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Abstract. Total variation (TV) and wavelet L1 norms have often been used as regular-

ization terms in image restoration and reconstruction problems. However, TV regular-

ization can introduce staircase effects and wavelet regularization some ringing artifacts,

but hybrid TV and wavelet regularization can reduce or remove these drawbacks in the

reconstructed images. We need to compute the proximal operator of hybrid regular-

izations, which is generally a sub-problem in the optimization procedure. Both TV and

wavelet L1 regularisers are nonlinear and non-smooth, causing numerical difficulty. We

propose a dual iterative approach to solve the minimization problem for hybrid regular-

izations and also prove the convergence of our proposed method, which we then apply

to the problem of MR image reconstruction from highly random under-sampled k-space

data. Numerical results show the efficiency and effectiveness of this proposed method.

AMS subject classifications: 65K10, 68U10
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1. Introduction

In many image restoration or reconstruction problems, we need to solve a linear inverse

problem of the form

g = K f + n ,

where g is the observed data, K is the system operator, f is the original image with size

m× n and n is the random noise. It is well known that restoring an image is a very ill-

conditioned process, and to alleviate this a regularization approach is generally used. The

approach is to minimise the objective function, which is the weighted sum of the data-

fitting term and the term containing some prior information about the original image.

In many image processing problems, an image can be modelled as a piecewise smooth

function, and simultaneously sparsely represented by a wavelet basis — e.g. Lustig et
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al [13] illustrate such sparsity in the transform domain of MR images and piecewise

smoothness in the spatial domain of angiogram images. The images consequently have

both small total variation (TV) norm [16] and small L1 norm, and the reconstructed image

f is a minimizer of the objective function

min
f

D(g , f ) +λ1TV( f ) +λ2

W f


1
, (1.1)

where D(g , f ) is the data-fitting term that denotes a discrepancy measure between the

observed data g and the solution f , and λi(i = 1,2) is the regularization parameter. The

term TV( f ) denotes the TV norm of the image f , which can preserve edges in the image

due to the piecewise smooth regularization property of the TV norm, but it may over-

smooth image details and introduce staircase effects. While wavelet L1 regularization can

keep local image features and details through sparse representation of the image, it may

introduce some ringing artifacts along image contours. The main advantage in combining

TV regularization with the L1 norm of wavelet coefficients is to reduce or remove staircase

effects caused by TV regularization and ring effects caused by wavelet regularization.

The chief challenge in solving the problem (1.1) is that the TV and L1 regularisers are

both nonlinear and non-smooth. The minimizer of (1.1) can be computed by the con-

jugate gradient method [13] or PDE approach [12], but the main drawback is that the

convergence is very slow in practice. When the data fitting term D(g , f ) has a Lipschitz-

continuous gradient, it is possible to use the forward-backward splitting proximal algo-

rithm to solve the optimization problem [8]. The proximity operator of the function ψ( f )

is defined as

proxψ(u) = arg min
f

1

2

 f − u
2

2
+ψ( f ) , (1.2)

where ψ( f ) = λ1TV( f )+λ2

W f


1
. Applying forward-backward splitting proximal algo-

rithm, the solution of the problem (1.1) is given by

f = proxαψ

�
f −α∇ f D(g , f )

�

where α > 0, which suggests that the minimizer f might be achieved by performing an

iterative scheme with an initial solution.

However, an important task in forward-backward splitting proximal algorithm is to

compute the proximal operator of the regularisers. Chambolle [3] proposed a project al-

gorithm to compute the proximal operator of a TV regulariser, and it is well known that

the proximal operator of a wavelet L1 regulariser is a shrinkage operator [9]. Combettes

& Pesquet developed an iterative method to compute the proximity operator of composite

regularisers, by performing the proximity operator of each regulariser independently [7].

Recently, we obtained a formulation to compute the proximal operator when the function

ψ is a linear combination of a TV norm and wavelet L1 norm [2], but the relevant con-

vergence analysis was not given there. In this article, we reconsider how to compute the

proximal operator of the linear combination of the TV and wavelet L1 norms — i.e. we

study the minimization problem

min
f

Q( f )≡
1

2

 f − g
2

2
+λ1TV( f ) +λ2

W f


1
. (1.3)
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This problem (1.3) differs from the one considered in Ref. [18], where the wavelet basis

was used to represent the texture part of the image. We solve our problem (1.3) by re-

writing the TV norm in the dual formulation proposed by Chambolle [3], when it becomes

a min-max problem with an optimal solution that can be obtained by computing a saddle

point, which can be calculated by computing the dual variable first. An iterative method is

proposed to seek the dual variable, and the convergence of our proposed method is shown.

We then apply this method to solve the problem of MR image reconstruction from highly

under-sampled data, and present some consequent numerical results.

This article is organised as follows. In Section 2, we develop the dual iterative algo-

rithm for hybrid TV and wavelet L1 regularised problems. In Section 3, we introduce the

problem of MR image reconstruction from high under-sampled data and apply our pro-

posed method to solve it. Our consequent numerical results are in Section 4, and some

concluding remarks are drawn in Section 5.

2. Dual Iterative Algorithm for Hybrid TV and L1 Regularized Problems

Let us first provide notation used throughout this paper. We denote by X the Euclidean

space Rm×n, and Y=X× X . For g∈X , gi, j∈ R denotes the ((i−1)m+ j)-th component of g .

For p ∈ Y , pi, j = (pi, j,1, pi, j,2) ∈ R
2 denotes the ((i−1)m+ j)-th component of p. The inner

product is〈p ,q〉Y =
∑

i, j

∑2
k=1 pi, j,kqi, j,k, and the norm ‖p‖∞ = maxi, j{|pi, j |} with |pi, j| =Æ

p2
i, j,1
+ p2

i, j,2
and ‖p‖2 =
p


p , p
�
. In order to define a discrete Total Variation (TV), we

introduce a discrete version of the gradient operator. For any f ∈ X , the gradient ∇ is a

linear operator from X to Y , ∇ f is a vector in Y given by (∇ f )r,s = ((∇x f )r,s, (∇y f )r,s)

with (∇x f )r,s = f r+1,s − f r,s and (∇y f )r,s = f r,s+1 − f r,s. The discrete TV of the image f

is then defined as

TV( f )≡
|∇ f |


1
=
∑

r,s

Æ
(∇x f )2r,s + (∇y f )2r,s ;

and the discrete version of the divergence operator is defined by div = −∇T where ∇T is

the adjoint of ∇, such that for every p ∈ Y and f ∈ X we have f T divp = −


p,∇ f
�

Y . We

also define the set

A≡
�
p ∈ Y : ‖p‖∞ ≤ 1

	
, (2.1)

and the characteristic function δA of A as δA(p) = 0 for p ∈ A and δA(p) = +∞ if p /∈ A.

(It is obvious that A is a convex set.) The discrete TV of the image f is also the Legendre-

Fenchel conjugate of δ [3,4]— i.e.

TV( f ) =max
p∈Y

¦
f T divp − δA(p)

©
=max

p∈A
f T divp . (2.2)

We represent the TV norm using the dual formulation and define the objective function

J( f , p) as

J( f , p) =
1

2
‖ f − g‖2 +λ1 f T divp +λ2‖W f ‖1 , (2.3)
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hence Q( f ) =maxp∈A J( f , p) and the minimization problem becomes a min-max problem

min
f

max
p∈A

J( f , p) .

By using arguments of duality theory for convex programming, a pair ( f ∗, p∗) is a saddle

point for J( f , p) if and only if

J( f ∗, p) ≤ J( f ∗, p∗)≤ J( f , p∗) (2.4)

for any f and p ∈ A, which means that

min
f

max
p∈A

J( f , p) = J( f ∗, p∗) =max
p∈A

min
f

J( f , p). (2.5)

Thus to compute the minimizer of Q( f ), we seek to compute the saddle point of J( f , p).

However, before describing our iterative method to calculate the saddle point, let us define

the so-called soft-thresholding and projection operators.

Definition 2.1. For scalar b and λ, consider the operator

Sλ(b) =





b−λ , b ≥ λ

0 , |b| < λ

b+λ , b ≤ −λ

.

For the vector b, the soft-thresholding operator Sλ(b) is then defined by (Sλ(b))i = Sλ(bi) ,

when we have

Sλ(b) = arg min
x

1

2
‖x − b‖2 +λ‖x‖1.

Definition 2.2. The projection of a vector q onto the convex set A is defined as

PA(q) = arg min
p∈A

p − q
2

2
. (2.6)

We can apply the Lagrangian method to calculate the projection operator PA. The

Lagrangian function associated with (2.6) is
p − q
2

2
+
∑

i, j

βi, j

�
|pi, j|

2− 1
�

,

where βi, j ≥ 0 is the Lagrangian multiplier associated with the constraint |pi, j |
2 ≤ 1. Its

complementarity conditions implies that for the optimal βi, j either βi, j = 0 with |pi, j| ≤ 1,

or βi, j > 0 with |pi, j| = 1 and |qi, j| > 1. In the first case, we have pi, j = qi, j; and in the

second case, the KKT conditions [1] yield

pi, j − qi, j + βi, j pi, j = 0 , ∀i, j .

Thus we have βi, j = |qi, j| − 1 and therefore pi, j = qi, j/|qi, j|, so that

�
PA(q)
�

i, j =
qi, j

max(1, |qi, j|)
. (2.7)

We now establish the following theorem.
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Theorem 2.1. ( f ∗, p∗) is a saddle point of J( f , p) if and only if ( f ∗, p∗) satisfies

f ∗ = W T Sλ2
(W(g −λ1divp∗)) (2.8)

and

p∗ = PA(p
∗ −τλ1∇ f ∗). (2.9)

where τ is a parameter. Moreover, Eqs. (2.8) and (2.9) can be reformulated in a more compact

form:

p∗ = PA(p
∗ −τλ1∇W T Sλ2

�
W (g −λ1divp∗))

�
. (2.10)

Proof. According the constrained optimality condition [1], ( f ∗, p∗) is the saddle point

of J( f , p) if and only if there exists the pair (0, v p) with 0 ∈ ∂ f J( f ∗, p∗) and v p ∈
−∂pJ( f ∗, p∗) such that for any p ∈ A there is v T

p (p − p∗)≥ 0.

We first show that Eq. (2.8) holds. With φ(p) = g −λ1divp, we rewrite the formula in

Eq. (2.3) as

J( f , p) =
1

2
‖ f −φ(p)‖2+λ2‖W f ‖1 +

1

2
‖g‖2 −

1

2
‖φ(p)‖2 ,

and for simplicity denote f w = W f . Once f w is available, f can be reconstructed by

f = W T f w. Exploiting the unitary invariance property of the L2 norm we have

‖ f −φ(p)‖2 = ‖ f w −Wφ(p)‖2 ,

whence f ∗ = argmin f J( f , p∗) or 0 ∈ ∂ f J( f ∗, p∗) if and only if

f ∗w = Sλ2
(W ·φ(p∗))

such that Eq. (2.8) holds.

On the other hand, ( f ∗, p∗) is a saddle point of J( f , p) if and only if the equalities

Eq. (2.4) hold for any f and p ∈ A. Substituting the expression of J( f , p) into Eq. (2.4),

we have the following inequality

( f ∗)T (divp − divp∗)≤ 0 ,

and noting that div = −∇T and ( f ∗)T divp = −


∇ f , p
�

Y we obtain



p − p∗, p∗ −
�
p∗−τλ1∇ f ∗
��

Y ≥ 0 .

Then on recalling that q∗ ∈ A is the projection of a point q onto a convex set A if and only

if 

p − q∗,q∗ − q
�
≥ 0

for any p ∈ A, it follows that Eq. (2.9) holds.
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2.1. Dual Iterative Method

Theorem 2.1 states that the saddle point of J( f , p) can be calculated by seeking the

dual variable p that satisfies Eq. (2.10), and then replacing the dual variable in Eq. (2.8)

to compute the primal variable. However, Eq. (2.10) involving the expression for the

soft thresholding operator and the projection operation is non-differentiable, which poses

serious difficulty for its numerical solution. To address this difficulty, Chen et.al. [6] intro-

duced the concept of slant differentiability in view of its Lipschitz continuity, and proposed

semi-smooth methods to solve this type of equation.

We describe a simple iterative method in this subsection, as Theorem 2.1 suggests that

the dual variable p in (2.10) might be computed via an iterative scheme. Thus starting

from some initial pair p(0), we consider the iteration scheme of form

p(k+1) = PA

�
p(k)−τλ1∇W T Sλ2

(W (g −λ1divp(k)))
�

, (2.11)

and show that the sequence of p(k) converges to some point p∗ satisfying Eq. (2.9) un-

der the assumption on the stepsize τ. Once p∗ is obtained, the primal variable f ∗ can

be computed from Eq. (2.8). The iterative scheme in Eq. (2.11) can also be interpreted

as an alternating direction method to minimise and maximise with respect to f and p,

respectively — i.e.

f (k+1) =argmin f J
�

f , p(k)
�

,

p(k+1) =argminp∈AJ
�

f (k+1), p
�
−

1

2τ

p − p(k)


2

2
.

It is easy to check that

f (k+1) =W T Sλ2

�
W (g −λ1divp(k))

�
, (2.12)

p(k+1) =PA

�
p (k)−τλ1∇ f (k+1)

�
. (2.13)

The first step is to minimise the primal variable by fixing the dual variable. The second

step is to solve the constrained maximization problem, which can be via the proximal

method [14,15] that is widely applied to solve convex minimization problems [5,7,10,11,

17].

The following Theorem states that the sequence p(k) generated from Eq. (2.13) is

bounded when 0< τ < 1/(4λ2
1).

Theorem 2.2. If ( f ∗, p∗) is a saddle point of J( f , p) and the sequence ( f (k), p(k)) is generated

from Eqs. (2.12) and (2.13), then

p(k+1) − p∗


2

2
≤
p(k)− p∗


2

2
− 2τ
�

1− 4τλ2
1

� f (k+1) − f ∗


2

2
. (2.14)

In particular, when 0 < τ < 1/(4λ2
1) the sequence ( f (k), p (k)) converges to some limit point

( f †, p†).
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Proof. It is well known that the projection operator is non-expansive — i.e. for all p

and q , we have PA(q)− PA(p)
2

2
≤
q − p
2

2
.

Eqs. (2.9) and (2.13) yield

p(k+1) − p∗


2

2

=

PA(p
(k)−τλ1∇ f (k+1))− PA(p

∗ −τλ1∇ f ∗)


2

2

≤

�

p(k)− p∗
�
−τλ1∇
�

f (k+1) − f ∗
�

2

2

=

p(k)− p∗


2

2
+τ2λ2

1

∇
�

f (k+1)− f ∗
�

2

2
− 2τλ1

¬
p(k)− p∗,∇
�

f (k+1) − f ∗
�¶

Y
.

By definition,

∇ f
2

2
=
∑

r,s

�
( fr+1,s − fr,s)

2+ ( fr,s+1− fr,s)
2
�
= 2
∑

r,s

�
f 2
r+1,s + 2 f 2

r,s + f 2
r,s+1

�
≤ 8‖ f ‖2 .

From


p,∇ f
�

Y = − f T divp, we then obtain

p(k+1) − p∗


2

2
≤
p(k)− p∗


2

2
+ 8τ2λ2

1

 f (k+1) − f ∗


2

2

+ 2τλ1

�
f (k+1) − f ∗
�T

div
�

p(k)− p∗
�

. (2.15)

Now consider the bound of the last term in the above inequality. For simplicity, let

us denote φ(p) = g − λ1divp . According to the optimality condition, f (k+1) minimises

J( f , p (k)) if and only if there exists v f ∈ ∂ f J( f (k+1), p(k)) such that

v T
f

�
f − f (k+1)
�
≥ 0

for any f . Noting that f (k+1) −φ(p (k)) +λ2W T sign( f (k+1)
w ) ∈ ∂ f J( f (k+1), p (k)), we have

�
f (k+1) −φ(p (k)) +λ2W T sign( f (k+1)

w )
�T �

f − f (k+1)
�
≥ 0 . (2.16)

Similarly, on using f ∗ = argmin f J( f , p∗) we obtain

�
f ∗−φ(p∗) +λ2W T sign( f ∗w)

�T �
f − f ∗
�
≥ 0 . (2.17)

Setting f = f ∗ in (2.16) and f = f (k+1) in (2.17), and then summing the resulting in-

equalities gives

�
f (k+1)− f ∗
�T �

f (k+1) − f ∗ +λ1div(p(k)− p∗) +λ2b
�
≤ 0 (2.18)
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where b = W T
�

sign( f (k+1)
w )− sign( f ∗w)

�
. It is easy to check that

�
f (k+1) − f ∗
�T

b =
�

f (k+1)
w − f ∗w

�T �
sign( f (k+1)

w )− sign( f ∗w)
�
≥ 0 . (2.19)

From (2.18) and (2.19), we obtain

λ1

�
f (k+1)− f ∗
�T

div
�

p (k)− p∗
�
≤ −
 f (k+1) − f ∗


2

2
,

and summing this inequality and (2.15) then obtain the desired inequality (2.14).

When 0 < τ < 1/(4λ2
1), the sequence p(k) is bounded and therefore contains a subse-

quence p(ki)) converging to some limit point p†. Since the subsequence p (ki)) is convergent,

for any given ε > 0 there exists a constant i0 such that

p(ki) − p†


2

2
< ε, ∀i > i0 .

Corresponding to (2.14), when 0 < τ < 1/(4λ2
1) there exists a constant j0 (for example

j0 = ki1
) for any given ε > 0 such that

p( j) − p†


2

2
≤
p ( j0) − p†


2

2
< ε , ∀ j > j0 ,

so the sequence p(k) converges to p†. Finally, on writing f † = W T Sλ2
(W (g − λ1divp†))

we have
 f ( j+1) − f †


2

2
=

Sλ2
(W (g −λ1divp( j)))− Sλ2

(W (g −λ1divp†))


2

2

≤‖div‖22

p( j) − p†


2

2

such that the sequence f ( j) is also convergent, and hence the sequence ( f (k), p(k)) con-

verges to ( f †, p†).

The next Theorem states that the sequence f (k) generated by Eq. (2.12) converges to

a minimizer of (3.1) below.

Theorem 2.3. When 0 < τ < 1/(4λ2
1), the sequence ( f (k), p (k)) generated by Eqs. (2.12)

and (2.13) converges to a saddle point of J( f , p). Moreover, f (k) converges to a minimizer of

(3.1).

Proof. According to Theorem 2.2, the sequence ( f (k), p (k)) converges to some limit

point ( f †, p†), so it remains to show that ( f †, p†) is a saddle point of J( f , p). The limit

point ( f †, p†) satisfies

f † =W T Sλ2

�
W (g −λ1divp†)

�
,

p† =PA

�
p†−τλ1∇ f †
�

,

so from Theorem 2.1 it is a saddle point of J( f , p).
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3. MR Image Reconstruction

Due to its non-invasive manner and excellent depiction of soft tissue changes, Mag-

netic Resonance (MR) imaging is widely used in radiology to visualise internal structure

and functions of the body. Sparsity in the transform domain and piecewise smoothness

in the spatial domain make it possible to reconstruct MR images from under-sampled k-

space data. Lustig et al [13] proposed to reconstruct the MR image by performing hybrid

regularised optimization via

f 0 = argmin
u

Q0( f ) , (3.1)

where

Q0( f ) =
1

2

F p f − b
2

2
+λ1TV( f ) +λ2

W f


1
, (3.2)

with b the observed data in k-space and Fp a Fourier transform evaluated only at a subset of

frequency domain samples (corresponding to one of the k-space under-sampling schemes).

It is notable that the under-sampled Fourier transform matrix F p can be rewritten as F p =

PF , where P is a sampling matrix and F the full Fourier transform, so the MR image

reconstruction problem can be regarded as a Fourier domain in-painting problem (filling

in the missing sampled points in the k-space).

Since the rows of the down-sampling matrix are orthogonal, we have PPT = I while

F is a Fourier transform matrix, implying that ‖u − F f ‖22 = ‖F
T u − f ‖22. Using a certain

matrix operation and optimization transform, we derive a quadratic majorizing function

for the data fitting term in the objective function (3.2):

F p f − b
2

2
=

1+α

α
min

u
‖Pu − b‖22 +α
F T u − f
2

2
.

On defining the bivariate function Q1(x , u) as

Q1(u, f ) =
1+α

2α
‖Pu − b‖22 +

1+α

2

F T u − f
2

2
+λ1TV( f ) +λ2‖W f ‖1 ,

from the convexity of Q0( f ) and Q1(u, f ) the minimization problem for Q0( f ) is equiva-

lent to Q1(u, f ) — i.e. min f J( f ) = min f ,u Q1(u, f ) . Consequently, instead of computing

the minimizer of the objective function Q( f ), we calculate the minimizer of the objective

function Q1(u, f ) via an alternating minimization algorithm. Thus starting from an initial

guess f (0), we use the alternating minimization algorithm to generate the sequence

¨
u(k) = argminu Q1(u, f (k−1)) ,

f (k) = argminu Q1(u
(k), f ) .

We observe that the objective function Q1(u, f ) is quadratic with respect to u, so u(k) can

easily be computed from the formula

u(k) =
�
PT P +αI
�−1�

PT b+αF f (k−1)
�

. (3.3)
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Since P is a random under-sampled matrix, PT P is a diagonal matrix with diagonal entries

are 0 and 1, so we can compute u(k) easily. We remark that u(k) can be regarded as an

average of PT b and F f (k−1). If the point in k-space is unsampled, its value is filled by the

Fourier coefficient of the restored image. For the variable f , we have

f (k) = argmin
f

Q1(u
(k), f ) = argmin

f

1

2

F T u − f
2

2
+β1TV( f ) + β2‖W f ‖1 ,

where βi = λi/(1+α) for i = 1,2. We can apply the dual proximal based iterative method

(cf. Ref. (2.11) ) to calculate the dual variable p, and then compute f from Eq. (2.12).

Let us now summarise the resulting algorithm.

Algorithm 3.1 Iterative Method for MR Image Reconstruction.

Ensure: u = IterMethod(P, b,λ1,λ2).

Require: P , b,β1,β2.

1: Initialize u(0). Set the parameter α,τ.

2: βi = λi/(1+α) for i = 1,2.

3: while stopping criterion is not satisfied do

4: u(k) =
�
PT P +αI
�−1�

PT b+α f (k−1)
�
;

5: Initialize p(k,0).

6: while stopping criterion is not satisfied do

7: p(k, j) = PA(p
(k, j−1) −τβ1∇W T Sβ2

(W(F T u(k)− β1divp(k, j−1))));

8: end while

9: f (k) = W T Sβ2
(W (F T u(k)− β1divp(k, j)));

10: end while

11: return f = f (k).

4. Numerical Results

We now illustrate the performance of our proposed algorithm for sparse MRI recon-

struction problems, and compare it with both the gradient descent method (GD) and the

nonlinear conjugate gradient descent method with backtracking linear search (Nonlinear

CG) — cf. Ref. [13]. Our codes are written in Matlab R2009a.

The experiments were performed under Mac OS X10.7.3 and MATLAB R2011a on a

MacBook Air Laptop with a 1.7GHz Intel Core i5 processor and 4GB of RAM. The Signal-

to-Noise Ratio (SNR) used to measure the quality of the restoration results is defined as

follows: SNR = 10 log10(‖u‖
2
2/‖u − bu‖22) , where u and bu are the original image and the

restored image, respectively. The observed image was chosen as the initial image. The

sample rate in the tests was 20%, selected with polynomial variable density sampling, and

Gaussian white noise with standard deviation σ = 0.01 was added in the sampling data.

We chose the parameters λ1 = λ2 = 0.01 and τ = 0.248.
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Figure 1: The original 128× 128 image (Image1), the observed image with 20% k-spae data, and therestored image obtained from the onjugate gradient method, the nonlinear onjugate gradient methodand our proposed method, respetively.
Two MR images of brain with size 128× 128 were used in the test. Fig. 2 and Fig. 4

show the original images, the observed image with 20% k-space data, and the restored im-

age obtained by the conjugate gradient method, the nonlinear conjugate gradient method

and our proposed method, respectively. The SNRs of the restored images versus CPU times

are shown in Fig. 3, and we observe that our proposed method produced the best SNRs.

Next, we investigated our proposed method scaling with the image size. We used the

“Shepp-Logan” phantom image generated by the MATLAB command phantom(n) with

n = 64,128,256,512. Fig. 4 shows the original “Shepp-Logan” phantom image with

n = 64, its observed image with 20% k-space data, and the restored image obtained

from conjugate gradient method, nonlinear conjugate gradient method and our proposed

method, respectively. The SNRs of the restored images with size n versus CPU times are

shown in Fig. 5, and we again observe that our proposed method produces the best SNRs.

5. Conclusion

We have considered the proximal operator of both hybrid TV and wavelet L1 regular-

ization, which can reduce or remove staircase effects caused by TV regularization and ring

effects caused by wavelet regularization. In order to overcome the numerical difficulty

caused by the nonlinearity and non-smoothness of the TV and wavelet regularizations, we

represented the TV-norm in a dual formulation. We proposed an iterative method to com-

pute the dual variable and analyzed the convergence of this method. We then applied our

method to the problem of reconstructing MR images from highly random under-sampled
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Figure 2: The original 128× 128 image (Image2), the observed image with 20% k-spae data, and therestored image obtained from the onjugate gradient method, the nonlinear onjugate gradient methodand our proposed method, respetively.
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Nonlinear CGFigure 3: SNR versus CPU time for Image1 (left) and Image2 (right).

k-space data, using an optimization transfer technique that involves replacing the original

univariate functional in the MR image reconstruction by a bivariate functional on adding

an auxiliary variable. Our bivariate functional can be minimised by alternating minimiza-

tion, where the minimum of the auxiliary variable has a closed form solution, and the

minimization problem for the original variable is equivalent to solving the proximal op-

erator of the hybrid regularization. Our experimental results indicate that our proposed

algorithm is very efficient relative to gradient descent methods.
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Figure 4: The original 64× 64 phantom, the observed image with 20% k-spae data, and the restoredimage obtained from the onjugate gradient method, the nonlinear onjugate gradient method, and ourproposed method respetively.
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