0.25 1.20 7.59 41.59

RES 9.66e-7 9.89e-7 9.50e-7 9.60e-7

IT 20 22 20 18

PMSS CPU 0.13 0.67 3.41 14.81

RES 9.91e-7 9.47e-7 4.79e-7 8.45e-7

IT 20 17 13 10

PFSS CPU 0.13 0.57 2.18 8.10

RES 6.89e-7 8.01e-7 8.35e-7 6.62e-7

5.2. Singular case

Example 5.2 ( [32]). The singular saddle point problem has the following coefficient sub-

matrices:

A=

�

I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

�

∈ R2q2×2q2

, BT = [B̂T b1 b2]R
2q2×(q2+2),
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Table 5: Numerial results of diret method (DM) and FSS method whih employs onjugate gradient

method as its inner proesses for Example 5.1 (ν = 1).

q

Method 16 32 64 128 256 512 1024

DM CPU 0.00 0.04 0.12 0.49 2.81 398.72 9.95e+3

α 1.8 4 4.5 6 9.5 16 26

FSS IT 88(48) 252(79) 222(137) 86(260) 32(439) 15(782) 28(1302)

CPU 0.17 1.54 8.66 20.96 67.09 307.16 2.97e+3

Table 6: Numerial results of iteration methods for Example 5.2 (ν= 1).

q

Method 16 32 64 128

α 145.70 299 606.30 100

β 6.59 12.79 25.42 60

GSS IT 71 136 259 533

CPU 0.24 2.17 19.22 151.18

RES 9.62e-7 9.26e-7 9.84e-7 9.97e-7

α 11 20 40 180

IT 95 167 258 607

MSS CPU 0.30 2.70 18.95 171.29

RES 8.24e-7 9.17e-7 9.64e-7 9.54e-7

α 0.01 0.001 0.001 0.001

IT 5 4 4 3

FSS CPU 0.02 0.06 0.30 0.88

RES 1.03e-7 3.64e-7 8.00e-8 2.70e-7

with

B̂T =

�

I ⊗ F

F ⊗ I

�

∈ R2q2×q2

, b1 = B̂T

�

e

0

�

, b2 = B̂T

�

0

e

�

, e = (1,1, · · · , 1) ∈ Rq2/2

and

T =
ν

h2
· tridiag(−1,2,−1) +

1

2h
· tridiag(−1,0,1) ∈ Rq×q,

F =
1

h
· tridiag(−1,1,0) ∈ Rq×q.

Here, ⊗ denotes the Kronecker product symbol, ν is the viscosity scalar and h = 1
q+1 is the

discretization mesh size.

This singular problem is a technical modification of Example 5.1. Here, matrix B is an

augmentation of the full rank matrix B̂ with two linearly independent vectors b1 and b2.

As b1 and b2 are linear combinations of the columns of the matrix B̂; B is a rank-deficient
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Table 7: Numerial results of preonditioned GMRES methods for Example 5.2 (ν = 1).

q

Preconditioner 16 32 64 128

IT 119 200 371 587

I CPU 0.33 2.65 29.75 201.13

RES 9.49e-7 9.76e-7 9.76e-7 9.97e-7

IT 39 58 97 140

PGSS CPU 0.36 2.73 20.19 112.88

RES 8.66e-7 9.11e-7 9.89e-7 9.51e-7

IT 21 61 41 17

PMSS CPU 0.19 2.83 8.55 13.47

RES 8.12e-7 9.92e-7 9.82e-7 8.64e-7

IT 4 3 3 2

PFSS CPU 0.03 0.42 0.56 1.75

RES 2.17e-7 3.42e-7 9.47e-8 2.21e-7

Table 8: Numerial results of iteration methods for Example 5.2 (ν = 0.1).

q

Method 16 32 64 128

α 10.2 20.60 41.70 110

β 65.91 127.79 253.40 80

GSS IT 109 202 377 485

CPU 0.34 3.22 27.91 140.08

RES 9.12e-7 9.75e-7 9.81e-7 9.97e-7

α 40 63 107 190

IT 168 246 377 615

MSS CPU 0.53 3.98 27.77 176.48

RES 8.83e-7 9.19e-7 9.71e-7 9.96e-7

α 6 6 6 6

IT 42 42 40 37

FSS CPU 0.13 0.66 3.02 10.78

RES 8.59e-7 8.16e-7 8.12e-7 8.59e-7

matrix. In this example, ν and q are chosen to be the same as the ones in Example 5.1.

Note that the optimal parameters of the GSS method are as the ones as in [19].

In Tables 6 and 8, the optimal parameters and numerical results of the GSS, MSS and

FSS iteration methods for solving singular saddle point problem are presented for ν = 1

and ν = 0.1, respectively. From Table 6 and 8, it is seen that the proposed FSS iteration

method converges very fast. These results show that proposed FSS iteration method is

much efficient for solving singular saddle point problem.
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Table 9: Numerial results of preonditioned GMRES methods for Example 5.2 (ν= 0.1).

q

Preconditioner 16 32 64 128

IT 109 211 407 774

I CPU 0.24 2.95 35.91 364.51

RES 9.84e-7 9.34e-7 9.80e-7 9.99e-7

IT 63 97 138 89

PGSS CPU 0.56 4.38 28.72 71.62

RES 9.19e-7 9.66e-7 9.97e-7 9.97e-7

IT 21 17 13 11

PMSS CPU 0.19 0.77 2.75 10.97

RES 7.34e-7 8.58e-7 9.64e-7 8.33e-7

IT 19 16 12 9

PFSS CPU 0.17 0.75 2.52 8.98

RES 7.56e-7 7.34e-7 6.93e-8 7.34e-7

Table 10: Numerial results of iteration methods for Example 5.3 (ν= 1).

Grids

Method 16×16 32×32 64×64 128×128

GSS α 0.7 0.39 0.22 0.1

β 0.007 0.002 0.0005 0.0001

IT 72 128 228 474

CPU 0.31 2.47 21.01 229.31

RES 7.94e-7 7.64e-7 9.89e-7 9.98e-7

MSS α 0.02 0.005 0.002 0.001

IT 59 56 73 98

CPU 0.20 1.05 6.47 47.66

RES 9.50e-7 9.66e-7 9.70e-7 9.88e-7

FSS α 0.001 0.001 0.0001 0.0001

IT 4 6 3 5

CPU 0.02 0.13 0.02 2.37

RES 8.41e-7 4.84e-7 5.59e-7 4.43e-7

Numerical results of GMRES and preconditioned GMRES methods for ν= 1 and ν = 0.1

are listed in Tables 7 and 9, respectively. It is observed that the three preconditioners can

accelerate the convergence rate of the GMRES method largely, and the FSS preconditioners

lead to the best numerical results.

Example 5.3. The second test singular nonsymmetric saddle point problem arises from

the linearized version of the steady state Navier-Stokes equation with suitable boundary
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Table 11: Numerial results of preonditioned GMRES methods for Example 5.3 (ν = 1).

Grids

Preconditioner 16×16 32×32 64×64 128×128

I IT 203 332 532 866

CPU 0.78 4.87 36.07 365.20

RES 9.73e-7 9.92e-7 9.97e-7 9.95e-7

PGSS IT 22 29 39 58

CPU 0.08 1.12 5.63 80.18

RES 5.78e-7 8.02e-7 9.01e-7 8.09e-7

PMSS IT 23 25 29 39

CPU 0.07 0.28 4.23 38.29

RES 8.22e-7 9.73e-7 9.27e-7 9.79e-7

PFSS IT 6 9 4 6

CPU 0.02 0.08 0.05 1.75

RES 4.22e-7 9.66e-7 8.63e-8 4.61e-7

Table 12: Numerial results of iteration methods for Example 5.3 (ν= 0.1).

Grids

Method 16×16 32×32 64×64 128×128

α 0.1 0.05 0.03 8e-3

β 0.055 0.015 0.004 0.001

GSS IT 81 143 268 525

CPU 0.34 2.64 25.07 251.61

RES 9.19e-7 8.52e-7 9.58e-7 9.68e-7

α 0.08 0.02 0.008 0.001

IT 83 101 109 140

MSS CPU 0.31 1.90 10.14 68.01

RES 9.80e-7 9.73e-7 9.90e-7 9.73e-7

α 0.001 0.001 0.0001 0.0001

IT 5 5 3 5

FSS CPU 0.02 0.11 0.27 2.46

RES 5.22e-7 5.15e-7 9.84e-7 2.31e-7

conditions

−ν∆u+ (w ·∆)u+∇p = f, −∇ · u = 0, in Ω, (5.1)

which is obtained when the steady-state Navier-Stokes equation is linearized by the Picard

iteration. Here Ω is a bounded domain, ν > 0 is the viscosity, u represents velocity, and p

represents pressure. Using the IFISS software package [20] to discretize the regularised-lid

driven cavity problem on the unit square domain with Q2−Q1 mixed finite element method

on uniform grid. Here, we take three viscosity values ν = 1,0.1,0.01 and four grids, i.e.,
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Table 13: Numerial results of preonditioned GMRES methods for Example 5.3 (ν= 0.1).

Grids

Preconditioner 16×16 32×32 64×64 128×128

IT 127 260 528 927

I CPU 0.31 2.89 35.43 425.26

RES 9.95e-7 9.83e-7 9.93e-7 9.99e-7

IT 25 34 51 92

PGSS CPU 0.06 1.23 7.75 83.78

RES 5.77e-7 8.07e-7 5.24e-7 8.09e-7

IT 29 29 39 42

PMSS CPU 0.08 1.19 5.76 48.20

RES 6.79e-7 8.06e-7 7.60e-7 9.79e-7

IT 5 7 5 7

PFSS CPU 0.02 0.06 0.76 7.82

RES 2.58e-7 2.82e-7 2.31e-7 4.61e-7

Table 14: Numerial results of iteration methods for Example 5.3 (ν = 0.01).

Grids

Method 16×16 32×32 64×64 128×128

α 0.05 0.03 0.01 0.006

β 0.14 0.02 0.002 0.0008

GSS IT 142 245 691 –

CPU 0.64 4.66 66.78 –

RES 9.19e-7 8.52e-7 9.58e-7 –

α 0.3 0.15 – –

IT 477 1000 – –

MSS CPU 0.31 1.90 – –

RES 9.99e-7 8.52e-6 – –

α 0.07 0.022 0.006 0.0014

IT 83 83 80 63

FSS CPU 0.34 1.45 7.41 31.20

RES 9.73e-7 9.76e-7 9.87e-7 9.13e-7

16 × 16, 32 × 32, 64× 64 and 128× 128. Note that the rank of the matrix B in all test

nonsymmetric saddle point matrices is m− 1.

In Tables 10 and 12, numerical results of the three methods for singular saddle point

problems with ν = 1 and ν = 0.1 are listed, respectively. From Tables 10 and 12, it is

observed that both the iteration steps and the elapsed CPU time of the FSS iteration method

are much less than the other two methods, which indicates the proposed FSS iteration

method converges fast.
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Table 15: Numerial results of preonditioned GMRES methods for Example 5.3 (ν= 0.01).

Grids

Preconditioner 16×16 32×32 64×64 128×128

IT 192 318 570 980

I CPU 0.78 4.48 43.73 487.94

RES 9.55e-7 9.92e-7 9.91e-7 9.97e-7

α 0.05 0.03 0.01 0.006

β 0.14 0.02 0.002 0.0008

IT 42 61 52 62

PGSS CPU 0.11 1.53 28.48 183.78

RES 5.77e-7 8.07e-7 5.24e-7 8.09e-7

α 0.001 0.001 0.0001 0.0001

IT 29 32 30 30

PMSS CPU 0.03 0.36 4.51 48.20

RES 7.41e-7 6.90e-7 6.22e-7 7.79e-7

α 0.001 0.001 0.0001 0.0001

IT 28 25 22 24

PFSS CPU 0.03 0.27 3.23 33.92

RES 6.36e-7 7.60e-7 9.89e-7 9.61e-7

In Tables 11 and 13, numerical results of the GMRES and preconditioned GMRES are

listed for ν = 1 and ν= 0.1, respectively. From Tables 11 and 13, it is seen that the GMRES

with three preconditioners can be effective and feasible for solving singular saddle point

problems. Moreover the FSS preconditioner is the most effective.

In Table 14, numerical results of GSS, MSS and FSS methods are listed for ν = 0.01.

And the numerical results of corresponding preconditioned GMRES are listed for ν= 0.01

in Table 15. From Tables 14 and 15, it can be seen that FSS method and GMRES with FSS

preconditioners for singular saddle point problems with ν = 0.01 are effective and feasible.

When ν= 0.001, GSS, MSS and FSS iteration methods fail to achieve the stopping rule

at the maximal iteration steps. One of the possible reason is that the coefficient matrix has

a strongly dominant skew-symmetric part. In this case, we refer the reader to the skew-

Hermitian triangular splitting iteration methods in [24,25,30].

6. Conclusion

In this paper, a fast shift-splitting iteration method is proposed for solving nonsymmet-

ric saddle point problems. The convergence and semi-convergence conditions of the fast

shift-splitting iteration method for nonsingular and singular saddle point problems are pre-

sented, respectively. Numerical experiments show the effectiveness and feasibility of the

fast shift-splitting iteration method for both nonsingular and singular saddle point prob-

lems.
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